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Insurance Fraud

* Becoming a rapidly growing issue worldwide
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Becoming a rapidly growing issue worldwide

UK fraud activity reached an estimated £17 million in 2018
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Becoming a rapidly growing issue worldwide
UK fraud activity reached an estimated £17 million in 2018

Biggest lines are Motor, Medical and Workmen’s Compensation — fake car
crashes, personal injury scams, faked death claims
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Becoming a rapidly growing issue worldwide
UK fraud activity reached an estimated £17 million in 2018

Biggest lines are Motor, Medical and Workmen’s Compensation — fake car
crashes, personal injury scams, faked death claims

With advancing technology, it can become easier to detect fraudulent claims
when they are received
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Machine Learning

The "teaching a kid math” analogy
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All about patterns!!!

Computer systems learn
from data

We train the system System learns Then performs operations on its own
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We train the system

Training phase 1: data is
fed into the algorithm,
relevant fields and
records sorted from data
to retrieve active dataset
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All about patterns!!!

Computer systems learn
from data
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All about patterns!!!

Computer systems learn
from data

System |earns

Training phase 2: Model Fitting —
algorithm decodes hidden patterns and
relationships in the data
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The Roadmap

All about patterns!!!

Computer systems learn
from data

v

» Then performs operations on its own

Testing phase: new data fed into system,
algorithm uses patterns & relationships learnt
during the training phase to predict new cases
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Types

of Algorithms

Structure Image

ustomer Rec
Discovery Chssification e

Big data
Visualistaion

Feature

lassificatio Diagnostics
Bichadon Diasctici Classification

Recommender
Systems

Unsupervised Supervised
Learning Learning Yesher

Clustering

Machine _—

Prediction

Targetted
Marketng

Customer

S, Lcarning

Real-time decisions

Reinforcement
Learning
Raobot Navigation Skill Acquisition

Source: Data Science Central Learning Tasks
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With ML, no need to...
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...make assumptions about distributions
...worry about possible correlations between predictors

...look for interactions between predictors
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RULE-BASED FRAUD DETECTION ML-BASED FRAUD DETECTION

Can catch obvious and known fraud
scenarios only

Requires manual work to determine criteria
for fraud scenarios

Longer processing and verification times due
to manual nature

Can find not-so-obvious fraud scenarios due
to the ability to detect hidden
patterns/correlations in data

Can automatically detect and create rules for
fraud scenarios

Quicker processing and verification times
since algorithms are automatically generated
and verified
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Decision Trees

BasePolicy = Liability

0

0.40
100% I

(0] Model is grown by recursively splitting the data
o into decision boundaries using the feature
space

Deductible = 400,700

D
| 0.09 |
| 15% I

1
0.60
62%
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SINGLE TREE

MODELS ENSEMBLE MODELS

1. GBM
2. RANDOM FOREST
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Creating a Decision Tree

Jes BasePolicy = Liability

Data is split in a way that

0

&39) maximizes the gain in information
Fault = Third Party between parent and child nodes
@ Goal is to split data points in a way
) that makes the subgroups as

Deductible = 400,700 <

homogenous as possible

D
| 0.09 |
| 15% |
Parent node
1
060 | «<— Child node
62% Eg
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Measuring Information Gain
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Gini Impurity Entropy

h h
Gini(t) = Z e (1 — i) H(t) = — Z{pk logp, i}
k=1 k=1

Dk — Probability of choosing item with label k in set t Pk — Probability of choosing item with label kin set ¢
b — Logarithmic base

Measures how often a randomly chosen Measures how “mixed up” the data is
element would be incorrectly labeled if it were
labeled according to its distribution in the data Used as splitting criterion for the C5.0

Used as splitting criterion for the CART algorithm

algorithm
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Ensemble Learning Models







Boosting

+ Converts weak learners into a single strong learner by aggregating them

A
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Converts weak learners into a single strong learner by aggregating them

Model 1

RESIELS

RESIES
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Random Forests




Breaking Down the “Random Forest”
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Breaking Down the “Random Forest”

* RF based on the concept of Bagging (Bootstrap Aggregating)
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Breaking Down the “Random Forest”

* RF based on the concept of Bagging (Bootstrap Aggregating)

Transaction qimg stamp I} Age group  Fresh fruit  Seafood®  Random sample of p columns
Apn v i - it

1

4 April 2 Teennger Banana Tuma

3 B

E| 1 Senior Orange

5 3 Adult Banana

[ July 1 Senior Orange Ancho?
T July 2 Teenger Banana Tuma >
-] July 2 Toenager Orange Tuma

@ July E| Teenager Banana Tuna

1o December 2 Teenager Banana

11 : 3 Acult Orange ey
12 1 Senior d nehovy

Y=True Y=False

Random sample of k rows

i ]

Repeat N times
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Artificial Neural Networks

Structured Sequential model

Hidden

Structured: A Neural Network has a defined structure that
consists of 3 types of layers

Sequential: Information flows in a sequence from one
layer to the next, undergoing operations at each layer —
almost like an assembly line

A
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How ANN’s Work
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Input Signals

X

Summation

Activation
Function

?(.)

Output
b 1

02 September 2019

Institute
and Faculty
of Actuaries

37



Data in every neuron is transformed by an activation function:

02 September 2019

n

he() = 9B + ) xiBi)

=1
hj (x) — k' neuron in a hidden layer
Bix - coefficient of the it" previous-layer neuron on
above neuron
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Data in every neuron is transformed by an activation function:

n

he() = 9B + ) xiBi)

=1
hj (x) — k' neuron in a hidden layer
Bix - coefficient of the it" previous-layer neuron on
above neuron

Activation function transforms the linear combination of inputs from one layer
and sends it to the next layer.
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At first, each neuron is randomly assigned a weight — this measures the contribution of that neuron to the next layer
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Output layer

Hidden layer
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Data flows through network, predicted values calculated
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Output layer
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Input layer

Hidden layer

Target
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Predictions are compared with actuals based on a loss function
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Case Study: Classifying Motor Insurance
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Claim-level information with an indicator for whether a claim was flagged as a
fraud or not

Data points for each claim include —
Driver demographics (age, marital status, gender)
Vehicle information (age, price, body type, country or origin)
Policy information (policy cover type, number of vehicles insured, deductible, agent type)

Accident/Claim information (when was the claim filed, whether there were witnesses
present during the accident, party at fault, whether a police report was filed)
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GBM, Random Forest performed best, followed by Neural Networks
C5.0, CART poor
Logistic Regression did not perform well

Driver Age, Policy Type, Fault, Past Number of Claims most important
predictors of fraudulent behavior

Details in following slides
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The Data
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The Data

8000 M Fault: Policy Holder

M Fault: Third Party
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The Data
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Models
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Data split 75-25 for training and validation
C5.0 trained using standard algorithm
CART pruned using cost-complexity

GBM, Random Forest and Neural Networks tuned using Cartesian
Hyperparameter Grid Search
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H20 Grid Details

Grid ID: gbm_grid
Used hyper parameters:
- col_sample_rate

- learn_rate

- max_depth

- ntrees

- sample_rate
Number of models: 144

Number of failed models:

7}

Hyper-Parameter Search Summary: ordered by decreasing f1l

col_sample_rate learn_rate max_depth ntrees sample_rate model_ids f1

1 1.0 0.1 25 5000 @.8 gbm_grid_model_66 @.26259541984732826

2 1.0 0.1 25 2000 0.8 gbm_grid_model_54 0.26259541984732826

3 1.0 9.1 25 8000 0.8 gbm_grid_model_78 ©.26259541984732826

4 1.0 0.1 25 10000 0.8 gbm_grid_model_90@ 0.26259541984732826

5 0.8 0.1 25 10000 @.8 gbm_grid_model_89 0.2612085769980507
col_sample_rate learn_rate max_depth ntrees sample_rate model_ids fl
139 0.8 2.1 6@ 5000 0.6 gbm_grid_model_23 @.23591549295774647
140 0.8 0.1 60 2000 0.6 gbm_grid_model_11 @.23591549295774647
141 1.0 2.1 10 5000 @.6 gbm_grid_model_15 ©@.233983286908078
142 1.0 2.1 10 2000 @.6 gbm_grid_model_3 @.233983286908078
143 1.0 0.1 10 80eo @.6 gbm_grid_model_27 ©@.233983286908078
144 1.0 2.1 10 10000 0.6 gbm_grid_model_39 @.233983286908078

02 September 2019
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Evaluated using the following criteria

Accuracy
AUC
F1 Score

All metrics based on Confusion Matrix

AUC also related to Receiver Operating Characteristics (ROC) Curve
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Actual Values

Positive (1) Negative (0)

Positive (1) TP FP

Negative (0) FN TN

Predicted Values

02 September 2019

TP+TN
Accuracy =
TP+FP+FN+TN
Precision =
TP+FP
TP
Recall =
TP+FN

2 ¥(Precision *Recall
F1 = 2 )

Precision +Recall
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Sample ROC Curve
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True Positive Rate
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0.50
False Positive Rate

!
0.75

1
1.00

ROC Curve: Plots True
Positive Rate vs. False
Positive Rate at different
probability thresholds

Model AUC
Area under ROC Curve

—— Gradient Boosting Machine
— Neuwral Network

= Random Forest

Measure of how well can a
model distinguish between 2
classes
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Evaluated using the following criteria

Accuracy
AUC
F1 Score

All metrics based on Confusion Matrix

AUC also related to Receiver Operating Characteristics (ROC) Curve
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Model Performance

100

Accuracy
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GBM Meural Network RF Logistic Regression CART 24@5 Institute
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Model Performance

30

F1
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Model Performance

AUC
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DriverAge

BasePolicy

Fault
PastNumberOfClaims
NumberOfSuppliments
AgeOfvehicle
Deductible
IncidentYear
VehiclePrice
VehOrigin
DriverMaritalStatus
DriverGender
NumberOfCars
VehicleCategory
PoliceReportFiled
DaysPolicyAccident
AgentType
DaysPolicyClaim
WitnessPresent

Variable Importance: GBM
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PastNumberOfClaims.more than 4
BasePolicy.Liability
NumberOfCars.Z vehicles
Deductible.700
NumberOfSuppliments.1 to 2
VehiclePrice.more than 69000
DriverAge
PastNumberOfClaims.none
NumberOfSuppllments more than 5
BasePolicy.Collision
AgeOfVehicle.7 years
PastNumberOfClaims.2 to 4
VehiclePrice.less than 20000

\ehOrigin.USA
PoliceRe rt led.Yes
Veh in.Europe

Inmdent ear.19 5
BasePolicy.All Perils
VehOrigin.Germany
AgentType. Internal
NumberOtCars.3 to 4
WitnessPresent.Yes
DaysPolicyAccident.15 to 30
DriverMaritalStatus.Married
DaysPolicyAccident.none

Variable Importance: Deep Learning

0.0
0.2
4
0.6
8
10 -
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ML can be a powerful tool

Results from classification models could be used to proactively flag claims as
fraudulent and minimize unnecessary losses

Models can also help understand customer behavior, eg. which groups
contribute most to insurance fraud
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Questions

The views expressed in this presentation are those of invited contributors and not necessarily those of the IFOA. The IFoA do not endorse any of the views
stated, nor any claims or representations made in this presentation and accept no responsibility or liability to any person for loss or damage suffered as a
consequence of their placing reliance upon any view, claim or representation made in this presentation.

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice
of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this presentation be
reproduced without the written permission of the author.
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