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ABSTRACT 
 
Personal finance is a challenging topic which can benefit from a scientific approach to 
individual financial planning. This paper presents an individual asset liability 
management (iALM) model for life cycle planning which uses the methodology of 
dynamic stochastic optimization and incorporates ideas from both classical and 
behavioural finance. Its implementation is in the form of a decision support tool for 
use by financial advisers or wealth managers. The investment universe is given by a 
set of indices for major asset classes and their returns are simulated forward over the 
lifetime of a household. On the liability side the foreseen cash flows of incomes and 
outgoings are simulated and punctuated by life events such as illness and death. The 
household’s utility function is constructed for each time period over a range of 
monetary values in terms of household financial goals and preferences. Taxes and 
pension savings are treated using the tax shielded saving accounts specific to a 
national jurisdiction in terms of constraints in the optimization sub-models.  The paper 
go on to present an analysis of iALM model recommendations for a representative 
UK household, together with an evaluation of the sensitivity of the financial plan 
generated to changes in market environments such as the 2008 crisis. The promise of 
this new technology is to bring modern decision support tools to individual investors 
in order to facilitate custom designed consumption, savings and investment policies. 
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1  Introduction 

1.1 Our research into individual asset liability management has been guided by the 
aspiration to develop a practical solution which supports all kinds of individual 
decisions in a household’s financial planning throughout its life and, particularly, to 
help with retirement planning. Our initial difficulty in formulating the household 
consumption investment problem has not been theoretical but behavioural. As many 
others have noted previously, the major questions we needed to address are the 
following. 
 
1.2  What is the objective of a life-long financial plan? As Samuel Brittan said “We 
do not prosper by income or happiness alone” [Financial Times, September 3, 2009].  
What is the meaning of wealth for a long-term investor? “Can we measure our wealth 
as the value of our portfolio? Hardly. Today, $1 million buys much less that it did 25 
years ago. Is wealth defined by the real value of our portfolio? Only if we plan to 
spend it all right away. Is wealth the long-term spending that our portfolio can sustain 
– the annuity that our assets could procure? This definition is closer to the truth, but 
like the first, it ignores purchasing power. Is wealth, then, the inflation-indexed real 
income that our assets could sustain over time?” [Robert D. Arnott, Financial 
Analysts Journal, 2006].   
 
1.3 In framing the life cycle consumption investment problem we assert two 
principles: 

– individual wealth is measured by sustainable spending over a household’s life 
time 

– individual risk attitude at any point in time is a reflection of existing and 
foreseen liabilities together with a subjective view of desirable personal future 
consumption. 

1.4  Recognition of the enormous complexity of this task – creating an individual life 
cycle financial plan under the uncertainties of market and life events – dictates a 
dynamic solution which is appropriate to changing individual behaviour and 
circumstances and which permits ‘what if’ analysis of alternative scenarios. Daniel 
Kahneman wrote that both utility theory and its behavioural alternatives may be too 
narrow for the purpose of wealth management.  “These theories are exclusively 
concerned with the moment of decision, not with the moment of truth when 
consequences are experienced. They tacitly assume that individuals correctly 
anticipate their reactions to possible outcomes and incorporate valid emotional 
predictions into their investment decisions. In fact, people are poor forecasters of their 
future emotions and future tastes – they need help in this task – and I believe that one 
of the responsibilities of financial advisors should be to provide that help.” 
(Kahneman, 2009).  
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1.5  In this paper we propose a new theory for, and describe a prototype of, a decision 
support system for financial advisors or individual households. Our implementation 
has been designed in such a way that its interactive use (similar to playing computer 
games) allows the user to assess the consequences of optimization decisions. 
Therefore, by changing discretionary data and re-solving the problem, an individual 
household can identify the most appropriate set of their preferences and life goals 
which matches their foreseen income and liabilities at minimal risk.  
 
1.6 Financial planning depends on the national jurisdiction of the household which 
dictates taxation, health system, pension provision, mortgages and so on. Although 
complex, conceptually these particulars are ‘rule based’. We model only the major 
elements of US and UK taxation and pension regulations. In the mathematical 
formulation the taxation and pension scheme details are written as constraints in the 
corresponding sub-model of the overall optimization problem1.  
 
1.7 This paper is organised as follows. In the next section we discuss briefly the 
‘divide’ between academics and practitioners in their approach to long-term savings 
and investment and provide a short review of methods used for wealth management or 
financial planning. Section 3 describes the principal modules and logical structure of 
our solution, the individual asset liability management (iALM) meta-model. The 
essentials of the problem – objective function, constraints, scenario generation and so 
on are discussed conceptually in this section and more technical details are given in an 
appendix. Section 4 is devoted to UK household data – the origins of public data and 
further elaboration on the enrichment of household profiles. iALM concepts and the 
design structure for household inputs and the corresponding recommended solutions 
are given there. Sensitivity to changes in market returns data in terms of performance 
through the 2008 crisis, is also discussed. We summarise our findings in the 
conclusion, where we make some recommendations regarding the use by individuals 
or financial advice professionals of systems such as iALM for life-cycle financial 
planning. 
 

2  Theory vs. Practice 

2.1  Paul Samuelson was the first to recognise the importance of personal finance. In 
1948 he wrote a chapter on this topic in his elementary textbook, Economics: An 
Introductory Analysis. He was also the first to propose the use of dynamic 
programming to solve the long-term investment problem in ‘Lifetime Portfolio 
Selection by Dynamic Stochastic Programming’ (1969). A review of the academic 
literature devoted to life-cycle theory would be an enormous task2 since it includes 
                                                 
1 A list of sub-models is given in the appendix in Section A.2. Due to significant differences in the two 
jurisdictions the corresponding implementations are termed US and UK iALM respectively. 
2 About 12,800,000 results in a recent Google search point to papers on this topic. 
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both empirical studies of actual household consumption, saving and investment and 
stochastic control type asset allocation models. Campbell & Viceira’s (2002) book 
gives the most insightful exposition of the analytical class of models. Recent related 
studies combine the effects of demographics, uncertainty in incomes, specification of 
preferences and other variables on the problem solution (Carrol, 2001; Attanasio et 
al., 1999)  
 
2.2  Ironically, financial advisers mostly ignore academic solutions and many use 
rules of thumb for investment decisions. One such popular rule links risk attitude to 
the age of investors: the equity fraction of one’s portfolio equals 100 minus one’s 
age3. Advances in behavioural finance help to evaluate such rules (see, e.g. Barber & 
Odean, 2004) but they have not yet delivered a practical solution. So far attempts to 
reconcile theory and practice have been a failure to such an extent that Paul 
Samuelson (2006) started his keynote address at a conference on life-cycle investment 
with the question ‘Is personal finance an exact science?’ with the immediate answer 
‘flat no’.  In his words, “It is a domain full of ordinary common sense. Alas, common 
sense is not the same thing as good sense. Good sense in these esoteric puzzles is hard 
to come by.”  
 
2.3 Current best practice of leading financial advisors and private wealth managers is 
to employ static Markowitz mean-variance portfolio allocations based on current 
market views, while projecting future portfolio returns from the optimal allocation 
using Monte Carlo analysis to calculate the probabilities of achieving various goals. 
Similar portfolio allocations are applied to separate portfolios for each investment 
goal such as retirement, childrens’ private education, etc. A number of software tools 
utilizing this approach are now available for individual household use with PC’s or 
over the internet, but they all require the adoption of an “attitude to risk” which is an 
obstacle to both individuals and their advisors. More importantly, no joined up view 
of a household’s financial requirements in terms of income, asset and liability cash 
flows is given. Hoevengars et al. (2009) and Amenc et al. (2009) try to take account 
of forward household liabilities by applying the best practice approach described 
above to a funding ratio variable, but even in the institutional pension fund setting 
from which it comes this is best handled by explicit cash flow matching (Dempster et 
al., 2009). See also Wilcox & Fabozzi (2009) which attempts to account for the 
present value of individual liabilities in a best practice Markowitz approach. 
 
2.4 The scientific difficulty undermining decision support for life-time financial 
planning is the necessity of employing a tractable technology for the optimization of 
complex stochastic dynamic systems which is capable of coping with a myriad of 
practical details over very long investment horizons.  Broadly speaking, the choice of 
technologies is three-fold: Monte Carlo simulation (termed dynamic financial analysis 
or DFA by actuaries), discrete or continuous dynamic programming and dynamic 

                                                 
3 Sometimes 110 is substituted for 100 in this rule. 
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stochastic programming.  The major drawback of the dynamic Monte Carlo approach 
is that models must be optimized ‘by hand’ by stepping through the decision variables 
of interest, while the dynamic programming approaches suffer from what their 
inventor, Richard Bellman, termed the ‘curse of dimensionality’. In practice dynamic 
programming methods over long term horizons are computationally limited to the 
consideration of three or four stochastic factors such as asset class returns or cash 
liabilities4. Only dynamic stochastic programming (DSP) - a technology built on fifty 
years of practical experience with mathematical optimization techniques - has the 
ability to combine handling the practical details with rapidly optimizing the model 
sizes necessary for individual life cycle financial planning. 
 
2.5 The first application of the DSP approach was the Home Account system of 
Berger & Mulvey (1998) which used an aggregate goal target and approximate 
solution techniques involving annual decision rules over about 20 year horizons. More 
recently Consigli (2007) describes the ORS Personal Financial Planner system which 
maximizes utility of terminal wealth over fairly short horizons subject to deviation 
from a household-specified annual wealth target. Geyer at al. (2009) present results 
for a DSP version of the classical consumption investment model which involves only 
a two risky and one riskless asset portfolio with annual decisions over a short horizon, 
together with a long horizon analytical continuation (Richard, 1975) which takes 
account of household mortality risks. None of these models treat household finances 
at the annual cash flow level, nor the practical details of mortgages, taxes, pensions, 
insurance, etc., considered in this paper.  
 

3  Dynamic Model for Individual Asset Liability Management 

3.1 This paper describes a meta-model based on the principles of dynamic stochastic 
programming. It is implemented in the form of a decision support tool, which allows 
interactive use with successive modification of individual preferences and data inputs 
as required. Therefore, as a solution there is not one financial plan offered to a 
household for consideration, but rather many contingency plans reflecting their 
subjective opinions regarding future life events.   
 
3.2 The name of the meta-model and the corresponding system – individual asset 
liability management (iALM) – indicates that the modelling methodology came from 
the operations research topic decision making under uncertainty. In the system 
developed we brought together the principal ideas from behavioural finance, classical 
finance and stochastic optimization theory to help individuals with long term financial 
planning decisions.  
 
                                                 
4 However, Kotlikoff (2008) discusses a household financial planning system ‘ES Planner’ based on 
discrete dynamic programming without giving many details. 
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3.3 Formally, our household financial planning problem is a dynamic multistage 
stochastic optimization problem in discrete time. A summary of dynamic stochastic 
optimization principles, together with the basic mathematical structure of the 
stochastic optimization problem, are given in the appendix. The iALM meta-model 
consists of many individual sub-models with the logical structure shown in Figure 1. 
The process of generation of the problem instance and its solution is comprised of 
three stages: forward simulation of stochastic data processes, solution of the stochastic 
optimization problem and analysis of the optimal decisions. Figure 1 thus illustrates 
how different models and processes in iALM are linked to form a stochastic 
optimization problem.  
 
 

 
 

Figure 1. Basic structure of the iALM meta-model 
 
 
3.4 The interactive use of the system starts at Stage 3 when  a ‘user’ either accepts the 
current financial plan generated or wants to explore alternatives. The later is effected 
by changing his/her preferences expressed in personal data using a graphical user 
interface (GUI) to obtain modified plans, until suitable recommendations are found 
(for illustrative examples, see Medova at al. (2008)).  
 
3.5 A new paradigm – a move from the static solution of a single problem to an 
interactive process for the identification of the solution most suitable to the user – is 
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achieved. This makes use of an innovative scenario generator and DSP modelling 
language, and an automatic problem generator, respectively the Stochastic Generator 
(StochGen) and the Generalised Stochastic Programming Language (GSPL) DSP 
modelling language which are components of STOCHASTICSTM. Therefore the first 
task is to simulate stochastic asset returns and liabilities to support the full cash flow 
modelling in iALM. Appropriate to such a dynamic stochastic programming model, 
scenarios for these entities must be simulated in the form of a scenario tree so that 
major forward portfolio rebalances face alternative asset/liability scenarios (see Figure 
A.1). 
 
 
3.1  Scenario generation 
 
We treat asset returns, events and liabilities in turn. 
 
Asset return and inflation simulation 
 
3.1.1 For parsimony it is necessary to select specific asset classes to represent the risk 
and return characteristics of the myriad individual securities and funds suitable for 
household portfolios. The chosen asset classes should cover the range of possible 
investments and be meaningful to households and their financial advisors to allow 
asset allocation recommendations from iALM to be mapped to actual instruments. 
The asset classes selected for UK investors are shown in Table 1 together with the 
indices representing them.  
 

Treasury Bill Rate UK 3 Month Treasury Bills 
Domestic Equity FTSE 100 
International Equity DataStream All World Ex-UK Index 
Corporate Bonds iBoxx Corp AA Index 
Government Bonds iBoxx UK 10 Year Govt Bond Index 
Commodities S&P Goldman Sachs Commodity Index 
Alternatives Credit Suisse/Tremont All Hedge Index 
Property Financial Times House Price Index 
Cash Rate  UK Clearing Banks Base Rate 
Inflation Rate UK Inflation Rate (CPI) 

Table 1: Selected UK asset classes and associated indices 
 
3.1.2 In more detail, UK 3 Month Treasury Bills (Treasury Bills) are low risk 
investments used to represent building society accounts, bank deposit accounts, web 
saver accounts, business deposit accounts and emergency funds. The FTSE 100 
(Domestic Equity) is a share index of the 100 most highly capitalised companies listed 
on the London Stock Exchange which together represent about 80% of total market 
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capitalisation. The domestic equity asset class represents UK equities, company stock 
options, equity funds, index tracking unit trusts, index funds, exchange traded funds, 
investment trusts and passive investment funds. The DataStream All World Ex-UK 
Index (International Equity) is an equity index used to represent equity investment 
instruments outside the UK which provides exposure to high growth, high risk 
international markets such India, China and South America. There are also US and 
European equities in this index which to some extent moderates its risk/return profile. 
The iBoxx Corp AA Index (Corporate Bonds) is constructed from AA investment 
grade UK corporate bonds. As well as representing an investable asset class, the 
corporate bond index is important for modelling pension growth and annuity rates 
(see Section 3.2.12 et seq.). The iBoxx UK 10 Year Govt Bond Index (Government 
Bonds) is an index of bonds issued by the UK government. The S&P Goldmann Sachs 
Commodity Index (Commodities) is a composite index of commodity sector returns 
representing unleveraged, long-only investment in commodity futures across a large 
range of commodities. The Credit Suisse/Tremont All Hedge Index (Alternatives) is an 
asset-weighted hedge fund index whose constituents are rebalanced semi-annually. 
The investment instruments represented by this asset class include hedge funds, funds 
of funds, growth funds, mutual funds, open ended investment trusts and unit trusts. 
The Financial Times House Price Index (Property) is calculated monthly based on the 
about 120,000 monthly actual residential property transactions, making it an almost 
complete sample of the market. It is used to represent buy-to-let and residential 
property funds. The UK Clearing Banks Base Rate (Cash Rate) is the rate set by the 
Bank of England as a floor for the money markets. The cash rate is used as a base rate 
for interest on various types of borrowing, for which fixed spreads above this rate can 
be individually specified.  
 
3.1.3 Ten year time periods of monthly historical data were used to calibrate the 
simulators of the chosen asset classes for UK iALM5. The period June 1998 to May 
2008 exhibited relatively stable economic conditions in the UK. Inflation remained 
between 1% and 4% and the Bank of England base rate stayed between 4% and 6% 
for much of the period. Hedge fund, commodity and property indices grew over the 
period. The events of 11th September 2001, in conjunction with the ‘bursting’ of the 
high tech equity bubble, saw domestic and international equity returns suffer after a 
previously long run of impressive growth. All the asset classes affected in 2001 had 
comfortably recovered by 2007 prior to the sub-prime mortgage induced credit crisis 
of 2008-2009. The crisis effects were generally not significantly felt until after May 
2008 and, in particular, after the Lehman’s bankruptcy in September 2008. 
 
3.1.4 The indices used for commodity, hedge fund and property indices are total 
return. Government bond and corporate bond indices are price only, and separate 
historical data is used for coupon rates for these bonds. Domestic and international 
                                                 
5 For US iALM the models described below were closely calibrated to 1000 scenarios generated by 
complex institutional simulators with temporally non-homogeneous covariance structures. The results 
of this approximation were deemed acceptable by the latters’ designers. 
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equity indices are treated as price only; for this purpose dividends for equity classes 
are modelled at 3.5%  for domestic equity and 3.0% for international equity as 
estimated by the Financial Times Online (2008). The UK CPI is used to generate the 
basic inflation rate, but different fixed rate adjustments specific to various liability 
inflation rates, such as private schooling costs, may be specified. 
 
3.1.5 The types of stochastic processes suitable for the simulation of the asset classes 
used in iALM are geometric Brownian motion, the Ornstein-Uhlenbeck process and 
the geometric Ornstein-Uhlenbeck process.  
 
3.1.6 Geometric Brownian motion (GBM) satisfies the stochastic differential equation 
(SDE)6 
                        ( )t t td X dt dμ σ= +X W ,                                                   (1) 
where µ is the drift, σ is the volatility and W  is the underlying standard Brownian 
motion, with tW  having mean 0 and volatility t . 
 
Consider the process log X , where log denotes the natural logarithm. Using Ito’s 
lemma this process is a Brownian motion which satisfies the SDE given by 
                       
                         log ( ') td dt dμ σ= +X W ,                                                   (2) 

where 21' :
2

μ μ σ= − . In order to model (2) discretely, we assume the time series 

increment Δ (Δ := 1/12 implies monthly data) and consider the series 
( ) {1, , }

: t t T∈
=

K
X X . The resulting discrete time process satisfies 

                   2
1 1

1log log ( ) ( )
2t t t tX Wμ σ σ− −− = − Δ + −X W ,                                      (3) 

where 1t tW −−W  is a standard normal random variable independent of those for 
previous and future time increments. 
 
3.1.7  An Ornstein-Uhlenbeck (OU) process C satisfies the SDE 
 

( ) ,t t td C dt dα β σ= − +C W          (4) 

where β is the rate of mean-reversion, α
β

 is the long term mean, σ is the volatility and 

W is a standard Brownian motion. 
 
The geometric Ornstein-Uhlenbeck (GOU) process satisfies the SDE 
 

                                                 
6 Throughout this paper we use boldface to denote random entities, here conditional. 
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( )logt t t td dt dα β σ= − +⎡ ⎤⎣ ⎦R R R W ,                                                                          (5) 
where the parameters  and W are as for (4). 
 
The logarithm, : logt t=r R , of such a process is an OU process which satisfies the 
SDE 
 

( )'t t td dt dα β σ= − +r r W ,                                                                                      (6) 

where 21' :
2

α α σ= −  . 

 
The solution of this SDE is given by 

( ) ( )
0 0

' 1 ,
tt t s t

t sr e e e dβ β βα σ
β

− − −= + − + ∫r W                                                               (7) 

which is discretely modelled as 

( )1
' 1t t tr e eβ βα

β
− Δ − Δ

−= + − +r ε                                                                                       (8) 

with time series increment Δ and 2 3, ,..., Tε ε ε  independent identically distributed 
2(0, )N σ  random variables. The process r will be mean reverting if β > 0. 

 
3.1.8  GBM is widely used in financial modeling of this nature at monthly frequency 
and was selected to simulate indices for domestic equity, international equity, 
corporate bonds, government bonds, commodities, alternatives and property. An 
initial indication of the suitability of GBM for this set of asset classes was provided by 
graphical inspection of the historical data indices and statistical verification of 
normality using a Kolmogorov-Smirnov test of empirical return distributions for 
normality which showed monthly returns acceptably normal at below the 20% 
significance level. A Jarque-Berra test for normality based on skewness and kurtosis 
confirmed these results. 
 
3.1.9 The mean reversion properties of a GOU process (whose log is an OU process), 
make it suitable for the simulation of the cash and inflation rates, corporate and 
government bond coupons and the treasury bill rate. A graphical overview of the 
historical data for these asset classes provides an indication that they possess mean 
reverting characteristics. In the case of inflation rate, cash rate and treasury bill rate, 
these mean reverting characteristics are a direct result of UK government and Bank of 
England policy. To confirm the suitability of the GOU assignments, statistical 
verification was performed for these asset classes using the augmented Dickey Fuller 
unit root test for stationarity of an OU process on logs of the original data. Mean 
reversion was accepted in all cases at well below the 20% significance level. For this 
purpose the OU process in log data is discretely modelled as (8). 
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3.1.10  The indices listed in Table 1 provide monthly historical time series data for ten 
year periods from June 1997 to May 2009. All data were obtained from Thomson 
Data Stream. From each of the three sets of ten year data for each asset class the 
following parameters were estimated to pass to the simulator: 
− Drifts μ  for GBM processes 
− Parameters ,α β  for OU and GOU processes 
− Covariance matrix V  between all processes. 
Using the historical time series data algorithms implemented in Octave were 
employed to obtain the simulator parameters for each asset class from maximum 
likelihood estimates of the discretized process regression models. 
 
3.1.11 Finally to estimate a covariance matrix between the returns of each asset class 
a quasi-maximum likelihood approach was used, i.e., covariances are estimated using 
the residuals from each process regression. For GBM processes these residuals are 
ˆ ˆlog(1 ) 'i irε μ= + − Δ       {2,3,..., }i T∈                                                                         (9) 

 and for OU/GOU 

1
ˆˆ ˆi i ir k r mε −= − −              {2,3,..., }i T∈ .                                                                    (10) 

Covariances between OU/GOU and GBM processes, respectively process a and b say, 
so obtained must be corrected by dividing each element by estimates of the factor 

ba

bae
ββ

ββ

+
− Δ+− )(1 , which tends to Δ when both betas tend to zero, i.e. when both a and b 

processes become GBM in the limit. 
 
3.1.12  These models’ parameter calibrations would benefit from longer time series. 
In cases, as here, when data history for some asset classes is short, annual 
recalibration is desirable. In general, more complex models which can cope with 
extreme market conditions may be used for the forward simulation of asset returns, 
but again parsimonious parameterization is desirable. 
 
3.1.13  It is important to note that while the GBM, OU and GOU processes are 
simulated using the Multi GBM simulator of STOCHASTICSTM with a monthly time 
step, the iALM household financial plan is generated in terms of forward annual cash 
flows with forward optimal  recommendations for annual portfolio rebalances. 
 
Event simulation 
 
3.1.14 The heads of a household consist of at least one of (H1) and (H2) persons. In 
their life the major random events are: death (D) and serious illness requiring long-
term care (LTC). In the situation where a health service is provided by the state, LTC 
may not be considered7. Life scenarios and asset return scenarios follow an identical 
                                                 
7 This is one of the differences between the current versions of the UK and US models, but LTC may 
be easily incorporated later. 
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tree structure and use a common seed for simulation.  Each individual’s life 
expectancy Eτ  at age τ and the probability of dying q(τ) during the year (t, t+1) given 
survival to age τ can be obtained from life tables8.  
 
 
 Periods                         1       2         …            t         …                   T       T=100- τ 
     
 
Age  0                            τ      τ+1        …          τ+k                           Eτ  
Birth                                                                                                Death                   
 
To generate events on a single future scenario the probability of dying in year t (i.e. 
before the end of year t) is given by 

1( ) ( ),   
s start

q p sττ −

=∏                                                                                                    (15) 

where ( )p τ is the probability of survival to age τ given by 
( ) : 1 ( ) ( ) ( 1)... ( 1) ( ).p q p p p k q kτ τ τ τ τ τ= − = + + − +  

 
3.1.15 The event simulator effectively generates a stream of successive annual binary 
events: alive-1, dead-0, with probabilities of dying in each sequential year computed 
recursively by conditioning (independently for both H1 and H2). For persons who 
have attained age τ the remaining length of life on a scenario is therefore the number 
of 1’s in the event scenario binary string generated. We use T1 and T2 to denote the 
remaining lifespan of the two independent random death events and define the 
household’s lifespan to be { }1 2: max ,=T T T The maximum length of life at the horizon 
T equals 100 years minus the starting age of the youngest head of household. 
 
3.1.16 The fact that heads of households can die means that it is possible (and indeed 
likely, depending on the life tables used by the simulator) that both heads of 
household will be dead before the end of a particular scenario.  In this event there is 
no longer any optimization problem to solve on that scenario and thus no need to 
consider the variables or constraints at points beyond the last death of a household on 
a given scenario.  This is an advantage, since by eliminating these variables and 
constraints considerable computational effort can be saved and the time taken to 
produce a solution reduced. 
 
3.1.17 For most institutional DSP problems a horizon that is the same on all scenarios 
is suitable.  However in iALM, since the time of the last death is different on different 
                                                 
8 The life tables for the UK model are from the Office of National Statistics and the Government 
Actuary’s  Department website: www.gad.gov.uk. Any use of specific mortality tables puts significant 
demand on additional data collection for personal factors, although this would improve the accuracy of 
life duration scenarios.  
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scenarios, the horizon should ideally vary from one scenario to the next. This is a 
potentially tricky problem but an elegant solution to it has been devised. In order to 
achieve this variable effective horizon (i.e. a problem horizon that can differ from one 
scenario to another), both sides of all constraints in iALM are multiplied by an 
indicator that takes the value 1 in all years up until the year immediately after the last 
death of a head of household; thereafter, it takes the value 0.  This has the effect of 
reducing constraints after the last death to 0 ≤ 0 or 0 = 0, both of which are trivially 
satisfied. A similar idea is used to ensure that variables at times beyond household 
lifetime are not included in the objective function. 
 
3.1.18 These trivial constraints and objective function terms contain no variables and 
impose no conditions on the solution after the last death of a head of household on a 
particular scenario. This allows the GSPL DSP modelling language preprocessor to 
remove them during the preparation of the problem for solution.  Removal of these 
variables (of which there may be a very large number) makes the problem to be 
solved smaller and simpler than would be the case without the variable horizon, 
allowing it to be computed more quickly. In the case of portfolios, however,  when 
sibling scenarios still have a living household, variables on scenarios from the last 
rebalance date are maintained to ensure that no spurious arbitrages are possible and 
the portfolio drawdown risk constraint remains active. 
  
3.1.19 In this model we do not consider employment redundancy, partly due to the 
difficulties in obtaining statistical data for simulation. In a situation when the risk of 
redundancy exists, a household need to reassess all its personal circumstances.  In 
such situations, a specific version of the financial plan without labour income for a 
specified number years (judged individually) may be generated for the household’s 
consideration. 
  

Liability simulator 
3.1.20 Liabilities run for a certain number of years (tdet)  unless a household death 
event occurs before hand. Therefore all liabilities run up to tend : = min { tdet, T}. 
Although loan and mortgage repayment liabilities are fixed in currency value at 
inception, in general liabilities are indexed for inflation and all forward individual 
liabilities may have an additional fixed per annum growth rate as 

1 0

1 -1(1 )       2,..., 1   infl
t t t add end

l l

r t−

=

= + + = −l l r t
                                                               (16) 

i.e. 
2

11 0 1
(1 )     end

end

t infl
t s adds

l r−

−

∧

+ ∧ =
= + +∏ t

tl r .                                                                       (17) 
 
3.1.21 In the liability simulator (which again uses the same tree structure and seed as 
the other simulators), two sets of liabilities are simulated: those indexed by the 
inflation rate – calculated in the asset return simulator – and those unindexed by 
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inflation but possibly subject to an extra deterministic growth rate. In the simulator all 
liabilities in each of the two classes in a given year t are added to generate 
respectively the 0

tL (unindexed) sum of liabilities and the 1
tL (inflation indexed) sum of 

liabilities, so that total liabilities become  
0 1

1                    1,...,        t t t endt−+ =L L tφ ,                                                                     (18) 
where 

1
: (1 )     2,...,      t infl

t ss
t

=
= + =∏ r Tφ                                                                           (19) 

is the current inflation index at year t in terms of the annual (mean reverting) inflation 
rate process 1  with : 1infl φ =r  (i.e r1:= 0). This simplification introduces the error of 
using 
(1 )(1 )infl add

s r+ +r                                                                                                        (20) 
for (1 )infl add

t r+ +r  which may be corrected on average by the map 
add add addr r r r→ − infl ,  where r infl  is the average annual inflation rate (e.g. 3%), to 

give an error term )infl add
t r r−(r infl  of small magnitude with expectation 0. 

 

3.2  Optimization 

3.2.1 As we stated in the introduction, conceptually the formulation of the objective 
for optimization presents the most challenging problem for the modeller, which we 
overcame by adopting some critical ideas from behavioural finance. Recall the 
Kahneman and Riepe (1998) notions of framing: “it is always possible to frame the 
same decision problem in broader terms (such as wealth) or in narrower terms (such 
as gains and losses); for the same decision problem broad and narrow frames often 
lead to different preferences. Rationality is best served by adopting broad frames 
rather than concentrating on changes.” The graph in Figure 3 shows the form of the 
prospect theory value function proposed by Kahneman and Tversky (1979). The 
inflection point is the reference point which is often equal to the status quo (e.g. the 
current state of wealth) or may correspond to an outcome that the individual has 
reason to expect. 
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Figure 2. Value function based on empirical results of Kahneman and Tversky  
 
3.2.2 For its optimization objective our formulation of the iALM problem uses the 
notion of the value function and combines the two types of  framing: 
 
− Narrow framing with respect to the ability to achieve the desired/acceptable 

spending level on any specific goal, e.g. specified annual living cost in any 
particular future year. This translates into the objective of maximising the real 
goal spending in the range of minimum, acceptable and desirable values. We thus 
introduce three reference points defined as minimum (e.g. the poverty line for 
living cost), acceptable and desirable amounts which are  individually defined by 
the household.  

 
− Broad framing with respect to the satisfaction gained from accumulating wealth 

over a life time while providing for all consumption and liabilities at minimal 
risk. We see wealth as generating ‘sustainable spending’. The primary goal of 
iALM is thus ‘to increase the real spending that a portfolio can sustain’(Arnott, 
2006, p.11). Formally, this translates into the objective of maximising the real 
spending on all goals which the financial portfolio(s) can sustain throughout the 
household’s lifetime.  

 
Objective 
 
3.2.3 The utility function for each individual goal is a piece-wise linear function (see 
Figure 4), which is constructed for a range of spending between acceptable (s) and 
desirable (g) values, subject to existing and foreseen liabilities, and a minimum 
required spending (h). The slope of the (s, g) section can be thought of the goal’s 
priority. In years when multiple goals are present this has the effect of directing 
spending to goals with higher marginal utilities of consumption9. 

                                                 
9 A goal that must be met at the acceptable or desirable level may be created by equating the minimum 
level to the appropriate level. 



ALM for Individual Households                                                                     15 

 
 
 
Figure 4. Value/utility function for an individual household goal 
 
3.2.4 It is important to note here that these goal utility functions are constructed using 
the individual household input data across life scenarios at multiple times. Thus the 
shape of individual utility functions in each year materializes into the household’s 
attitude to risk in that year, i.e. a time-varying forward attitude to risk appropriate to 
goals and life circumstances. 
 
3.2.5 The overall objective of the iALM optimization (in today’s value terms) is to 
maximize the expected utility of lifetime consumption10, taking into account total tax 
payments and excess borrowing , i.e. 
 

{ , }
1

1 u ( )
T

t t t
t=

⎡ ⎤
⎢ ⎥⎣ ⎦
∑ any alive CE� ,                                                                                              (21)                               

where 

( ),
1u ( ) u ( ) xs xs i

t t g t t t t
g G t

τ τπ π
∈

= − +∑ z I
φ

C y .                                                                  (22) 

Here { , }1 tany alive  is an indicator function to handle random length of life scenarios,  
u t  is the  utility at year t ,  
G  is the set of all goals with ,u g t being the utility for a specific goal g at time t ,  

tϕ  is the inflation index at year t, 
xs
tz is excess borrowing – an auxiliary variable introduced for dealing with possible 

bankruptcy , 
t
τI  is the total tax payable with xsπ  and iτπ  being the respective penalty coefficients 

on bankruptcy and tax. 
                                                 
10 In the formulation of the optimization problem the summation is across all scenarios and all (annual) 
time periods. 
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3.2.6 Consumption tC  is defined as spending on chosen goals in year t. Spending will 
grow with a goal specific inflation rate

, gg t
φ and is distributed between equity 

(preserving) goals, like real estate, and non-capital goals11. Thus 
 

( ), , , ,,
\

ˆ
g

m m

d m
t g t g t g t g tg t

g G g G G∈ ∈

= + +∑ ∑C φ F F φ y ,                                                                  (23) 

 
where the subset of goals mG  is the set of real estate goals, which may be mortgaged. 
Such goals with purchase price −

gz  require a down payment ,
d
g tF  at s

gt  in the first year 

of the goal and an annual mortgage payment  ,
m
g tF  thereafter. Other non-capital goals 

have no equity value but have spending ,ˆ g ty on goal g at time t . 
 
3.2.7 Wealth is generated through optimum portfolio allocation (in addition to other 
income streams like salaries and other individually specified payments). Net goal 
wealth consists of cash holdings (liquid wealth) and the value of equity in goals, e.g. 
equity in real estate, see Figure 5. For example, home equity in any year is purchase 
price scaled up by inflation less the present value of future mortgage payments. 
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Figure 5: Goal spending cash flow diagram 

 
                                                 
11 Goal specific inflation rates have a spread associated with the type of goal, e.g. property goals are 
inflated with a property inflation index, the growth rate for private school education goals are CPI+ 
3.9%, and so on. 
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Constraints 
 
3.2.8 Objectives for investment are dependent on many factors, like personal 
priorities, aspirations, human capital, family status and so on.  In this context, iALM 
may be interpreted as constrained optimum resource allocation over an individual 
household’s life time.  
 
3.2.9 An example of a constraint sub-model for optimal portfolio allocation in terms 
of various cash flows is given in Figure 6. Figure 6 corresponds to the fundamental 
iALM annual cash balance constraint12. This constraint considers all stores of value 
and the inflows and outflows of wealth that are linked to each store.  We can represent 
the annual change in the value of each store in terms of the other sets of fundamental 
constraints of iALM13.  The overall optimization problem may become infeasible 
when liabilities and/or required level of consumption exceed the possible returns from 
the household assets and other sources of income.  
 
3.2.10 Figure 6 illustrates the flow of wealth in iALM. The circles, with the exception 
of those for the SIPP and ISA (omitted) accounts, are stores of value14. The SIPP and 
ISA account circles do not store value; their value is stored in their respective 
portfolio circles (in the diagrams representing their portfolios in other constraint sub-
models). Net financial wealth is the sum of all stores of value. Arrows show paths by 
which wealth can be transferred from one store of value to another.  Arrows between 
value stores (circles) represent flows of wealth that do not change the overall net 
financial wealth.  For example, taking a bank loan transfers wealth from the bank loan 
store (which becomes more negative) to the cash holding store (which becomes more 
positive).  Arrows that start from boxes on the left outside the dotted box are inflows 
of wealth to the household. These include such things as regular income (e.g. 
salaries), interest on bank deposits and earnings from bond coupons and share 
dividends.  On the right hand side are outflows of wealth from the household. These 
include such things as  interest charges on loans, taxation and consumption. The 
difference between inflows and outflows gives the net increase in a household’s 
financial wealth in a given year.  

                                                 
12 See the appendix for a mathematical statement of this constraint. 
13 We do not describe the portfolio allocation sub-models in mathematical detail here but for details we 
refer the reader  to institutional fund models, e.g. Dempster et al.(2008). In the iALM model broader 
diversification of portfolios can be achieved by imposing stringent limits on the portfolio drawdown or 
by specifying limits on investments in individual asset classes. 
14 Note that the Individual Saving Account (ISA) tax shielded investment account has been omitted 
from the diagram for simplicity. It is similar to the tax shielded Self Invested Personal Pension (SIPP) 
account, but without employer contributions. 
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Figure 6. Cash balance diagram 

 
3.2.11 The risk characteristics of the evolution of optimal portfolios depend on asset 
volatilities and their correlations and the risk management constraints of the portfolio 
models. These constraints impose a tolerable annual drawdown of the portfolio on 
each scenario over the household’s lifetime which is set according to individual 
household preferences. 
 
Pensions 

3.2.12 Pensions are designed to provide a steady household income after retirement. 
In order to encourage saving for retirement the government provides special tax status 
for pension accounts, see HMRC (2008). Specifically, any money paid into a pension 
account is exempt from taxation and any income from these investments can accrue in 
the account free of tax. Withdrawals from pensions are subject to income tax and, in 
some cases, further tax penalties depending on the pension size. In the UK pensions 
are of three basic types. First, there is the Self Invested Personal Pension (SIPP) 
which is an individual investment portfolio to which contributions can only be made 
up to, and withdrawals only after, retirement. Secondly, there are Defined Benefit 

Net wealth

Cash 
holding

( )+z

Portfolio

Margin 
borrowing

Excess 
borrowing

SIPP

SIPP

Income 
borrowing

+m

−m+P
−P

SIPP−P
SIPP+P

SIPP+PSIPPk SIPPρ +P

SIPP
a

−∑x

SIPP
a

+∑x

Interest charges on 
margin loans

Liabilities

Capital Gains Tax 
(other tax in inceme)

Total pension 
contribution

Interest charges on 
income loans

Interest charges on 
excess borrowing

Transaction costs 
(SIPP portfolio)

Transaction costs

( )a∑x
( )−m

( )SIPP
a∑x

( )0

C D+I I

SIPP_C SIPP_D+I I

TOTAL
tI

L

CGτI

, ,
iPensions Pexcess
p t p t

p U

+

∈

+∑ P P

tx+ tx
a a a ar r+ − −+∑ ∑x x

tx+ txSIPP SIPP
a a a ar r+ − −+∑ ∑x x

( )cash mr+m r

1 1
cash

t t
+
− −z r

xs
tz

xs xs
1(1 )t− +z r

xsz

ne
w

 m
ar

gi
n 

lo
an

s
m

ar
gi

n 
lo

an
 re

pa
ym

en
t

SIP
P w

ith
dr

aw
al

asset sales

asset purchases

asset purchases

asset sales

Returns

Coupons and 
dividends

Post tax income

Employer SIPP 
contributions

SIPP coupons and 
dividends

SIPP returns

Interest on bank 
deposits

excess borrow
ing at t

Excess borrow
ing repaym

ent

Loans 
secured 

on assets

Interest charges on 
secured borrowing

Goal 
Equity

(see below)

Goal consumption 
(non capital)

Interest on goal loans

C

goa
l s

pe
ndin

g

income borrowing

income loan repayment

asset borrowing

asset loan repayment

,I t
−z

, 1 1(1 )cash s
I t t Ir r−

− −+ +z

, 1 1( )cash s
I t t Ir r−

− − +z

xs xs
1t−z r

I
−z

Life and mortgage 
insurance premiums

ins Mortgage
t t+L i

Life and mortgage 
insurance payouts

ins Mortgage
t t+L i

Net wealth

Cash 
holding

( )+z

Portfolio

Margin 
borrowing

Excess 
borrowing

SIPP

SIPP

Income 
borrowing

+m

−m+P
−P

SIPP−P
SIPP+P

SIPP+PSIPPk SIPPρ +P

SIPP
a

−∑x

SIPP
a

+∑x

Interest charges on 
margin loans

Liabilities

Capital Gains Tax 
(other tax in inceme)

Total pension 
contribution

Interest charges on 
income loans

Interest charges on 
excess borrowing

Transaction costs 
(SIPP portfolio)

Transaction costs

( )a∑x
( )−m

( )SIPP
a∑x

( )0

C D+I I

SIPP_C SIPP_D+I I

TOTAL
tI

L

CGτI

, ,
iPensions Pexcess
p t p t

p U

+

∈

+∑ P P

tx+ tx
a a a ar r+ − −+∑ ∑x x

tx+ txSIPP SIPP
a a a ar r+ − −+∑ ∑x x

( )cash mr+m r

1 1
cash

t t
+
− −z r

xs
tz

xs xs
1(1 )t− +z r

xsz

ne
w

 m
ar

gi
n 

lo
an

s
m

ar
gi

n 
lo

an
 re

pa
ym

en
t

SIP
P w

ith
dr

aw
al

asset sales

asset purchases

asset purchases

asset sales

Returns

Coupons and 
dividends

Post tax income

Employer SIPP 
contributions

SIPP coupons and 
dividends

SIPP returns

Interest on bank 
deposits

excess borrow
ing at t

Excess borrow
ing repaym

ent

Loans 
secured 

on assets

Interest charges on 
secured borrowing

Goal 
Equity

(see below)

Goal consumption 
(non capital)

Interest on goal loans

C

goa
l s

pe
ndin

g

income borrowing

income loan repayment

asset borrowing

asset loan repayment

,I t
−z

, 1 1(1 )cash s
I t t Ir r−

− −+ +z

, 1 1( )cash s
I t t Ir r−

− − +z

xs xs
1t−z r

I
−z

Life and mortgage 
insurance premiums

ins Mortgage
t t+L i

Life and mortgage 
insurance payouts

ins Mortgage
t t+L i



ALM for Individual Households                                                                     19 

(DB) pension plans to which both individuals and employers contribute before 
retirement and which pay a fixed proportion of an individual’s salary each year after 
retirement15. Finally, Defined Contribution (DC) pension plans are similar to a SIPP, 
except that while both individuals and employers usually both contribute before 
retirement, an individual may have no control over the portfolio allocation in such 
plans. An ISA is a DC pension plan whose contributions are individual with full 
individual control of asset allocations. For simplicity, DC pension plan accomulations 
is modelled with returns at the same rate as corporate AA bonds (consistent with 
FRS17 Retirement Benefits Rules). All three basic types of pension are subject to 
both annual contribution limits and lifetime contribution limits. For more details on 
alternative pension plans and annuities, which pay an annual income from the accrued 
capital of many pension accounts at or subsequent to retirement16, the reader is 
referred to Blake (2003), Milevsky (2006) and Clark et al. (2006). 
 
3.2.13 To delve a stage further into the complexity of the UK iALM model we 
consider the structure of individual (taxable, SIPP, ISA) portfolio structure. As shown 
in Figure 6 each of these portfolios represents the sum of all of the constraints across 
their constituent assets. We illustrate the detailed SIPP portfolio structure by way of 
example. The SIPP portfolio is shown as a single store of value in Figure 6, but it is 
represented by multiple stores of value in Figure 7. The individual asset circles in the 
diagram correspond to the SIPP’s individual asset constraints. A similar interpretation 
applies to the taxable and ISA portfolios.  The cash holding circle at the centre of 
Figure 7 leads to the annual cash balance constraint of Figure 6 which is at the very 
heart of iALM.   
 
3.2.14 The optimized decision variables of the portfolio sub-models guide the tax 
efficient annual rebalancing of assets and generate optimum portfolio return. 
Therefore, together with the stream of labour and other income, the income from 
after-tax portfolio returns provides optimal spending on goals. In other words, 
optimum portfolio asset allocation leads to optimum prospective consumption. Many 
decision variables constitute the optimum solution of iALM. We classify these into 
separate categories corresponding to the appropriate entities of the meta-model (see 
Table A1) and the categories of the financial plan such as portfolio, wealth, goals and 
cashflows. But the main objective of iALM is to provide a household with initial 
recommendations for active portfolio and cash flow management for the year ahead. 
 

                                                 
15 From a modelling perspective the payments of DB pensions are non stochastic but are assumed to be 
indexed for inflation. 
16 In the current model specific annuity cash flows expected can be input in today’s currency to the 
problem, annuitization dates can be varied and the model re-run. 
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Figure 7.  SIPP portfolio cash flow diagram 
 
 

4 An Illustrative UK Household through the Crisis 

4.1 In this next section we look at portfolio decisions and goals for an example 
household in more detail. We begin with a household decision problem and the 
household data we used in our model17. The Financial Times (FT) in its ‘Money’ 
weekend supplement used to have a ‘Money Makeover’ section in which a family 
described their financial position and goals and asked experts for their 
recommendations on investment, savings and appropriate spending. The quantity and 
quality of the data provided by households varied significantly, but in general 
household members specified their income and wealth and listed major liabilities. 
They also stated their major financial goals. We collected data on these household 
profiles over two years. In addition we created multiple copies of individual profile 
alternatives by adding liabilities, changing planned retirement age, increasing sets of 
desired goals in the form of real estate, luxury items or private education for children 
and so on – to reflect the myriad variations of individual life circumstances.  
 

                                                 
17 One example of such ‘hypotheticals’ is given in the Business Week Special Report Issue on 
Retirement (July 13&20, 2009). Their solution requires the US iALM model with the corresponding 
retirement saving schemes, taxes, health care plans, and so on (see, Medova et al., 2008) .  
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Household profile 
 
4.2 Let take as an example a family whose major financial details were given in the 
FT of 1-2 July 2006.  Jim and Carolyn Pimlott have extensive savings, having both 
worked full time in professional jobs for 20 years. They are 43 and 45 respectively 
and they hope to work until they are 65. They had already paid off their mortgage.  
They state that their main aim is to “achieve financial security and freedom”. In 
Figure 8 we show data input by the Pimlotts which specifies their living expenses at 
acceptable and desirable levels with chosen priorities. Aside from living expenses 
prior to a comfortable retirement, their only financial goals are to provide for private 
school and university education for their two children. Table 5 summarises their 
financial position and goals. 
 
 

 
 
 
Figure 8. Specification of individual consumption data by the Pimlott household 
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Starting assets 
Taxable accounts - £297,000 
ISA accounts - £35,000 
SIPP accounts - £15,000 
Family home - £550,000 
Inflows 
Jim’s salary - £85,000 
Carolyn’s salary - £30,000  
Currently the Pimlotts have £35,000 in a defined contribution pension, which receives 4% 
employer contributions, along with their SIPP and a full state pension 
Outflows 
Pre-retirement spending (priority 10) - £84,400(acceptable), £89,400(desirable) 
Post-retirement spending (priority 10) - £66,800(acceptable), £76,900(desirable) 
John’s school education (priority 5, 2009-2016) - £10,400(acceptable), 12,600(desirable) 
Jess’s school education (priority 5, 2009-2015) - £10,400(acceptable), 12,600(desirable) 
John’s university (priority 5, 2016-2020) - £7,200(acceptable), £8,800(desirable) 
Jess’s university (priority 5, 2015-2019) - £7,200(acceptable), £8,800(desirable) 
 
Table 5.  Pimlott household profile 
 
4.3 Recall that in our approach we assume that attitude to risk and return is merely a 
reflection of current financial status, liabilities and future consumption goals. Our 
trials with data from many individual (US and UK) households demonstrate that 
individuals often overestimate their earning and spending prospects leading to 
bankruptcy or very small probabilities of goal achievement.18 In this situation some 
necessary changes to input data are needed such as the postponement of retirement, 
wife returning to work, reduction in the number of goals or their monetary values, and 
so on. This stage of financial planning is supported by a preliminary deterministic 
stage before the full solution of iALM. We call it the ‘reality check’ since it generates 
a value for a target portfolio return which would provide the household’s ‘sustainable 
wealth’ over a lifetime. 
 
4.4 For our example, assuming an inflation rate of 3%, the Pimlott family will sustain 
their desirable lifestyle up to death of the last surviving head of household if their 
financial portfolio will return on average 8.3% annually. On the other hand, if they put 
all their money in a savings account with a return of 3.3% per annum, they will be 
over £2,000,000 in debt at the end of life. Since as we shall see, a target return on 
investment of 8.3% is achievable under current market conditions we move on to 
solving the stochastic iALM model. 
 

                                                 
18 In fact, US iALM was extensively tested on nearly 100 households with several variations of their 
profiles for each (Medova et al., 2008). In addition to model stability tests involving simulator seeds 
and varying numbers of generated scenarios from 120 to several thousand, iALM recommendations 
were favourably compared to those from industry best practice (Markowitz-based) and actual top 
financial advisors in backtests through the internet bubble and crash. 
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iALM recommendations 
 
4.5 The first financial plan generated for the Pimlott family is as if it was made in 
2007 with recommendations for wealth, portfolio allocations, various cash flows and 
other decisions over the household’s lifetime presented below. In 2007 the forecast of 
asset returns was optimistic, resulting in portfolio-generated wealth with many high 
return scenarios as shown in Figure 9. Note the differing household lifetimes denoted 
by the various wealth scenarios and the few ‘jackpot’ scenarios. 
 
4.6 The expected (across scenarios) evolutions of the monetary value of the various 
constituents of household wealth are shown in Figure 10. Figure 11 shows the iALM 
recommended initial total portfolio allocation which leads through rebalancing to the 
various prospective cash flows and goal spending over the household’s lifetime shown 
in Figures 12 and 13 (only pre- and post- retirement living goals are shown as 
illustrations). In spite of significant variation in predicted net financial wealth at the 
end of household lifetime shown in Figure 9, in 2007 the individual scenario living 
and retirement spending goals (shown in Figure 13) are all projected to be above the 
desired value with a probability of achievement close to one.   
 

 
 
Figure 9.  Evolution from 2007 of Pimlott family net financial wealth 
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Figure 10. Expected evolution from 2007 of constituents of Pimlott family wealth 
 
 
 

 
 
Figure 11. Initial total asset allocation recommended in 2007 
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Figure 12. Expected optimal lifetime cashflows recommended in 2007 
 

 
 
Figure 13.  Pre- and post-retirement spending goal achievement in 2007 
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4.7 The recommendations of iALM are in agreement with the general advice of the 
FT’s experts to the Pimlotts such as suggestions of “a portfolio of low-cost index-
tracking funds for global equity exposure, fixed interest securities and commercial 
property funds”, “to make their affairs more tax efficient” and “to review their 
pension funding to see if they could make use of spare capital.”  
 
4.8 With current knowledge of the 2008 crisis the high proportion of the 2007 
allocation into property seems a perverse recommendation which we explain with the 
following argument. The initial portfolio allocation on 1.1.2007 is based on 
simulation of return processes calibrated over the period of the previous ten years. For 
the residential property investment asset class we use the Financial Times House 
Price Index (Table 1) data up to 31.12.2006 but the extreme fall in house price index 
returns corresponds to mid to late 2007 (see Figure 14). 
 
 
  
 
 
 
 
 
 
 
 
 
 
Figure 14. Financial Times House Price Index 
 
 
4.9 However the expected dynamic asset allocation as of 1st January 2007 shown in 
Figure 15 takes into account the high volatility of the house price index return process 
and recommends prospectively a move to risk-free investments (cash) later in life. 
Note that at the time of retirement in 2030 the portfolio proportion of investment in 
the prospective property index is only 7.40% of total portfolio value. 
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Figure 15. Dynamic asset allocation recommended in 2007 over the household 
life cycle 
 
Performance through the Crisis 
 
4.10 For many UK and US households analysed the target annual portfolio return of 
the reality check is in the range of 9-12%, which would be near impossible with the 
projected market returns in 2008-2009. For our example family, we consider that the 
required 8.3% portfolio return is achievable (but difficult) and rerun iALM with 
simulator parameters recalibrated to current returns by adding two years (of monthly 
data)  for the parameter estimates and simulating from values in January 200919. 
 
4.11 The histograms for goal achievement of the 2009 recommended financial plan in 
Figure 16 show how the economic downturn changes household expectations and 

                                                 
19 We assume both Pimlotts remain employed at the same salaries in 2009 currency and that their 
individual preferences remain the same as in 2007. Thus no changes to inputs are required except for 
the principals getting older and ‘moving on’ in time towards their stated goals. 
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results in much more dispersion in goal expenditure (compare Figure 13). 
 
 

 
 
Figure 16. Pre- and post-retirement spending goal achievement in 2009 
 
4.12 Figures 17, 18, 19 and 20 illustrate the changes in decision variables caused by 
the crisis. Comparing Figures 11 and 19 we see that the major recommendation of 
iALM for 2007, in the middle of the property boom, was in residential property 
(REITs or buy-to-let). While properties continue to produce rental returns, in 2009 
(and also in 2008) iALM recommends reduced residential property investment and 
significantly increased investment in overseas equities and commodities – again 
reflecting current investment practice. The dynamic asset allocation of Figure 21 now 
puts only 0.76% of portfolio value into the property index at the retirement date. 
 
 



ALM for Individual Households                                                                     29 

 
 

Figure 17. Evolution from 2009 of Pimlott family net financial wealth 
 
 

 
 

Figure 18. Expected evolution from 2009 of constituents of Pimlott family wealth 
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4.13 Due to the lower predicted returns from their financial assets in 2009  to achieve 
their goals the Pimlott family must invest much more aggressively than in 2007. Since 
portfolio risk management in this model is implemented by controlling drawdown of 
the portfolio in all scenarios with chosen loss tolerance (in this example of 15%) some 
returns are simply unattainable. Note that both the 2007 and 2009 portfolio examples 
are solved using the version of the portfolio allocation submodel without limits on the 
investment in any particular asset class20. The overall optimization problem may 
become infeasible in cases when liabilities and the required level of consumption 
exceed the cash flows generated from the possible returns of the household’s assets.  
 
 

 
 
 
Figure 19. Initial total asset allocation recommended in 2009 

                                                 
20When run on the data of the Pimlott family with calibration of market returns up to 2009, the 
constrained version of the model (e.g. international equity proportion less or equal to 40%) became 
infeasible.   
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Figure 20. Dynamic asset allocation recommended in 2009 
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4.14 The most important lesson learned from running iALM with updated projected 
asset returns however concerns the Pimlott’s saving accounts. The recommendation of 
putting money into their SIPP and ISA accounts up to the regulatory limits remains 
unchanged from 2007. However, as a result of the crisis, the SIPP and ISA accounts 
are now projected to become the main source of income in retirement for the 
household, since the taxable portfolio account is seriously depleted due to prospective 
lower market returns by the time of retirement, compare Figures 22 and 23. 
 

 
 
Figure 22. Expected sources and uses of funds and total savings projected in 2007 
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Figure 23. Expected sources and uses of funds and total savings projected in 2009 
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4.15 Notice from Figure 20 that the familiar life cycle pattern of wealth decumulation 
after retirement has now become the prospective reality for the Pimlotts. But recall 
that iALM recommendations are designed to support at least an annual household 
financial planning exercise, possibly assisted by a financial or wealth management 
advisor, in light of realistic forward projections of current market conditions. 
Although it is possible that in the future Pimlott family fortunes would exceed the 
iALM projections made in 2009, it is only prudent to consider the future implications 
of the current market which emphasize the key role of tax shielded saving for 
retirement. 

5 Conclusion 

5.1 In this paper we have described a meta-model for individual household life-cycle 
financial planning at cash flow level and its instantiation. It is difficult to present an 
adequate description of the nature and role of individual asset liability management 
because of the complexity and novelty of many of the concepts involved. We have 
presented the fundamentals of the dynamic iALM meta-model in terms of its 
structure, simulation and optimization models and its interactive use. The iALM 
recommendations for a representative UK household are illustrated by a financial plan 
generated in 2007 and then compared with those of a modified 2009 plan reflecting 
the credit crisis of 2008. Due to active management of the investments the modified 
2009 financial plan generates sufficient wealth to sustain the pre- and post-retirement 
consumption goals at above the acceptable levels, but recommends conservative 
retirement savings and ‘trims down’ household expectations. 
 
5.2 For rapidly aging populations there are very few practical tools to help individuals 
make sensible financial decisions. Much cross-sectional study of individual household 
consumption and savings behaviour has been sponsored by governments around the 
world, but while the results certainly inform fiscal and other government policy, they 
are of little value to individuals faced with specific decisions as to whether or not 
retire, buy a new home and so on. The market on the other hand has become more 
complex, requiring highly specialized information and providing sources of individual 
financial advice of questionable value based on subjective assessment of a client’s 
attitude to risk. This remains a bewildering topic for both households and advisors 
which made is worse by extensive questionnaires. Moreover, professional advice 
given to individuals is based mainly on short term investment models and too often is 
only revised infrequently.  
 
5.3 The class of models represented in this paper allows financial planning to shift the 
focus from the short term to the long term, from the cross section to actual decisions 
and from static to dynamic actively managed investments. Most importantly, they 
shift the focus from a universal age-dependent attitude to risk to risk management 
specific to the household in terms of its current situation and future goals and from 
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difficult-to-specify targets to easily understandable net cash flow analysis which takes 
into account taxes and bequests. The model implementation described supports 
informed financial planning decisions and, by interactive use, allows the exploration 
of an endless variety of ‘what-if’ evaluations of alternative decisions. What this paper 
has attempted to show at least is that the dynamic stochastic programming technology 
required to make this paradigm shift is a reality today.  
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Appendix: Technical Overview of iALM 

A.1. Principles of Dynamic Stochastic Programming  
 
The iALM tool is implemented using dynamic stochastic programming (DSP) 
methodology and solution techniques. There are many applications of DSP in 
industrial planning and management (Prekopa, 1995; Dempster et al, 2000; Wallace 
& Ziemba, 2005). Institutional funds, and particularly pension funds, use stochastic 
programming techniques for portfolio construction and for the formulation of optimal 
trading strategies (see, for example, Zenios & Ziemba, 2007; Dempster et al, 2009). 
In what follows we briefly describe the major steps in the construction of a dynamic 
stochastic programme, with the aim of introducing this methodology to the novice 
reader.  
 
Dynamic stochastic programming incorporates many alternative futures in the form 
of simulated scenarios from a discrete time, continuous state, multi-dimensional 
stochastic data process 
 
 
 
 
 
The stages correspond to the expected times of major changes for decisions in the 
future. In general this discretization of time is at a frequency different from that of the 
data process’s simulation time steps.  
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The evolution of the discrete state simulated data process across time is given by a 
scenario tree. For example, in Figure A1 the 3-3-2 scenario tree shown branches three 
times at stage 1, then each scenario branches into 3 further scenarios at stage 2, and 
again at stage 3 each scenario branches into 2 scenarios. This branching structure 
schematically represents the uncertainty regarding the state of the underlying 
simulated data process in 18 scenarios.  
 

 
 

Figure A.1.  An example scenario tree schema  
 
All decisions at intermediate nodes of the tree take into account the possible 
evolution of the stochastic data process from that point forward. The decision at the 
root node encompasses all uncertainty and, in this sense, it is a ‘robust’ solution of 
the DSP problem with respect to all generated states of the stochastic data process. 
 
A generic dynamic stochastic programming problem (Dempster, 1988, 2005) is given 
by 
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where the constraints hold almost surely (a.s.), i.e. with probability one. Stages are 
shown here of equal length for notational simplicity but in the iALM model they are 
of variable length (see A.2). 
The idea of this multi-stage forward planning model is that at each stage in the model 
an observation of the data process is made, which is then followed immediately by a 
decision, i.e. an observation is taken just before a decision is made. Decisions are non-
anticipative, which means that decisions made at any stage are only dependent on the 
information available up to that time. This is achieved at branch points of scenario 
tree by fixing portfolio decisions to be the same across all scenarios originating from 
the same branch point. Subsequent decisions in periods between stages (branch 
points) on scenarios in the tree take into account all possible scenarios in that stage 
(Dempster & Thompson, 2002). 
 
The objective of the DSP problem is in the form of nested optimization problems 
given by the conditional expectation of the data and decision process 

1,0 1,1 1, 2,0 2, ,0 ,
: , ,..., ; ,..., ; ,..., }.=

u u T T ut t t t t t txx x x x x x x  
 
The constraints run across time and correspond to stages of the decision process with 
its first period deterministic decision 

1,0tx .  
 
This conceptual dynamic stochastic representation is used to generate a deterministic 
equivalent of the DSP with the specific probabilistic structure given by scenario tree 
for solution (Dantzig and Madansky, 1960) as  
 
 
 
 
 
 
 
 
 
 
 
All simulated data realizations are used here in a non-redundant manner. Note that all 
previous values of both the data and decision processes are allowed here to influence 
the current decisions. This non-Markovian structure is required for iALM when 
considering, for example, mortgaged house purchases. 
 
In the deterministic equivalent problem all random coefficients specified in the 
constraints of the DSP are realizations of the underlying stochastic process 
represented by the scenarios. In the case of linear constraints and objective this is 
very large linear programming (LP) problem which becomes very sparse when the 
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problem is Markovian. We can therefore use standard solution techniques to solve 
this linear programme numerically. StochasticsTM is CSA’s generic modular software 
for solution of DSP models and incorporates both nested Benders decomposition and 
interior point solvers. 
 

A.2. Structure of the iALM Model 

As discussed in Section 3, the iALM large scale LP model is actually a collection of 
submodels, each of which is represented by (often a very large number of) appropriate 
constraints, together with supporting algorithms for price and value calculations to 
supply constraint parameters at run time. Many of these submodels can be switched 
on or off at run time according to household requirements and preferences supplied 
through the GUI. Since the detailed US and UK model documents are of the order of 
200 pages, we can only give an overview of this complexity here. Table A1 lists the 
constraint submodels in the UK iALM model. 
 

Goal utility 
Consumption and goals 

Total utility 
Taxable portfolio 

ISA porfolio 
SIPP portfolio 

Defined Benefit pension 
Defined Contribution pension 

Loans against assets 
Loans against income 

House purchase and mortgages 
Excess borrowing (bankruptcy) 

National insurance 
Income tax 

Capital gains tax 
Cash balance 

 
Table A.1. Submodels within the iALM LP model 
 
To give a glimpse of the nature of these submodels we treat the simplest but most 
important: the cash balance constraint in each annual period t = 2,…,T. The cash 
balance constraint ties all the disparate elements of iALM together, it is used to 
reconcile all the entities in Figure 6 in Section 3.2, to which it corresponds. It is the 
fundamental constraint on the evolution of the cash holding given by 
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The omission of interest on banked cash is because the z variable is used as a 
balancing variable in the cash balance equation which can be flexibly reallocated each 
year. This is consistent with the idea of a current account which offers little or no 
interest. The t-cash asset (3 month Treasure bill index) can be used to represent a 
savings account which is an investment instrument. 

Solution of the linear DSP model in its deterministic equivalent LP form provides 
optimal values for many decisions of interest – spending, amount of savings, tax-
efficient allocation between multiple portfolios, etc. – across time simultaneously for 
multiple scenarios of random process representing market returns, foreseen liabilities, 
life events and goals. The current UK iALM model involves 22 random processes that 
vary over a household’s lifetime and around 200 constraints per node of the scenario 
tree. The LP formulation typically involves a constraint matrix of over 3 million non-
zero entries. 
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A.3. Technical Advances Incorporated in iALM 

It is worth noting that versions of iALM incorporate five scientific breakthroughs 
which to the best of our knowledge have not so far been treated in the open literature 
on stochastic optimization applied to asset-liability management problems – 
institutional or individual21. These are reliable solutions of large scale problems with: 

– Up to 90 annual decision periods using novel information constraints on most 
decisions 

– Random scenario lengths due to deaths of household members 

– Occurrence of non-terminal random events such as entry and exit from long-term 
care 

– Automatic placement of major (branching) rebalancing points based on problem 
data 

– No solver parameter tuning for first-time solution of arbitrary instances 
determined by household profiles and their variants. 

 

 

                                                 
21 See Medova et al.(2008) describing experiments with the US iALM  model. 
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