
Death rates by educational attainment level in the US
Cristian Redondo Loures, Andrew J. G. Cairns
Actuarial Research Centre of the Institute and Faculty of Actuaries, Heriot-Watt University, UK.
Email: c.redondo loures@hw.ac.uk / a.j.g.cairns@hw.ac.uk

Introduction
Case and Deaton (2015) found a rise in mortality amongst middle aged non-
hispanic whites in the US, concentrated in those with a high school diploma
or less formal education. This increase was related to the upward trend in
mortality due to some selected causes of death.
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Can we go further?
• Individual years of age.
• Extension to higher ages.
•Analysis of many other causes of death.

Our data sources
Source of death counts: CDC data. Complete database of individual death
records containing all relevant information for years 1989-2015.
Sources of exposures:
•HMD: provides reliable population estimates. No information on educa-

tional attainment.

•ACS/Census: provide reliable population estimates AND information on
educational attainment. Available only for selected years in the period anal-
ysed.

• CPS: provides information on educational attainment for the whole period
under analysis. Big sampling error→ noise in the education-dependent ex-
posures. Restricted age range (only up to 79 by individual year of age).

Problem: unreliable population data
Combining HMD estimates for the total population and CPS data for the ratio
of educated people we obtain exposures by educational attainment. These are
very noise and need smoothing.
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⇒

Reliable death counts→ use information on deaths to smooth the noise in the
exposures.
Recurrence for the ratios within a cohort:
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e→ Educational attainment.
c→ Characteristics of the cohort.
∆→ Decrease in membership (approximated by the number of deaths).
The smoothed ratios will minimise
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Eqs. (1) and (2) provide a systematic way of estimating (smooth) ratios of
educated people, and extrapolating them up to any age desired.
Now we have all the tools needed to calculate mortality rates!

Results

One last issue: The ”Some college” and ”Bachelor’s or more” education groups
show inconsistent results at very high ages (extrapolated area). Comparison
with ACS/Census shows that the problem does not lie with the data and meth-
ods underpinning the in-sample exposure estimates → Likely bias is in the
CDC data! (Overreporting of college graduates).
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We need to merge the ”Some college” and ”Bachelor’s or more” categories
into a broad ”Attended University” category. We relabel the two remaining
categories as ”Low” and ”High” education.
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Gap in all cause mortality has increased for both males and females in the
period 1989-2015.
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For some lifestyle-related causes of death (like cancer in the respiratory sys-
tem, heavily linked to tobacco) the gap is growing very rapidly.

Conclusions
•We managed to obtain smooth death rates by education level for individual

years of age despite the noise in the educational attainment data.

•We managed to study several causes of death and the evolution of the differ-
ence in mortality rates due to differences in educational attainment.

Further research
• Combining our findings with data on lifestyle factors (like smoking) could

further our understanding about the effects of these habits on the mortality
rates of different subpopulations.

•A natural next step is estimating the impact of these lifestyle factors on mor-
tality (i.e., if lower educated people had copied the smoking habits of their
higher educated counterparts, how might their mortality have evolved over
the period considered in our analysis?)
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ABSTRACT
Modelling of mortality rates for specific population(s) is key for longevity risk
management. Reliable multi-population stochastic models help capture dif-
ferent mortality patterns and project future longevity. We have carried out
analysis into several multi-population datasets including English IMD, Canada
Pension Plan (CPP) and QPP. We present modelling results of several mor-
tality models from dataset provided by QPP. There are 15 models fitted to
QPP data, and we present 4 of them.

1. QPP DATA OVERVIEW
• QPP data consists of 11 sub-population groups from group 1 to 11, sorted

by increasing pension amount in 10% bands.

• The underlying data range for model fitting is age 65-89, and year 1991-
2015.

• The 11 groups are not equally sized, groups with high-pension population
tend to be in larger size in terms of exposures.

2. MODEL SPECIFICATION
There are 4 stochastic models’ fitting and analysis presented today.

• m1 logmxti = αxi + κ1
ti + (x− x̄)κ2

ti (Plat (2009))

• m2 logmxti = αxi + β1
xκ

1
ti + β2

xκ
2
ti (CAE model by Kleinow (2014))

• m6 logmxti = αx + κ1
ti + (x− x̄)κ2

ti (Plat model with common αx)

• m14 logmxti = αx + β1
xκ

1
ti + β2

xκ
2
ti (CAE model with common αx)

3. NOTATION & MATHEMATICAL PRINCIPLE
Dxti, Exti: number of deaths/exposures observed at age x in year t for group
i, from underlying QPP data. mxti, m̂xti: crude/estimated death rate at certain
age, year and group.

The log-likelihood function is created from the Poisson assumption for the
number of deaths, Dxti.

Dxti ∼ Poi(Extim̂xti)

where mxti is the underlying death rate observed. For example, for m1 the
distribution of death is:

Dxti ∼ Poi

(
Exti exp(αxi + κ1

ti + (x− x̄)κ2
ti

)
We use maximum log-likelihood (MLE) to estimate all parameters.

4. ESTIMATION RESULTS - M2 and M6
Model m2:

• Group specific αxi gives
clear group rankings.

• κ1
ti are distributed very

close for subgroups with
full of crossover.

4. ESTIMATION RESULTS - M2 and M6 - cont.
Model m6:

• As αx is common, variations between
subgroups are captured by κ1

ti and κ2
ti.

• Gap between subgroups in κ1
ti has

widened.

• Group 11 stands well below all other
groups.

5. MODEL SELECTION
1. BIC
Bayes Information Criterion (BIC) is a statistic based on log-likelihood
that penalises over-parameterized models and is used as a purely numerical
criterion for selecting out the best model (m6).

Model log-likelihood # parameters degree of freedom BIC
m1 -22,715.28 825 803 52,525.58
m2 -22,628.04 875 851 52,775.22
m6 -22,867.36 575 573 50,797.55
m14 -22,771.52 625 621 51,029.98

2. Graphical diagnostic - m6 as example

* From left to right: Heatmaps of standardized (Pearson) residuals from m6,
for group 1 and 11. (Black cell: positive figure; Grey cell: negative figure)
** White cell: zero exposures from QPP data.

CONCLUSION AND FUTURE WORKS
• For multi-population demongraphic dataset with quite high volatility across

different groups, simpler models with linear terms tend to produce better
BIC result, i.e. model m6 and m14. For the specific QPP dataset, common
αx performs better.

• Besides numerical criteria, we also assess model fitting results by graphical
diagnostics, includes Pearson residuals distribution, comparison between fit-
ted and crude mortalities, etc.

• Based on the best-fitting model we can project future death rates using a
multivariate time series model for the κ’s. For other populations with a co-
hort effect we add an extra cohort index.

• We would also carry out cluster analysis on multi-population datasets to
work out the best clustering structure for model fitting.
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Introduction
This work focuses on the change of Critical illness insurance claim rate (CII)
claim rates over time when Incurred-but-not-Settled adjustments are involved.
Modelling the delay between dates of diagnosis and settlement of claims is
also important for reserving purposes.

Data
Data Overview(CMI 2007-2010)
Data relate to CII claims enforceable and/or settled in 2007-2010. There are to-
tal 525,780 observations, grouped by combining the same characteristics such
as gender, smoke status, benefit type, and benefit amount. Earlier CMI data
also available from 1999 to 2005.

‘

Methodology: Delay time modelling
Denote that yi is the delay for claim i in days. xiT = (x1,i, x2,i, · · · , xp,i) are
the risk factors: age, gender, benefit type, smoker status, settlement year, ben-
efit amount, and policy duration. The delay time modelling is based on 1999 -
2005 Dataset.
Delay time generalized beta type 2 distribution (GB2) model

Yi ∼ GB2(α, τ, γ, si)

with
E(Yi) = exp(ηi) for i = 1, · · · , n

where ηi is the linear predictor for claim i has: ηi = xi
Tβ

————————————————————————————

Methodology: Claim rate modelling

Exposure adjustment
Denote E(x, u; θ)as the original exposure with age last birthday of diagnosis
being x and risk factors vector θ recorded at calender year u. Adjust exposures
as:

E∗(x, u; θ) = E(x, u; θ)F (2010.5− u;x, θ)

F (2010.5 − u; ;x, θ): probability that a critical illness diagnosed at calender
year u will be settled before the end of the last contribution year 2010.5 with
the delay time distribution estimated from previous dataset.

Inception rate estimation
Denote that Cx,i,θ is the number of claim for policy i with risk profile θ
at age x. Ex,i,θ and λx,i,θ are the exposure and inception rate for policy i,
respectively. In order to smooth the inception rate, we add a age-smoker
interaction to current covariates. The model shown as:

Cx,i,θ ∼ Poi(λx,i,θ ∗ Ex,i,θ)

with
log(λx,i,θ) = δx + βθ for i = 1, · · · , n

where δ and β have normal vague priors.

Results

Figure 1: Risk factor estimates and 95% CIs for delay time

Figure 2: Risk factor estimates and 95% CIs for CII rates

Bayesian estimation of CII rates
GVS method is used in model selection for inception rates under a Poisson
distribution. The best model involves covariates age, smoker status, distribu-
tion channel, policy duration, benefit amount, benefit type and age-smoker
interaction.

Figure 3: Estimated inception rates

Conclusions
• Our GB2 model for Delay distribution provides better fit compared with

other models used before such as Lognormal model and Burr model.

• CII rates estimated using Bayes GLM methodology show a considerable in-
crease for the 2007-2010 data at younger ages compared to 1999-2005 data.

Further Research
• Apply more types of different error structures (e.g.negative binomial distri-

bution) Bayes model to the inception rate estimation and compute credible
intervals for all risk factors.

• Compare the smooth claim rates obtained by our method to the ones ob-
tained by the Continuous Mortality Investigation (CMI).
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Introduction
The purpose of the current research is to develop a model for emerging coun-
tries to improve the quality of the data of those countries which are not included
in the Human Mortality Database such as Mexico.
Application: Reported data→ Smoothed HMD→ International Reinsurance.

Problem: Age heaping
Age Heaping occurs when people misreport age.
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Data
Exposures: census years 1990, 1995, 2000, 2005, 2010 (reported / observed).
Death counts: annual.

Figure 1: Reported exposures Êt,x, deaths D̂t,x, and death rates m̂t,x, Mexico 1990.

Main Objective
To develop a model to improve the quality of the data related to death counts
and exposures with age heaping.

Model and Notation
We design a penalised log-likelihood for the two dimensional data, such that
for any cohort y we denote by |y| the number of ages available for this cohort,
that is, ny = |y| is the length of cohort y in our data set. The corresponding set
of ages x is denoted by Xy.

Êx,y = reported exposures at age x, cohort y
D̂x,y = reported death counts at age x, cohort y
Ex,y = true / actual exposures at age x, cohort y (not observed)
Dx,y = true / actual death counts at age x, cohort y (not observed)

Ex,y
Age heaping−−−−−−−−→ Êx,y

Dx,y
Age heaping−−−−−−−−→ D̂x,y

Dx,y ∼Poisson
(
mx,yEx,y

)
,

where the true cohort mortality mx,y is given by:

mx,y = exp
[
ay + by

(
x− x

)
+ cy

((
x− x

)2 − σ2x)],
and the reported death rate is given by m̂x,y =

D̂x,y

Êx,y

Approximate log-likelihood
l =

∑
x,y

D̂x,y log
(
mx,yÊx,y

)
−mx,yÊx,y + C.

Smoothing
Penalised log-likelihood

llp = l − λ1p
(
ay
)
− λ2p

(
by
)
− λ3p

(
cy
)
, p

(
ξy
)
=

ny−1∑
ỹ=2

(
42ξy

)2
,

where 42ξy is the second order difference of ξy, and λ1, λ2 and λ3 are the
smoothing parameters.

Results

Fitted exposures Ẽx,y =
D̂x,y

m̃x,y
= Reported deaths

Fitted Death Rate

where m̃x,y = exp
[
ãy + b̃y

(
x− x

)
+ c̃y

((
x− x

)2 − σ2x)].
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Figure 2: Fitted death rate parameters
(
ãy, b̃y, c̃y

)
, Mexico.
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Figure 3: Reported Êx,y and fitted exposures Ẽx,y different cohorts, Mexico. The big reduc-
tion for 1935 and 1955 cohorts, reflects the significant age heaping at ages 40, 50, 60, 70 in the
census years.

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

● ●

●

●
●

●

●

40 50 60 70 80

0
10

0
20

0
30

0
40

0
50

0
60

0

Mexico ,  Females 
 1990 ,  Exposures

Age

E
xp

os
ur

es
 (

in
 th

ou
sa

nd
s)

Improvement

● E t,x (reported)
E t,x (fitted)

●

●
● ●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

40 50 60 70 80

−
6

−
5

−
4

−
3

Mexico ,  Females 
 1990 ,  Death rates

Age

lo
g(

m
t,x

)

Improvement

● m t,x (reported)
m t,x (fitted)

Figure 4: Fitted exposures Ẽt,x and death rates m̃t,x, Mexico 1990.

Conclusions
•We obtain much improved exposures Ẽx,y, and death rates m̃x,y when
λi = 106. Therefore, this model improves the quality of the Mexican data
by reducing age heaping across all cohorts.

• The remaining volatility in the fitted exposures comes from the death counts.

Forthcoming Research
• Specify a prior for all parameters in order to apply Bayesian methods and

compute credible intervals for all parameters.

• Include constraints on death counts to reduce the volatility in the fitted ex-
posures.

• Collaborate with HMD on Mexican data.
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Introduction
Historically, mortality rate modelling has focused on modelling mortality due
to all causes. However, including the cause of death in the mortality models
may provide improvements in the models and better mortality rate
projections.

Problem: Cause-of-Death Mortality
Information about the cause of death may provide improved
models and projections of mortality rates.

Figure 1: Observed log mortality rates by cause of death and by age group from years 2001
to 2016

Data
The data for England and Wales is obtained from the Office of National
Statistics (2001 - 2016)

• Age in five-year age intervals

• Gender

• Population at June 30 of the given year (central exposures)

• Reported death counts grouped by ICD-10 classification

• Year of observation

Death counts are grouped into six main causes of death groups:

1. Infectious diseases

2. Cancers

3. Diseases of the circulatory system

4. Diseases of the respiratory system

5. External causes of death

6. All other causes of death

Objectives
1. Investigate mortality rates by cause of death

2. Predict future cause-specific mortality rates

3. Compare models for distributional assumptions

Model
We will model the death counts using Poisson and Negative Binomial
generalised linear models. The analysis will focus on mortality rates for
individuals aged 50 and above.
Notation

i = index for a unique combination of age group ai, gender group
si, and observation year yi

C(c,i) = indicator variable for cause of death c for combination i
D(c,i) = reported death counts for cause of death c for individuals in

combination i
ECi = central exposure for combination i
xi = vector of covariates for combination i

β(c,i) = vector of parameters for cause of death c and combination i

The observed cause-specific mortality rate is given by m(c,i) =
D(c,i)

EC
i

Fitted cause-specific death counts

D̂(c,i) = ECi · exp(β̂(c,i)xi)

Model selection is performed using AIC. Interaction terms between two
covariates are considered.

Results
The Negative Binomial model is chosen to the model the death counts where
the age and year covariates are standardised and the baseline is male deaths
due to infectious diseases. This model has interaction terms for each of age,
gender, and year with the cause of death, as well as an interaction between
age and gender.

log D̂(c,i) =− 8.108 + 0.441ai − 0.274si − 0.003yi + 3.620C(2,i) + 3.902C(3,i)

+ 2.461C(4,i) + 1.455C(5,i) + 2.271C(6,i) + 0.063aisi − 0.132aiC(2,i)

+ 0.080aiC(3,i) + 0.155aiC(4,i) − 0.183aiC(5,i) + 0.041aiC(6,i)

− 0.051siC(2,i) − 0.389siC(3,i) − 0.068siC(4,i) − 0.302siC(5,i)

+ 0.082siC(6,i) − 0.010yiC(2,i) − 0.047yiC(3,i) − 0.011yiC(4,i)

+ 0.009yiC(5,i) + 0.008yiC(6,i) + logEC
i

(1)

Fitted cause-specific log mortality rates
log m̂(c,i) = log

(
D̂(c,i)

EC
i

)
where D̂(c,i) is the fitted death count for cause of death c and
combination i.

Fitted Log Mortality Rates

Figure 2: Fitted cause-specific log mortality rates in 2014

Prediction Intervals
Models are fitted to the first 15 years of data from 2001 to 2015 and used to predict the
mortality rates in 2016. Bootstrap methods are used to construct prediction intervals.

Figure 3: Prediction intervals for cause-specific log mortality rates in 2016

Conclusions
• The Poisson and Negative Binomial models provide similar fitted values

for the number of deaths

• The Negative Binomial model provides better modelling of overdispersion
in the data and consistent prediction interval widths for log mortality rates

• The interaction terms between cause of death and the age, gender, and year
are important for modelling the mortality rates by cause of death

Forthcoming Research
• Investigate cause-of-death mortality under a Bayesian framework.

• Investigate correlation between different causes of death and their joint
effects on the rate of mortality.

• Investigate cause-of-death mortality experiences of other countries.
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Introduction
Since DNA testing became available in the 1990s, the use of genetic informa-
tion by insurers has been disputed. Several studies estimated increases in life
insurance premium rates under undisclosed genetic test results to insurers:
•Macdonald & Yu (2011) modelled six major single-gene disorders and es-

timated the increases of up to 0.6% .
•Howard (2014) modelled thirteen genetic disorders, “cardiomyopathies”

different than Macdonald & Yu (2011), and estimated the increases of 12% .
Cardiomyopathies are a large group of disorders affecting the heart muscle.
Hypertrophic Cardiomyopathy (HCM) is the most prevalent of these disorders.
•We aim to model the impact of genetic testing in HCM in a life insurance

market.

Hypertrophic Cardiomyopathy (HCM)
HCM is the thickening (hypertrophying) of the heart muscle.
•Onset: It generally exists at early adulthood.
•Diagnosis: Echocardiography and Cardiac Magnetic Resonance.
• Symptoms: Chest pain, shortness of breath, syncope, palpitations.
•Genetics: Autosomal dominant mutations in over 8 genes. Mutations in the

MYBPC3 gene are associated with late-onset HCM while mutations in other
genes are associated with early-onset HCM.
•Mortality: It is not related to gender and race. The causes of HCM death:

a. Sudden Cardiac Arrest (SCA) (common at young ages),
b. Heart Failure (HF),
c. Stroke (common at older ages).

Modelling HCM for Life Insurance Market

State i0
Not Tested
Not Insured

State i1
Not Tested

Insured

State i2
Tested

Not Insured

State i3
Tested
Insured

State i4
Onset of

HCM

State i5
Dead

(Other)

State i6
Dead

(HCM)

µi01x+t µi02x+t µi23x+t

µi45x+t µi46x+t

Figure 1: A multi-state Markov model of genetic testing in HCM for a person in ith risk sub-population in a life insurance market.

Formulating the Model
Our model is the discrete-state continuous-time Markov model. i label repre-
sents the respective sub-populations to the published epidemiology of HCM:

i : 0, Not At Risk of HCM
i : 1, A known Early-Onset HCM Mutation Absent i : 2, A known Early-Onset HCM Mutation Present
i : 3, A known Late-Onset HCM Mutation Absent i : 4, A known Late-Onset HCM Mutation Present
i : 5, An unknown Early-Onset HCM Mutation Absent i : 6, An unknown Early-Onset HCM Mutation Present
i : 7, An unknown Late-Onset HCM Mutation Absent i : 8, An unknown Late-Onset HCM Mutation Present

We define the occupancy probabilities of the model as follows:

dtp
ijk
x+t = P [In state ik at age x + t + dt | In state ij at age x + t], j 6=k. (1)

Then, we can obtain the transition intensities as follows:

µ
ijk
x+t = lim

dt→0

dtp
ijk
x+t

dt
(2)

Parametrising the Model I: Rates at Birth
• Prevalence rate in the general population: ∼ 0.2% (Maron et al. 1995).
• Frequency of the gene mutations in HCM Population: 40-60%, most fre-

quently in the MYBPC3 gene (15-30%) and MYH7 gene (10-20%), of HCM
patients, tested with a mutation in a known gene (Elliott et al. 2014).

Parametrising the Model II: Hazard Rates
•Uptake of genetic testing: Rate of uptake of the testing at risk first-degree

relatives is ∼70% in the first year.
• Insurance purchase: Adverse rate of the purchase is assumed 25% per year.
•Onset: Rate of onset is defined as µOnset

x = F ′(x)/(1− F (x)) where
F (x) = P [Phenotype present at age x]. See Figure 2.
•Mortality: Rate of HCM death is ∼0.5% per year (Maron et al. 2016).
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Figure 2: Late-Onset Penetrance Rate of HCM from Christiaans et al. (2011).

Simulation and Computation of the Model

Figure 3: An algorithmic implementation of the model, in C++ programming language, for
HCM population in a life insurance market.

Further Work
We wrote the simulation code of lifetimes of family persons; our goal now is to
• implement the code of premium calculations of the simulated population,
• have results and compare them with the earlier studies.
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