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Objectives

• What is a hazard ratio and Cox proportional hazards model.

• Describe methods to check the assumption of proportional 
hazards in the Cox model

• Describe methods how to deal with non-proportional hazards 
in the Cox model
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Hazard aka  “force of mortality” and 
“mortality intensity”
• Hazard is an 

instantaneous failure rate 
at time t

– Probability that an 
individual will experience 
the event at time t given 
that the event has not yet 
occurred.
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Cox proportional hazards regression

• The type of regression model typically used in survival analysis 
in medicine is the Cox proportional hazards regression model.

• The Cox model estimates the hazard μi(t) for subject i for time t
by multiplying the baseline hazard function μ0(t) by the 
subject’s risk score ri as 

𝜇𝜇𝑖𝑖 𝑡𝑡,𝛽𝛽,𝑍𝑍𝑖𝑖 = 𝜇𝜇0 𝑡𝑡 𝑟𝑟𝑖𝑖 𝛽𝛽,𝑍𝑍𝑖𝑖 = 𝜇𝜇0 𝑡𝑡 𝑒𝑒𝛽𝛽 𝑍𝑍𝑖𝑖

• The risk factors Z have a log-linear contribution to the force of 
mortality which does not depend on time t. 
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Hazard ratio (HR)

• Taking a ratio of the hazard functions for two subjects i and j 
who differ in one risk factor z (with the values 𝑧𝑧0 and 𝑧𝑧1 , 
respectively) but not in the other risk factors, 

HR 𝑡𝑡,𝛽𝛽,𝑍𝑍 = 𝜇𝜇𝑖𝑖 𝑡𝑡,𝛽𝛽,𝑍𝑍𝑖𝑖
𝜇𝜇𝑗𝑗 𝑡𝑡 ,𝛽𝛽,𝑍𝑍𝑗𝑗

= 𝜇𝜇0 𝑡𝑡 𝑒𝑒𝛽𝛽𝑍𝑍𝑖𝑖

𝜇𝜇0 𝑡𝑡 𝑒𝑒𝛽𝛽𝑍𝑍𝑗𝑗
= 𝑒𝑒𝛽𝛽𝑧𝑧 𝑧𝑧1

𝑒𝑒𝛽𝛽𝑧𝑧 𝑧𝑧0
= 𝑒𝑒𝛽𝛽𝑧𝑧 (𝑧𝑧0−𝑧𝑧1).

• This means that the baseline hazard μ0(t) does not have to be 
specified and the hazard ratio e𝛽𝛽𝑧𝑧 (𝑧𝑧0−𝑧𝑧1) is constant with respect 
to time t. 

• Because of this, the Cox model does not make any 
assumptions about the shape of the baseline hazard.

• e𝛽𝛽𝑧𝑧 (𝑧𝑧0−𝑧𝑧1) is an adjusted HR, i.e. all other risks are 
already accounted for by the model.  
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Hazard ratio

• Comparison of two 
hazard functions

• Cox model assumes 
constant hazard ratio 
over time
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Proportional hazards assumption

• Graphical methods: 
– Comparison of Kaplan-Meier estimates by group

– Plot (minus the log cumulative baseline hazard) for each group against 
(log survival time)

• Formal tests: 
– Grambsch and Therneau’s test based on Schoenfeld residuals

– Include interaction between covariate and a function of time 
• Log(time) often used but could be any function of time
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Example: Cox model for death from 
Parkinson’s disease

• Data: parkison disease
– Sample of 520 patients

– Study period of 17 years

• Outcome: time to death (266 events)

• Exposure: new vs standard treatment

• Covariates: 

Sex (baseline male / female) 

Age (baseline 25-59 / 60-69 / 70-92)
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Kaplan-Meier plots by levels of a factor 
• Estimated survival function

– Does not adjust for other 
covariates!

– Crossing of hazard lines indicates 
non-proportional hazards

– Otherwise, can be difficult to judge
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Complementary log-log plot of S(t;Z)
• From the hazard function of the PH model, we obtain the 

survivor function 

S(t; Z) = exp{ -𝑀𝑀0(t) 𝑒𝑒𝛽𝛽𝑍𝑍} 

where 𝑀𝑀0(t) is the cumulative hazard corresponding to 𝜇𝜇0(t).  

• Hence ln{ -ln S(t; Z)} = ln(𝑀𝑀0(t)) + 𝛽𝛽𝑍𝑍. 

• Hence any two such functions, S(t;z1) and S(t; z2)
for different values of the covariate vector z, will be parallel.

• Plot ln{ -ln S(t; Z)} vs t or a function of t.
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Complementary log-log plot for Parkinson’s 
data

– Can be unadjusted or adjusted 
(here adjusted for treatment 
and age group)

– Proportional hazards 
assumption violated if curves 
are not parallel to each other

– Plot vs log(t) shows straight 
lines for Weibull distribution.

This only works if there are few 
covariates and few distinct values,
only then S(t;Z) is reliably estimated
for each Z value. 
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Residuals

• Residual is the difference between an observed value  and a 
predicted value.

• Due to censoring, this is not straightforward in survival analysis

• Therefore, there are many types of residuals

• Here we are going to concentrate on Cox-Snell residuals and 
Schoenfeld residuals
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Cox-Snell residuals

• In order to assess an overall goodness of fit of a model, we 
use Cox-Snell residuals

• Cox-Snell residuals are –log(𝑆𝑆(t; Z)), i.e. estimated cumulative 
hazards at the time of death or censoring

• If the model is correct, Cox-Snell residuals should have 
exponential distribution exp(1) 
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Cox-Snell residuals
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• Overall goodness-of-fit
– The first survival model 

for Parkinson’s data 
with treatment, sex, and 
age group. Graph 
indicates good fit.

• Plot of Cox-Snell residuals 
is just a QQ-plot for 
exponential distribution 



Schoenfeld residuals

• Schoenfeld residuals are the differences between the covariate 
value 𝑍𝑍𝑖𝑖 of subject i who experienced an event at time 𝑡𝑡𝑖𝑖 and 
the weighted average of all covariate values across all subjects 
at risk at 𝑡𝑡𝑖𝑖

• Schoenfeld residuals are used for testing the proportionality of 
hazards assumption using Grambsh and Therneau’s test
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Grambsch and Therneau test

• Testing correlation between 
Schoenfeld residuals and 
survival time

• Significant correlation 
indicates non-proportional 
hazards
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Cox model with time-varying coefficients

μ 𝑡𝑡,𝛽𝛽,𝑍𝑍 = 𝜇𝜇0 𝑡𝑡 𝑒𝑒𝛽𝛽(𝑡𝑡) 𝑍𝑍

Write the time-varying coefficients as

β𝑗𝑗(t)=β𝑗𝑗+θ𝑗𝑗𝑔𝑔𝑗𝑗(t),     j=1,…,p

where 𝑔𝑔𝑗𝑗(t) is known. A standard choice is 𝑔𝑔𝑗𝑗(t) = log(t).

Test 𝐻𝐻0: θ=0 (as a vector and for each component.).
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Testing interaction of covariate with time

• Significant correlation 
indicates non-proportional 
hazards

• NB: very sensitive
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What if the proportional hazards assumption 
is not met?

• Stratify the analysis on violating variable: 𝜇𝜇𝑠𝑠 𝑡𝑡,𝛽𝛽,𝑍𝑍𝑍 = 𝜇𝜇0𝑠𝑠 𝑡𝑡 𝑒𝑒𝛽𝛽𝑍𝑍𝑍 for 
Z′ being all covariates but that one.

– Fit one model: allow baseline hazards to vary by group but assume covariate 
effects are the same across strata. Only if the variable is of no direct interest.
(There should be no significant interactions between covariates and stratum 
variable)

– Fit separate models: allow both baseline hazards and hazard ratios to vary by 
group 
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What if the proportional hazards assumption 
is not met?
• Include time-dependent effect

– Split follow-up time such that the hazards are proportional within these 
time bands

– Continuous (could be any function of time)
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Stratified analysistified analysis

• Check for interactions

• Fit one stratified Cox model 
(n=520, events=266)

• Fit separate models
– Male (n=283, events=141)

– Female (n=237, events=125)

• Easy procedure but comes at 
the cost of no estimate for the 
effect of the violated variable 
associated with the outcome
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Schoenfeld Residuals plot of effect of sex 
over time 
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Step-wise time-dependent hazards

• Split follow-up time in intervals in 
which the proportional hazards 
assumpation is no longer violated

• Create time dependent effect
– Here: 0 = male’s hazard 

(baseline), 
1=female’s hazard 0-9 years, 
2=female’s hazard 9+ years

• Fit mode with time dependent effect
• More time consuming procedure 

due to creating the most effective 
time intervals
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Linking survival modelling results 
to life expectancy differentials
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Quantifying Longevity Changes
• Medical and social advances are the major drivers in the 

longevity increase. But how to quantify this relationship? 

• In medicine, Randomized Control Trials (RCTs) are considered 
to be the gold standard. 

• RCTs estimate the hazard or force of mortality in a (selective) 
sample of people and summarised over the observed (limited) 
time period. 

• New health interventions are usually based on these estimated 
hazards obtained from clinical trials. A lengthy lead time would 
be needed to observe their effect on population 
longevity. 
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Our approach, 1
• Our research uses The Health Improvement Network (THIN) 

primary care data to develop statistical models of longevity.

• The advantage of using individual-level medical data is that it is 
possible to model both the uptake of medical treatment and the 
effect of that treatment on longevity conditional on the 
individual sociodemographic and health factors instead of the 
aggregated profile. 

• We carefully design each observational study and match cases 
to controls.  Survival models, usually the Cox regression, are 
fitted to such individual level data. 

• The conclusions are generalisable to the general population.
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Hazard ratio
• The type of regression model typically used in survival analysis 

in medicine is the Cox proportional hazards regression model.

• The Cox model estimates the hazard μi(x) for subject i at time x 
as 𝜇𝜇𝑖𝑖 𝑥𝑥,𝛽𝛽,𝑍𝑍𝑖𝑖 = µ0 𝑥𝑥 r𝑖𝑖 β,𝑍𝑍𝑖𝑖 = µ0 𝑥𝑥 𝑒𝑒β 𝑍𝑍𝑖𝑖

• Taking a ratio of the hazard functions for two subjects i and j 
who differ in one risk factor z and not in the other risk factors, 
𝜇𝜇 𝑥𝑥,𝛽𝛽,𝑍𝑍 = 𝜇𝜇𝑖𝑖 𝑥𝑥,𝛽𝛽,𝑍𝑍𝑖𝑖

𝜇𝜇𝑗𝑗 𝑥𝑥,𝛽𝛽,𝑍𝑍𝑗𝑗
= 𝜇𝜇0 𝑥𝑥 𝑒𝑒𝛽𝛽𝑍𝑍1

𝜇𝜇0 𝑥𝑥 𝑒𝑒𝛽𝛽𝑍𝑍0
= 𝑒𝑒𝛽𝛽𝑧𝑧 𝑧𝑧1

𝑒𝑒𝛽𝛽𝑧𝑧 𝑧𝑧0
= 𝑒𝑒𝛽𝛽𝑧𝑧 (𝑧𝑧0−𝑧𝑧1)
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From a hazard to effective age

• For simplicity, consider a binary 
risk factor with the reference 
value y = 0 and (at risk) y = 1.

• On the log scale, the log-
hazards are λ1(t) = λ0(t) + β. 
This means that the log-hazard 
lines differ only by an increment  

• For a monotone-increasing 
hazard, find the (unique) time 
increment Δ(t) such that λ1(t) = 
λ0(t+ Δ(t)) 

.

6

Value of t + Δ(t) is, by definition, 
the effective age of the person with
risk y = 1 at chronological age t.
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Our approach, 2: for an individual
• For an individual, the hazard 

ratios obtained from the 
survival models are translated 
into effective age changes. 

• Effective age at y=1 is the 
average chronological age with 
the same hazard as when y=0.

• Effective ages are often used 
by insurers as a way of 
applying the correct rating to an 
underwritten life.

7

-3

-2.5

-2

-1.5

-1

-0.5

0
50 60 70 80 90

Lo
g 

fo
rc

e 
of

 m
or

ta
lit

y

Age

Men
Women
Linear (Men)
Linear (Women)

Log force of mortality for UK population 
based on 2010 period life table 
(Office for National Statistics 2017).

30/10/2019



What does HR mean for an individual

• Using Gompertz law λ0(t)=a+bt, the increase in annual hazard of 
mortality associated with ageing one year is approximately constant 
between ages 50 and 90.

For y=1, λ1(t) = a+bt+ β=a+b(t+Δ) Δ=β/b

• For England and Wales in 2010-2012, the 
increase in the hazard between those 
ages was approximately 1.1 per year. 

• A HR can be translated to the numbers of 
years gained in effective age as  

Δ=log (HR) / log (1.1) ≈ 10*log(HR). 
[Brenner, 1993; Spiegelhalter, 2016] 

• For LE at age t, e1(t) = e0(t +Δ).
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Our approach, 3: Period life expectancy

• Consider a population consisting of J risk groups of  prevalence 
qj, j=1,…J; Σ qj = 1.

• Treatment of interest (i=0, 1) is prevalent in the population from 
age T but its effects vary across risk groups.

• Prevalence of the treatment of interest in group j at age T is pj,I

• Then the overall survival function S(T) at age x=T is the 
weighted mean of the survival functions in the individual risk 
groups 
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The Cox model

• Assume that the hazards are proportional, so that the hazards

ϻij = ϻ0(x)ϻij (Y),  where ϻ0(x) is the baseline hazard at age x 

and 

where a 0(T) is the baseline value which may depend on 
intervention time T, αi ,  βj  and γ ij are the main effects and 
interaction of risk group j and treatment I, and the other covariates 
Y have no interactions with the treatment or the risk of interest. 
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Survival function under Gompertz-Cox model

11

• The log-hazards in a risk group (i,j) are just a ij + bx, i.e. the 
straight lines with the same slopes but differing intercepts.

• The survival functions are .        
Substituting the a ij , the survival functions at age x >T are

• Assuming that the prevalences do not depend on Y, Y can be 
integrated out to obtain
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Finding component survival functions

• This is a non-linear equation with one unknown, 𝑎𝑎0. The left-
hand side is given by the period life-table, and the slope b 
should be determined for a particular population of interest. As 
S(x) is a decreasing function of 𝑎𝑎0, it has a unique solution.

• After solving for 𝑎𝑎0(T), we can find component survival 
functions Sij(x) for any set of prevalences {qj} and {pj,1}.
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Estimating changes in life expectancy
• For a Gompertz distribution G(a,b), the LE is

So we can find component LEs eij(z) for each component 
distribution G(aij,b). Then, the life expectancy at age z is

• Taking all pj,1 = 0, we obtain a hypothetical life expectancy e0(z) 
if there were no intervention of interest, and, for all pj,1 = 1, a 
hypothetical life expectancy e1(z) with full uptake of the 
intervention.
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Case study: survival benefits of statins
• We used the data for QRISK2 groups 10−19% and ≥ 20% at 

ages 70 and 75 (yob 1920-1940, observed 1987-2011) from 
Gitsels et al. [2016]

• We fitted the same Cox models after adding the QRISK2 group 
to the predictors. The final models adjusted for sex, birth cohort,  
socioeconomic status, diabetes, hyper-cholesterolaemia, blood 
pressure regulating drugs, body mass index, and smoking 
status. The models included a random effect on general 
practice. 

• Interactions between statins, QRISK2 groups and the other risk 
factors were tested, but none was significant.

• We also used the adjusted HRs for all-cause mortality of heart 
attack survivors, from Gitsels et al. [2017], as a substitute for 
HRs for CVD sufferers. The HRs are given in Table 1.
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Table 1. Population characteristics, 
statins study by Gitsels et al. 2016

Cohort Cardiacrisk Women %
(Statins %)

Men %
(Statins %)

Age 70 QRISK2 10-19% 80 (9.5) 17 (5.4)

N=247,149, FU=7 years QRISK2>20% 20 (28.2) 83 (17.4)

Age 75 QRISK2 10-19% 15 (4.6) 0 (0.0)

N=194,085, FU=6 years QRISK2>20% 85 (19.6) 100 (19.1)

15

* FU= average follow-up
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Table 2. Hazard ratios of statins and of cardiac 
risk groups

Cardiac risk Age HR statins       
(vs no statins)

Changes in effective
age (men) 1

Changes in effective 
age (women) 1

No heart attack 70 0.84(0.80, 0.88) -1.69 (-2.16,-1.24) -1.57 (-2.01, -1.15)
75 0.82 (0.79, 0.86) -1.92 (-3.18,-1.46) -1.79 (-2.97, -1.36) 

Heart attack 70 0.74 (0.70, 0.78) -2.91 (-3.45, -2.40) -2.72 (-3.22, -2.24)
75 0.77 (0.74, 0.81) -2.53 (-2.91, -2.04) -2.36 (-2.72, -1.90)

Cardiac risk Age HR Cardiac 
Risk

Changes in effective
age (men)

Changes in effective 
age (women)

QRISK2 10-19% 70 0.80 (0.77, 0.83) -2.16 (-2.53, -1.80) -2.01 (-2.36, -1.68)
75 0.87 (0.80, 0.94) -1.35 (-2.16, -0.60) -1.26 (-2.01, -0.56)

QRISK2>20% 70 1 0 0
75 1 0 0

Heart attack 70 1.50 (1.42,1.59) 3.92 (3.39, 4.48) 3.66 (3.17, 4.19)
75 1.45 (1.38,1.53) 3.59 (3.11, 4.11) 3.35 (2.91, 3.84)
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Info on the prevalences of the risk groups 
and the treatment  
• Prevalence of risk groups (q’s on slide 9):  QRISK2 score 

increases with age and by age 70, there were practically no 
patients with a QRISK2 score of < 10% and by age 75, there 
were no male patients with a QRISK2 score of < 20%. 

• Prevalence of treatment(p’s on slide 9): At the end of study 
period in 2010, statins were prescribed in 20% of patients with 
a QRISK2 score of < 20%, in 45% of patients with a QRISK2 
score of ≥ 20%, and in 90% of patients with CVD. 

• Given cardiac risk group, statins were prescribed more in 
women, in younger patients, and in patients from less deprived 
areas.
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Fitting Gompertz distribution to period life tables

18

Log-hazards between the ages  70- 90 from the ONS period 
life table centered at 2010 (circles) and fitted regression 
lines by Townsend score quintiles and sex.
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Baseline hazard in the statins survival model
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The baseline hazard is well approximated by the Gompertz hazard.



Calculating component life expectancies
• Since the mortality rates, the cardiac risk distribution and the 

statin prescription rates differ by gender and by socio-
economic status, we analysed the life tables separately for 
each Townsend score quintile- by-gender combination.

• For each life table, we substitute the S(x) at age x=70 or 75 
(obtained from the fitted Gompertz distribution G(a,b)) into the 
left-hand side of the equation on top of slide 13, and solve for 
the value of 𝑎𝑎0(T). 

• These values were used to calculate period life tables for 
component cardiac risk by statin prescription subpopulations 
for each (i,j) combination.
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Results, 1

• Increase in individual LE due to statins depends on cardiac 
risk, and is highest for heart attack survivors (1.41−2.02 years), 
and is comparable in the two QRISK2 groups (1.14−1.35 years 
across ages 70 and 75). The effect of statins increases with 
deprivation.

• We also calculated the period LE and its increase due to 
statins in each cardiac risk group for the total England and 
Wales population by averaging the LE across all TS quintiles, a 
and plotted the results. 
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Life expectancy by cardiac risk group with 
and without statins for ages 70 − 90 based on 
the ONS period life table centered at 2010
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Results, 2

• We also calculated national life expectancy with and without 
statins, by averaging the LE across cardiac risk groups, taking 
p = 0 (for no statins) and p = 1 (for statins).

• The national life expectancy for women aged 70 or 75 would 
be increased by up to 0.91 or 0.79 years, respectively, if all 
eligible women under the current guideline of primary and 
secondary prevention of CVD were prescribed statins. 

• Similarly, the national life expectancy for men aged 70 or 75 
would be increased by up to 0.79 or 0.63 years. The most 
improvement would come from the areas of medium 
deprivation.
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An app for general public 
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Modelling non-proportional hazards: 
time-dependent coefficients,   
parametric “double Cox” regression 
and Landmark analysis
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What if the proportional hazards assumption 
is not met?

• For a Cox model 𝜇𝜇 𝑡𝑡 𝛽𝛽,𝑍𝑍 = 𝜇𝜇0 𝑡𝑡 exp(𝑍𝑍Τ𝛽𝛽) we discussed two 
ways to cope with non-proportionality:

• Stratify the analysis on violating variable: 𝜇𝜇𝑠𝑠 𝑡𝑡|𝛽𝛽,𝑍𝑍 = 𝜇𝜇0𝑠𝑠 𝑡𝑡 𝑒𝑒𝑍𝑍
Τ𝛽𝛽

- baseline hazards vary by strata s;

- Here we add an option of modelling shape of baseline hazards

• Include time-varying effects: 𝜇𝜇 𝑡𝑡, |𝛽𝛽,𝑍𝑍 = 𝜇𝜇0 𝑡𝑡 𝑒𝑒𝑍𝑍
Τ𝛽𝛽(𝑡𝑡)

- Coefficients 𝛽𝛽(𝑡𝑡) are continuous functions of time

• Use landmark analysis
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Parametric “Double-Cox” regression
Components:

• A baseline hazard function 
(which changes over time).

• The risk factors Z have a log-
linear contribution to the 
force of mortality which does 
not depend on time t. 

The Cox parametric regression model 

Weibull or Gompertz baseline hazard function 
with scale λ and shape k.  Shape k is modelled 
as k=k(Z). 

𝜇𝜇(𝑡𝑡|𝑍𝑍) = 𝜇𝜇0(𝑡𝑡|𝑍𝑍) exp(𝑍𝑍Τ𝛽𝛽)

Baseline hazard 
function

𝛽𝛽 is a vector of unknown 
parameters for scale and 
Z is a vector of covariates 

𝜇𝜇0(𝑡𝑡|𝑍𝑍) =
𝑘𝑘(𝑍𝑍)
λ

𝑡𝑡
λ

𝑘𝑘(𝑍𝑍)−1

𝜇𝜇0 𝑡𝑡|𝑍𝑍 = λ exp(𝑘𝑘(𝑍𝑍)𝑡𝑡)

Additional regression 
model to allow varying 
shape  depending on  
covariates

30/10/2019

k(Z)=𝑘𝑘0𝑒𝑒𝑍𝑍
Τβ𝑘𝑘



Cox model with shared frailty

Proportional hazards model with frailty:

𝞵𝞵 𝑡𝑡|𝑈𝑈,𝑍𝑍 = 𝞵𝞵0 𝑡𝑡 𝑈𝑈𝑒𝑒𝑍𝑍
Τβ,

For mathematical convenience, it is frequently assumed that frailty U
is gamma-distributed with mean 1 and unknown variance σ2:

𝑈𝑈 ~ Gamma(σ−2,σ−2).
The frailty variance σ2 characterizes heterogeneity in the population.

Shared frailty assumption:

All patients from the same unit /clients from the same company are in the 
same cluster 𝑗𝑗, 𝑗𝑗=1,…,𝐽𝐽 and share the same frailty 𝑈𝑈j.  
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“Double-Cox” model with shared frailty
• Standard shared frailty Cox model : 𝞵𝞵 𝑡𝑡|𝑈𝑈,𝑍𝑍 = 𝞵𝞵0 𝑡𝑡 𝑈𝑈𝑒𝑒𝑍𝑍

Τβ;

• Baseline hazard 𝞵𝞵0 𝑡𝑡 =𝞵𝞵0 𝑡𝑡;𝜆𝜆, 𝑘𝑘 ;

• Cox-like  parameterization for the shape of the baseline hazard function:                
k(Z)=𝑘𝑘0𝑒𝑒𝑍𝑍

Τβ𝑘𝑘;

• Frailty U ~ Gamma with mean 1 and variance σ2.

• If needed, competing risks can be introduced through correlated shared frailty 
components.

Find MLE of the vector of unknown parameters θ=(𝜆𝜆, 𝑘𝑘0, σ2, β, βk).

This model was introduced in [1] for analysis of time to revision/

time to death after hip replacement.
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Different shapes of cumulative hazards for  
revision surgery after hip replacement
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Extended Cox regression with time-varying 
covariates and regression effects
A model may include both constant and time-varying effects:

𝜇𝜇 𝑡𝑡, |𝛽𝛽,𝑍𝑍 = 𝜇𝜇0 𝑡𝑡 𝑒𝑒𝑍𝑍 𝑡𝑡 Τ𝛽𝛽 𝑡𝑡 +𝑋𝑋 𝑡𝑡 Τ𝛾𝛾

• Here Z(t) and X(t) are time-varying covariates (updated over time).

• Z(t) are covariates with time-varying hazards β(t), and X(t) covariates 
have constant hazards 𝛾𝛾.  

• See  Ch. 6 in the book by Martinussen&Scheike [2] and  their  R 
package timereg for analysis of extended multiplicative hazards 
models.

• Their program timecox can test for and fit models with both constant 
and time-varying effects.
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Inference in extended Cox model

• It is easier to estimate cumulative regression coefficients 
B(t)=∫

0

𝑡𝑡β 𝑠𝑠 ds, their estimates are n 1/2 -consistent and 
asymptotically Normal.

• This allows to draw confidence bands for B(t)  and to test 
hypotheses about them.

• A simple test of βp(t)= βp is based on maximum deviation of the 
cumulative coefficient Bp (t) from a straight line over an interval 
[0,Τ].

• Similarly, cumulative residuals are used for various diagnostic 
purposes.
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Plots of cumulative coefficients for DM2 study
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Robustness of the Cox model
Consider once more the extended Cox model

𝜇𝜇 𝑡𝑡|𝛽𝛽,𝑍𝑍 = 𝜇𝜇0 𝑡𝑡 𝑒𝑒𝑍𝑍
Τ𝛽𝛽 𝑡𝑡 . 

The cumulative hazard M(t|Z)=-ln(S(t|Z). The ratio

𝑀𝑀(𝑡𝑡|𝑍𝑍)
𝑀𝑀0(𝑡𝑡)

= ∫𝜇𝜇0 𝑠𝑠 exp(ZΤ𝛽𝛽 𝑠𝑠 )ds
∫𝜇𝜇0 𝑠𝑠 ds

≈ exp∫𝜇𝜇0 𝑠𝑠 (ZΤ𝛽𝛽 𝑠𝑠 )ds
∫𝜇𝜇0 𝑠𝑠 ds

= exp(ZΤ𝛽̅𝛽(t)), 

where  𝛽̅𝛽(t)= ∫𝜇𝜇0 𝑠𝑠 𝛽𝛽 𝑠𝑠 ds
∫𝜇𝜇0 𝑠𝑠 ds

, if the variance ∫𝜇𝜇0 𝑠𝑠 (ZΤ (𝛽𝛽 𝑠𝑠 −�𝛽𝛽(t)))2ds
∫𝜇𝜇0 𝑠𝑠 ds

is 

small. This means that the Cox model gives approximately correct 
predictions of surviving up to time t. 
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What is landmark analysis
In the landmarking approach, dynamic predictions for the 
conditional survival after t=𝑡𝑡𝐿𝐿𝐿𝐿 is used on current information for 
all patients still alive just prior to 𝑡𝑡𝐿𝐿𝐿𝐿. [Van Houwelingen, H. and 
Putter, H., 2011]

The sliding landmark model is the simple Cox model
ℎ 𝑡𝑡 𝑥𝑥, 𝑡𝑡𝐿𝐿𝐿𝐿,𝑤𝑤 = ℎ0 𝑡𝑡 𝑡𝑡𝐿𝐿𝐿𝐿,𝑤𝑤 exp 𝑥𝑥𝑇𝑇β𝐿𝐿𝐿𝐿 , 𝑠𝑠 ≤ 𝑡𝑡 ≤ 𝑠𝑠 + 𝑤𝑤

for the data set obtained by truncation at 𝑠𝑠 = 𝑡𝑡𝐿𝐿𝐿𝐿 and 
administrative censoring at 𝑡𝑡𝐿𝐿𝐿𝐿+w.

ℎ0 𝑡𝑡 𝑡𝑡𝐿𝐿𝐿𝐿,𝑤𝑤 is the baseline hazard or force of mortality.

This is a convenient way to obtain a dynamic prediction without 
fitting a complicated model with time-varying effects.
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Super-prediction data set
• Fix the prediction window w; [say, w=5 years]

• Select a set of prediction time points {𝑠𝑠1 ,…, 𝑠𝑠𝐿𝐿}, 20 ≤ L ≤ 100; [say, 
every 6 months.]

• Create a prediction data set for each 𝑡𝑡𝐿𝐿𝐿𝐿=𝑠𝑠𝑙𝑙 by truncation and 
administrative censoring;

• Stack all these data into a single “Super-prediction data set”.  The 
subsets corresponding to a given prediction time 𝑡𝑡𝐿𝐿𝐿𝐿=𝑠𝑠𝑙𝑙 are “strata”. 

• The risk set R(𝑡𝑡𝑖𝑖) for an event time 𝑡𝑡𝑖𝑖 is present in all strata with   𝑠𝑠 ≤
𝑡𝑡𝑖𝑖 ≤ 𝑠𝑠 + 𝑤𝑤. Passing from stratum s to s+1 corresponds to sliding the 
window over the time range.

• Individual life j contributes up to w/|𝑠𝑠𝑙𝑙+1 − 𝑠𝑠𝑙𝑙 | times in each prediction 
window. [10 times when w=5 and the time shift 𝑠𝑠𝑙𝑙+1 − 𝑠𝑠𝑙𝑙 is 6 months.]
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Sliding Cox model results (crude model)
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Integrated partial log-likehood landmark 
model - ipl
The landmark super prediction model with window w and letting 
the regression coefficients β𝐿𝐿𝐿𝐿 depend on time 𝑡𝑡𝐿𝐿𝐿𝐿 is given by
ℎ 𝑡𝑡 𝑥𝑥, 𝑡𝑡𝐿𝐿𝐿𝐿 = 𝑠𝑠,𝑤𝑤 = ℎ0 𝑡𝑡 𝑠𝑠,𝑤𝑤 exp 𝑥𝑥𝑇𝑇β𝐿𝐿𝐿𝐿 𝑠𝑠 , 𝑠𝑠 ≤ 𝑡𝑡 ≤ 𝑠𝑠 + 𝑤𝑤

where β𝐿𝐿𝐿𝐿 𝑠𝑠 =∑𝑗𝑗=1
𝑚𝑚 γ𝑗𝑗 𝑓𝑓𝑗𝑗 𝑠𝑠 .

• 𝑓𝑓𝑗𝑗(𝑠𝑠) are the basis functions, 𝑓𝑓1(𝑠𝑠)=1, 𝑓𝑓𝑗𝑗(0)=0 for j>1, and γ𝑗𝑗 are the 
parameters, with β𝐿𝐿𝐿𝐿 0 = γ1 .

• The parameters of this model are estimated by maximizing the integrated 
(over s) partial log-likelihood introduced by van Houwelingen (2007).

• This approach is based on a stratified (on s) analysis with smooth 
landmark dependent effect β𝐿𝐿𝐿𝐿 𝑠𝑠 and separate estimated baseline 
hazards for each stratum. 



Pseudo-partial log-likelihood landmark model 
- 𝒊𝒊𝒊𝒊𝒊𝒊∗

30/10/2019

In the 𝒊𝒊𝒊𝒊𝒊𝒊∗ model, the baseline hazard is modelled directly as

ℎ0 𝑡𝑡 𝑠𝑠,𝑤𝑤 = ℎ0 𝑡𝑡 exp θ 𝑠𝑠 ,

for proper basis functions 𝑔𝑔𝑗𝑗 𝑠𝑠 with 𝑔𝑔𝑗𝑗(𝑠𝑠1 )=0, resulting  in

where      θ 𝑠𝑠 =∑𝑗𝑗=1
𝑚𝑚 η𝑗𝑗 𝑔𝑔𝑗𝑗 𝑠𝑠

ℎ 𝑡𝑡 𝑥𝑥, 𝑡𝑡𝐿𝐿𝐿𝐿 = 𝑠𝑠,𝑤𝑤 = ℎ0 𝑡𝑡 exp 𝑥𝑥𝑇𝑇β𝐿𝐿𝐿𝐿 𝑠𝑠 + θ 𝑠𝑠 , 𝑠𝑠 ≤ 𝑡𝑡 ≤ 𝑠𝑠 + 𝑤𝑤,

where β𝐿𝐿𝐿𝐿 𝑠𝑠 and θ 𝑠𝑠 are the mth degree polynomials in s.



Adjusted hazard of all-cause mortality 
associated with current statin prescription
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Predicted probabilities of survival in a window 
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Predictions for all s ϵ [𝑠𝑠1 , 𝑠𝑠𝐿𝐿 ] in the 𝒊𝒊𝒊𝒊𝒊𝒊∗ model are 
obtained from estimated cumulative hazards

𝐻𝐻 𝑠𝑠 + 𝑤𝑤 𝑥𝑥, 𝑡𝑡𝐿𝐿𝐿𝐿 = 𝑠𝑠 = exp(𝑥𝑥𝑇𝑇β𝐿𝐿𝐿𝐿 𝑠𝑠 + θ 𝑠𝑠 ) (𝐻𝐻0∗(s+w)-𝐻𝐻0∗ (s-))

This is because  in the 𝒊𝒊𝒊𝒊𝒊𝒊∗ model

ℎ 𝑡𝑡 𝑥𝑥, 𝑡𝑡𝐿𝐿𝐿𝐿 = 𝑠𝑠,𝑤𝑤 = ℎ0 𝑡𝑡 exp 𝑥𝑥𝑇𝑇β𝐿𝐿𝐿𝐿 𝑠𝑠 + θ 𝑠𝑠 , 𝑠𝑠 ≤ 𝑡𝑡 ≤ 𝑠𝑠 + 𝑤𝑤,

only the baseline hazard ℎ0 𝑡𝑡 depends on t. 



Probabilities of death for 1936-1940 cohort
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Baseline hazard in the statins landmark model
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The baseline hazard is well approximated by the Gompertz hazard



The 𝒊𝒊𝒊𝒊𝒊𝒊∗landmark model in actuarial research
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In the 𝒊𝒊𝒊𝒊𝒊𝒊∗ model, the hazards are modelled as

ℎ 𝑡𝑡 𝑥𝑥, 𝑡𝑡𝐿𝐿𝐿𝐿 = 𝑠𝑠,𝑤𝑤 = ℎ0 𝑡𝑡 exp 𝑥𝑥𝑇𝑇(𝑠𝑠)β𝐿𝐿𝐿𝐿 𝑠𝑠 + θ 𝑠𝑠 , 𝑠𝑠 ≤ 𝑡𝑡 ≤ 𝑠𝑠 + 𝑤𝑤,

where β𝐿𝐿𝐿𝐿 𝑠𝑠 and θ 𝑠𝑠 are the kth and the (k-1)th degree polynomials of 𝑠𝑠 = 𝑡𝑡 − 𝑡𝑡0.

The log-hazards are 𝜆𝜆(𝑡𝑡|𝑥𝑥, 𝑡𝑡0)= 𝜆𝜆0(t)+𝑥𝑥𝑇𝑇(𝑠𝑠)β𝐿𝐿𝐿𝐿 𝑠𝑠 +θ 𝑠𝑠 . 

For Gompertz baseline hazard, 𝜆𝜆0(t)=a+bt.

Values of a and b can be estimated from the estimated baseline hazard or 
substituted for a particular population. Next, we can obtain cumulative hazards, 
survival and period life expectancy for various scenarios of changing risks x(s).



Discussion and conclusions 
• The most general form of extended Cox regression with time-

dependent effects is difficult to use. To make it relevant to 
actuarial research we also need to consider the shape of the 
baseline hazards.

• Parametric “double-Cox” model is a useful replacement for the 
stratified Cox model which also models shape of baseline 
hazards and can be easily used for actuarial purposes.

• Landmark analysis is a convenient way to model dynamically 
changing survival data. The ipl* model conveniently lends itself 
to actuarial modelling.

• Extra development is required to use the results for population 
LE projections using methodology similar to that in 
Kulinskaya et al. (2019) .
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Introduction
• We aim to demonstrate the use of landmark analysis in actuarial 

research using the statin survival benefits as a case study.

• Statins have been widely prescribed for cardiac prevention 

• Clinical trials have demonstrated the survival benefits of statin 
prescription 

• The threshold of cardiac risk at which to prescribe statins is still 
controversial, especially at older ages where everyone would be 
eligible solely due to their age.

• Little is known about the effect of long-term prescription in the 
general population, where sequential treatment decisions are made 
according to the latest clinical guidelines.
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The Health Improvement Network (THIN) data
• Anonymised electronic primary care medical 

records (Vision)

• Data collection began in 2003 using Read codes

• 11 million patients, 3.7 million active patients

• 562 general practices, covering 6.2% of the UK 
population

• Diagnoses, prescriptions, consultations, postcode 
deprivation
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Subset of THIN selected for our research:
• 110,243 patients who turned 60 between 1990 and 2000 and did 

not have a previous statin prescription or a cardiovascular 
disease diagnosis 

4



Primary prevention of CVD
Primary prevention: no previous history of CVD

• Example: lipid-lowering therapy - statins 

National Institute of Health and Clinical Excellence 
(NICE):

• Offer atorvastatin 20 mg for the primary 
prevention of CVD to people who have a 10% 
or greater 10-year risk of developing CVD.

• Estimate the level of risk using the QRISK2 
assessment tool

• www.nice.org.uk/guidance/cg181/

• www.qrisk.org/2016/

Up to 17 million UK residents eligible for statins
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Prevalence of statin prescription
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Prevalence of statin prescription differs by calendar year, age,
sex and cardiac risk group 



Statistical Analysis Options
• Objective: dynamically predict the survival benefits 

associated with statin therapy over the course of 25 years.
• The original plan was to develop a model with the following states: 

S0 not eligible for statins, S1 eligible for statins, S2 prescribed 
statins, and S3 death.

• Alternatively, develop a survival model with time-dependent 
predictors and parameters.

• Or use landmark analysis.
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Adherence to statin prescription

• 51.1% were never prescribed statins;

• 40.7% were prescribed at some age and stayed on statins;

• 6.2% dropped off statins permanently;

• 1.5% dropped off statins and then came back on to stay;

• 0.5% had 4 or more switches;

• the maximum was 9 switches for 1 person
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Number of arm 
switches

0 1 2 3 4 5+

% of patients 51.1 40.7 6.2 1.5 0.4 0.1



Data preparation and analysis
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Data: Medical history was updated every half a year (landmark) 
until end of follow-up (death, deregistered or end of study). 

Imputation: Due to missing data at early ages, multiple imputation 
was performed using joint modelling at age 60. The method of last 
observation carried forward was used for missingness in follow up.

Analysis: Landmark analyses were carried out by fitting Cox 
proportional hazards regression of all cause mortality associated 
with current statin prescription at each landmark from age 60 to 85 
and adjusted for medical history. 

We separately conducted three landmark analyses: with 
window widths 5, 10 and 30 years.



The four stages of modelling process
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• A Cox model was fitted on complete cases at baseline age to inform 
the imputation model. Both models included all medical history if 
prevalent.

• Cox models were fitted on the imputed datasets at ages 65, 70, 75, 
80 and 85 to inform the final landmark model. These models 
included all medical history and tested for interactions between statin 
prescription, sex, year of birth and cardiac risk. 

• The final, fully adjusted, Cox landmark models were fitted at 10 
imputed datasets. The landmarking was smoothed with an 
integrated partial log-likelihood (ipl) and with Pseudo-partial log-
likelihood (ipl*). 

• Ten landmark models pooled using Rubin’s rules.



The statistical model for survival benefits of 
statins was adjusted for:
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• Cardiac risk at three levels: low (QRISK2≤20%), medium (QRISK2 
of 20-39%) and high (QRISK2≥40 or CVD diagnosis)

• Sex, birth cohort, Townsend deprivation quintile, chronic kidney disease, 
diabetes, treated hypertension, hypercholesteromia, aspirin, BMI, 
alcohol consumer status, smoking status and general practice



Hazard of all-cause mortality associated with 
statin prescription (30 years window)
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Why statins are more beneficial                   in  
in younger cohort: better drugs?

30/10/2019

Cerivastatin was withdrawn from the world market in 2001
and the clinical guidelines changed from simvastatin to atorvastatin 
in 2014.  But in 2014 our patients were 79-89 years old.



Length of prior prescription for patients on 
statins at age s 
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Average length of prior prescription 
for patients not on statins at age s 
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Proportion of patients on statins at age s with at 
least 75% adherence at follow up 
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HRs of all-cause mortality estimated in 5, 10 
and 30 years window
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HRs of all-cause mortality estimated in 5, 10 
and 30 years window
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Probabilities of death for 1936-1940 cohort
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Do survival benefits really increase at older 
ages? Here controls never were on statins:
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We also performed an analysis keeping only patients who never were
prescribed statins in the control group. Younger patients do better! 

Similar HRs (0.74 ,0.63 vs 0.74, 0.61 here) only from age 80!



Summary of results on statins
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• The prevalence of statin prescription increased substantially by age with nearly half of 
the study population having had a prescription by age 75 and 57% by age 85 at the end 
of the study.

• The adherence to statin prescription was high, with 77% adhering more than 75% of the 
time and only 5% adhering less than 25% of the time

• In “current knowledge” landmark analysis, statin prescription was associated with 
increasing survival benefits at older ages and was significant at the earliest from age 62 
onward. Benefits seemed to decrease with age in our sensitivity analysis based on the 
full knowledge of statin history. 

• Statin prescription was more effective in patients born in later years due to the changing 
availability and recommended dosages of statin types resulting in more effective 
treatment but did not differ by sex or cardiac risk. 

• Therefore, age alone can be used to decide on initiating and staying on statin therapy 
based on the predicted overall effect (which tallied up benefits and harms).



Discussion and conclusions on statins 
• After adjustment for cardiac risk and related medical history, it 

appears that statin therapy is especially beneficial at older ages and 
in people born at later years in a realistic “current knowledge” 
scenario. The benefits of statins in earlier ages may be 
underestimated as more people will get statin prescription later. 

• This study adjusted for cardiac risk groups defined by the changing 
clinical guidelines on the eligibility of statin prescription. However we 
did not distinguish between recommended types and doses of 
statins. This might partly explain why statin prescription was 
associated with greater survival benefits in patients born in later 
years. 

• We used statin prescription as a proxy for statin intake. Lower intake 
than prescription would result in more conservative findings and thus 
imply that statins could be even more beneficial.  
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Overview
• Stroke definition and statistics

• Study description

• Patient Numbers

• Kaplan Meier plots

• Checking the Cox’s Proportional hazard Assumption

• Parametric regression fits

• Double Cox-Weibull model specification

• IS model and hazard plots

• Overview of Multiple Imputation 

• Future works
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What is Stroke?
• Ischemic stroke is caused by a blood 

clot that blocks or plugs a blood vessel 
in the brain. 

• Haemorrhagic stroke is caused by a 
blood vessel that breaks and bleeds 
into the brain

30/10/2019

• Transient Ischemic Attacks or TIAs, are “mini-strokes” whereby the 
symptoms from the clot appear temporarily. TIAs are warning 
signs that should be taken seriously.
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Stroke is the biggest single 
cause of major disability in the 
United Kingdom. Almost two–thirds 
of stroke survivors leave hospital 
with disability.

Stroke burden is projected to rise 
from around 38 million Disability-
Adjusted Life Years (DALYs) globally 
in 1990 to 61 million DALYs in 2020.

Stroke Statistics Stroke is the fourth single 
leading cause of death in the UK.



Stroke study: brief description 

• Objective: impact of 1st ischaemic stroke and transient
ischaemic attack (TIA) on longevity and morbidity risks.

• The study period is from 1986 up to 2017.
• Design: case/control 1:3
• Exclusion criteria: prior major cancers, dementia, chronic

kidney disease stages 3+ and haemorrhagic stroke.
• The primary outcome is all-cause mortality. The secondary

outcomes are further strokes, dementia (Alzheimer's and
vascular dementia), heart failure, myocardial infarction,
pulmonary arterial disease.

.
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Stroke study: brief description 
Variables of interest:

• Drugs: Antihypertensive drugs, Anticoagulant drugs, Lipid
regulating drugs and antidiabetic drugs.

• Medical conditions: Asthma, Atrial Fibrillation, CKD,
CHD, PAD, Hypothyroidism, COPD, Diabetes,
Hypercholesterolemia, Hypertension, Depression.

• Demographical and lifestyle conditions: Blood-
Pressure, Cholesterol, BMI, gender, date of birth, age at
entry, smoking status, alcohol status and IMD Decile.

.
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Patient numbers

IS dataset TIA dataset
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Full case dataset  
( N = 25,711)

Cases = 8,983
Controls = 16,728

Multiple Imputation dataset 
( N = 75,769)

Cases = 20,250
Controls = 55,519

Full case dataset  
( N = 24,797)

Cases = 9,377
Controls = 15,420

Multiple Imputation dataset 
( N = 74,037)

Cases = 20,633
Controls = 53,374



Unadjusted Kaplan Meier plot IS cases and controls
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Unadjusted Kaplan Meier plot TIA cases and controls
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Violations to Cox’s Proportional hazard assumption (α = 0.05)
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Comments

Covariates violating the 
Cox’s PH assumption :
Birth cohort, Age 
category, case/control, 
BMI, IMD, hypertension 
and antiplatelet.

The global test was 
highly significant 
providing evidence of 
non-proportionality.

…
.

…
.

…
.

…
.
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Graphical diagnostics based on the scaled Schoenfeld residuals.

Comments:

There is no 
distinct pattern 
of the residuals 
with time, so this 
covariate is not 
time-dependent.

A covariate which does not violate the Cox’s PH assumption
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Graphical diagnostics based on the scaled Schoenfeld residuals.

Comments:
A non-zero slope is evidence against 
proportionality.
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Distribution fitting : IS 



Parametric “Double-Cox” regression
Components:
• A baseline hazard function 

(which changes over time).
• The risk factors Z have a log-

linear contribution to the 
force of mortality which does 
not depend on time t. 

The Cox parametric regression model 

Weibull baseline hazard function with scale 
λ and shape k.  Shape k is modelled as k=k(Z). 

𝜇𝜇(𝑡𝑡|𝑍𝑍) = 𝜇𝜇0(𝑡𝑡|𝑍𝑍) exp(𝑍𝑍Τ𝛽𝛽)

Baseline hazard 
function

𝛽𝛽 is a vector of unknown 
parameters for scale and 
Z is a vector of covariates 

𝜇𝜇0(𝑡𝑡|𝑍𝑍) =
𝑘𝑘(𝑍𝑍)
λ

𝑡𝑡
λ

𝑘𝑘(𝑍𝑍)−1

Additional regression 
model to allow varying 
shape  depending on  
covariates
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k(Z)=𝑘𝑘0𝑒𝑒𝑍𝑍
Τβ𝑘𝑘



IS model 
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The scale model includes the following main effects  
and interactions : 

• Birth cohort
• IMD in Quintiles
• Body Mass index
• Antiplatelet therapy
• Chronic Pulmonary Disorder
• Chronic Kidney Disease ( stages 1-3)
• Heart Failure
• Myocardial Infarction 
• Peripheral Arterial Disease
• Atrial fibrillation 
• Diabetes
• Anticoagulant therapy 
• Smoking 
• Interaction of IS diagnosis with Antihypertensive 

treatment 
• Interaction of IS diagnosis with sex
• Interaction of IS diagnosis with age 

The shape model includes the following main 
effects : 

• Birth cohort
• Antiplatelet therapy



Overview of Multiple Imputation
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Source : Van Buuren (1999)

Incomplete 
data Multiple Imputation

Completed dataset                   Survival Analysis
Completed dataset                   Survival Analysis
Completed dataset                   Survival Analysis
Completed dataset                   Survival Analysis

Combined 
estimates

Step 1 : 
Generate multiple sets of 
imputed values to produce 
multiple imputed datasets.

Step 2 : 
Perform survival analysis 
on each dataset.

Step 3 : 
Pool the results using  
Rubin’s rules.



Hazard curves demonstrating the birth cohort effect : IS 

30/10/2019 Hazard curves for healthy  cases and controls, aged  39-60 years with IMD Quintile = 1 
across different birth cohorts and  APL( antiplatelet intake).
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Forest plot : IS
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Forest plot : IS model

39-60 years

61-70 years

71-76 years

77+ years
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Future Works:

• Write up two papers: on TIA and on IS

• Translation of models into actuarial analysis 
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network of actuarial researchers around the world.

The ARC seeks to deliver cutting-edge research programmes that address some of the
significant, global challenges in actuarial science, through a partnership of the actuarial 
profession, the academic community and practitioners. 

The ‘Use of Big Health and Actuarial Data for understanding Longevity and Morbidity Risks’ 
research programme is being funded by the ARC.
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Presentation Outline
Introduction
 Purpose of the Study

 Why Diabetes Mellitus II?

Study Design
 Selection Criteria

 Study Sample

 Statistical Models
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Results
Further Data Modelling



Introduction
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Purpose of the Study

 To derive, analyse and model the impact of diabetes mellitus II (DM-II) on 
longevity and morbidity risks.

 Primary Outcome: all-cause mortality.

 Secondary Outcomes: amputation, cognitive impairment, Chronic Kidney 
Disease (CKD) Stages 3 to 5, heart failure (HF), myocardial infarction (MI), 
pulmonary vascular disease (PVD), stroke, cancer and cognitive impairment 
including dementia.



Why Diabetes Mellitus II (DM-II)
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Source: WHO (2018)

Year All 
Ages

50-59 60-69 70+

2016 7 6 5 6

2015 7 6 5 6

2010 10 7 5 7

2000 15 9 6 7

DM-II: Rankings among the Top Ten



Why DM-II (cntd.)
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Source: ONS (2017)
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Study Design
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UK THIN database.
 Patients diagnosed with DM-II (cases) from 1984 and, aged

40 years and above were matched (1:3) to non – diabetics
(controls) by practice, age and sex.

 Excluded patients with severe medical conditions diagnosed
(e.g. cancer) before entry date.

 The follow up period is from 1984 up to 2017.

Selection Criteria



Study Design
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Variables of Interest – at entry
Demographic

1. Age Group

2. Birth Year

3. Gender

4. General Practice 
(Frailty)

Life Style and Socio-
economic
1. Smoking Status

2. Townsend Deprivation 
Index

3. Body Mass Index (BMI)

Medical Conditions

1. Case-Control Indicator

2. Angina

3. Atrial Fibrillation (AF)

4. HF

5. Hypercholesterolemia

6. Hypertension

7. MI

8. PVD

Interactions e.g. Age Group and Gender, Case-Control and Smoking status 



Study Design
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Included Patients with complete records on
Full Case Analysis - Selection Criteria

 Smoking status, 
 Alcohol consumption status, 
 Townsend deprivation score, 
 BMI, 
 Blood Pressure (BP), 
 Blood lipid ratio and 
 High-density lipoproteins (HDL).
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 108 282 (57% Males) Cases.

 253 800 (55% Males) Controls.

Study Sample
Total Study Sample Full Case Study Sample

 20 213 (57.7% Males) Cases.

 28 693 (56.2% Males) Controls.

Cases Controls
Age Group at Entry

Distribution of the Study Sample by Age Group, Sex and Case-Control Status



30 October 2019 11

0

2

4

6

8

10

12

14

16

Amputation Cognitive Impairement HF MI PVD Stroke

Pe
rc

en
ta

ge
 o

f S
tu

dy
 P

op
ul

at
io

n 
w

ith
 D

is
ea

se
 a

t 
En

try

Cases Controls

Cases 560 (0.52%) 27 (0.02%) 11,388 (10.52%) 16,242 (15.00%) 13,048 (12.05%) 1,230 (1.14%)
Controls 1,317 (0.52%) 73 (0.03%) 16,857 (6.64%) 21,665 (8.54%) 30,595 (12.05%) 2,920 (1.15%)

Prevalence of Some Medical Conditions at Entry Date



30 October 2019 12

Statistical Models for All-Cause Mortality
 Cox Regression for DM – II

Backward elimination was used for 
variable selection (𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.05,
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0.01)

 Case-control indicator, 
 Age group, 
 Birth Year, 
 Gender, 
 Smoking status, 
 Townsend deprivation index, 
 HF, 
 Hypercholesterolemia, 
 Hypertension, 
 MI, 
 PVD, 
 BMI 
and interactions



Assessing PH Assumption
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rho chisq p
Case-Control [Cases] 0.001202 0.007556 0.930731
Age Group [50-59] 0.002855 0.042302 0.837045
Age Group [60+] -0.01454 1.12216 0.289454
Birth Year [1930-1939] 0.048563 13.64601 0.000221
Birth Year [1940-1949] 0.027559 4.442733 0.03505
Gender [Male] -0.00143 0.010588 0.918042
Smokes [Former] -0.00845 0.3666 0.544863
Smokes [Smoker] -0.02358 2.866207 0.090458
Townsend [Less Deprived] -0.01738 1.583886 0.208202
Townsend [2] -0.01299 0.872694 0.350211
Townsend [4] -0.01032 0.554632 0.456431
Townsend [Most Deprived] -0.00078 0.00316 0.955175
HF [Yes] -0.00032 0.000549 0.981302
Hypercholesterolemia [Treated] 0.033125 5.858287 0.015504
Hypercholesterolemia [Untreated] -0.03202 5.509689 0.018911
Hypertension [Treated] 0.036188 6.896064 0.008639
Hypertension [Untreated] -0.01671 1.454762 0.227765
MI [Yes] -0.01977 2.116238 0.145744
PVD [Yes] -0.00438 0.099198 0.752794
BMI [Overweight] -0.01086 0.605801 0.436373
BMI [Obese] -0.00255 0.033734 0.854273
Case-Control [Cases]:Smokes [Former] 0.025331 3.357494 0.0669
Case-Control [Cases]:Smokes [Smoker] 0.02132 2.33379 0.126593
Case-Control [Cases]:Hypercholesterolemia [Treated] -0.03117 5.062485 0.024449
Case-Control [Cases]:Hypercholesterolemia [Untreated] -0.01483 1.147207 0.284135
Case-Control [Cases]:MI [Yes] 0.018921 1.870298 0.171441
Case-Control [Cases]:PVD [Yes] 0.005052 0.132072 0.716293
Case-Control [Cases]:BMI [Overweight] -0.01035 0.555738 0.455983
Case-Control [Cases]:BMI [Obese] -0.02668 3.697196 0.054504
Age Group [50-59]:Gender [Male] 0.004786 0.118789 0.730352
Age Group [60+]:Gender [Male] 0.013832 1.006281 0.315796
Birth Year [1930-1939]:Gender [Male] -0.02832 4.510593 0.033686
Birth Year [1940-1949]:Gender [Male] -0.01775 1.778759 0.182302
Smokes [Former]:BMI [Overweight] -0.00518 0.138134 0.710143
Smokes [Smoker]:BMI [Overweight] 0.005923 0.18299 0.668816
Smokes [Former]:BMI [Obese] -0.00536 0.149176 0.699324
Smokes [Smoker]:BMI [Obese] -0.00344 0.060556 0.805619
Townsend [Less Deprived]:BMI [Overweight] 0.002167 0.024508 0.8756
Townsend [2]:BMI [Overweight] 0.00821 0.349348 0.554483
Townsend [4]:BMI [Overweight] 0.006623 0.228463 0.632666
Townsend [Most Deprived]:BMI [Overweight] 0.002618 0.035617 0.850308
Townsend [Less Deprived]:BMI [Obese] 0.017672 1.63206 0.201418
Townsend [2]:BMI [Obese] 0.01169 0.707889 0.400146
Townsend [4]:BMI [Obese] 0.010126 0.53434 0.464788
Townsend [Most Deprived]:BMI[Obese] 0.008117 0.341958 0.558701
GLOBAL NA 103.2145 0.0000018

(𝛼𝛼 = 0.05)
Variables violating the PH Assumption

 Year of Birth

 Hypercholesterolemia

 Hypertension
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Validating PH Assumption results using timecox
Test for Time Invariant Effects

Kolmogorov-Sminorv
Test

p-value: H0:𝛽𝛽(𝑡𝑡) = 𝛽𝛽

Intercept 2.72 0.207
Birth Year [1930-1939] 2.99 0.25
Birth Year [1940-1949] 2.53 0.217
Hypercholesterolemia [Treated] 2.52 0.735
Hypercholesterolemia [Untreated] 3.16 0.029
Hypertension [Treated] 4.9 0.159
Hypertension [Untreated] 2.31 0.558
Birth Year [1930-1939]:const(Gender) 

[Male]
5.2 0.127

Birth Year [1940-1949]:const(Gender) 
[Male]

4.5 0.324

Only hypercholesterolemia has time variant effects

(𝛼𝛼 = 0.05)
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Estimating the Baseline Function using flexsurvreg package



Gompertz-Cox Regression
• Distribution

– Gompertz distribution.

• Shape Model
– Hypercholesterolemia.

• Scale Model
– All covariates and interactions as in Cox Model.
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Adjusted Hazard Ratios
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Adjusted Hazard Function
lo

g(
𝜆𝜆
𝑡𝑡

)

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

Cases [Male and Treated Hypercholesterolemia]
Cases [Male and Untreated Hypercholesterolemia]

Controls [Male and Treated Hypercholesterolemia]
Controls [Male and Untreated Hypercholesterolemia]



Further Work
1. Imputed Data Model (Mortality)

2. Translation into Actuarial Models (Mortality)

3. Morbidity Models (Cancer, CKD Stages 3 – 5)

4. Translation into Actuarial Models

5. Publish at least 2 papers
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Outline

 Brief description of Hormone Replacement Therapy

 Study design and selection criteria

 Distribution of the study population

 Hazards of selected medical conditions at follow-up

 Complete case analysis

 Results
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Menopause and its Symptoms:



Brief Description of Hormone Replacement 
Therapy (HRT)
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What is HRT?
• HRT is mainly used to relieve women from menopausal symptoms

• It has been used for more than sixty years

• HRT contains female sex hormones estrogen and/or progesterone

• First available in the United Kingdom in 1965

Routes of Administration
• Oral tablets, transdermal patches, injections, topical gels, and 

ointments.
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Study design and patients selection criteria

• Cases are patients of age 46 years and above who received any kind of HRT. 

• Controls are matched with cases by year of birth and general practice (GP).

• Patients with all kinds of cancer, acute myocardial infarction (AMI), serious 
heart failure, stroke (except  TIA), chronic kidney disease (CKD) stage 3-5, 
dementia, oophorectomy before 45, premature ovarian insufficiency, 
premature menopause and surgical menopause are excluded.

• Primary outcome of interest is all-cause mortality. Secondary outcomes are 
osteoporosis, dementia, cardiovascular disease, type II diabetes, and 
hormonal cancers.

• Follow up period between 1984 to 2017.

• Working data consists of 112,354 cases and 245,320 matched controls.



Age distribution at first HRT prescription and 
death experience at follow-up
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Age-group 46-50 51-55 56-60 61-65 66-70 71+
Cases 1809 1985 1498 1199 837 965
Controls 3747 5260 5166 4718 3414 3423

Age-group 46-50 51-55 56-60 61-65 66-70 71+
Cases 42269 36680 17362 8930 4185 2928
Controls 87125 72497 40688 24382 12160 8468

• Majority of women started HRT between 46-55 years of age
• There are more death in controls than cases in all age category



Hazard ratios and 95% confidence intervals 
of the conditions developed at follow up 
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Time to diagnosis of Breast cancer at follow 
up by age category at HRT and its type 
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• In all age category HRT users developed more breast cancer 
than non-user at follow up



Survival model of all-cause mortality

• Socio-economic status: Townsend score

• Lifestyle: Smoking status, body mass index (BMI)

• Health: Type II diabetes, hypertension, hypercholesterolaemia, peripheral 
vascular disease (PVD)/peripheral arterial disease (PAD), coronary heart 
disease (CHD), oophorectomy/hysterectomy status, systolic and diastolic 
blood pressure

• Demography: Age category at first HRT and birth cohort 

• Medication: HRT (estrogen-only, estrogen and progesterone), 
antihypertensive drugs
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 Patients with complete information for all of the above covariates 
has been selected for full case analysis

 Final model also included interactions of smoking with BMI and 
type II diabetes

 The following predictors were used in the survival modelling:



Selection of patients with complete records:
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Grambsch and Therneau test 

A significant 
p-value(<0.05)

is an indication of violation 
of the proportional hazard 
assumption in the Cox PH 

model 
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Plots of residuals:
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HRT model, Forest plot 1



HRT model, Forest plot 2
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Baseline hazard function fitted with different 
parametric distributions:
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Future Work:

 Multiple imputation

 Models for imputed data. 

 Translation of models into actuarial analysis

 Landmark analysis 
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