

Measuring uncertainty beyond "Bootstrap"

Sarah MacDonnell, LCP Tim Jordan, MPS Jinnan Tang, Insight Risk Consulting Gráinne McGuire, Taylor Fry

13 November 2015

Beyond "Bootstrap"

Definition of "Bootstrap" - triangle techniques based on chain ladder, such as Mack or ODP bootstrap

13 November 2015

3

4

Beyond "Bootstrap"

13 November 2015

MUQ (Measuring Uncertainty Qualitatively) Stage 1: Bring together work that has done before into one place

13 November 2015

Measuring uncertainty beyond "Bootstrap"

· Interaction with capital models

13 November 2015

Data uncertainty – matrix

· Data problems we often hear...

• One example of data uncertainty matrix currently in use:

			Data quality									
	Data Unceri reserving cl	tainty by ass (count)	Poor	Below average	Average	Above average	Excellent	Total				
By class (number)		Low (<£5m)	2		2	7		11				
(Materiality (Reserve fm)	Mid (£5m to £20m)	1			3	2	6				
	(High (£25m+)			3	12		15				
		Total	3	0	5	22	2	32				

• A more detailed measure? As the level of data quality can be an aggregate effect of many other factors: location, measurability, nature, quantity and judgements.

13 November 2015

Data uncertainty – additional dimensions

• Locating potential data uncertainty as a first step towards a finer measurement, the table below should provide a clearer path.

Stanos	Data uncertainty sources							
Stayes	Operation	System	Real world	Expert judgement				
Target and obtain	Negligence in planning. Missing out certain classes	New classes falling outside system scope.	Little data with new business. Evolving risk changing target scope.	Not seeing the complete picture.				
Store and share	Inconsistent formats with claims input. Loose definition and labelling.	Lack of storage capacity. Lack of security control on access.	Underlying risk evolving ignored.	Having to choose which data should be stored.				
Use	Incorrect data used. Error linking to model.	Poor data output functionality.	Model or method change.	Assumptions replacing data. Selection of data and amount to use.				
Maintain	No documentation on claims data manipulation.	Inflexible for data adjustments. Claims record loss during system upgrade.	Evolving risk/model triggers unplanned development pattern adjustments	Overlook certain data areas, misjudging proportionality.				
Dispose	Disposing incorrect policy records.	Lack of recovery functions.	Evolving risk may shorten data lifetime, accelerate disposure.	Premature disposure of historical claims.				

13 November 2015

Data uncertainty - matrix new view

 The data uncertainty matrix below should help to generate a qualitative overview of where most important uncertainties are, and how these can be further measured in a number of uncertainty dimensions.

Data Uncertainty Matrix	Measurat determinisi poss	bility of uncer m, through pr sibility to igno	Nature of U	Jncertainty	Quali knowl (ba	ficatio ledge ackin	on of base g)	Valu j	e-Ladenne udgement	ess of s	
	Statistical uncertainty	Scenario uncertainty	Recognised ignorance	Knowledge related	Variability related	Strong	Fair	Weak	Large	Medium	Small
Data issues by source											

Source: RIVM/MNP Guidance for uncertainty assessment and communication, October 2003

13 November 2015

13 November 2015

Expert judgement uncertainty – current practice

· Challenges associated with uncertain data necessitate the use of expert judgement.

· Any other factors that would also impact the level of expert judgement uncertainty?

13 November 2015

Expert judgement uncertainty – other factors

Sources: Sitting in judgement – The Actuary, Nov 2013. Getting better judgement – Getting better judgement working party. Expert judgement – Solvency and capital management working party

- · Additional uncertainty which should not outweigh its benefit.
- · A point based approach? Similar to safety rating used for cars and airlines.

13 November 2015

Communication - Language

 GI ROC paper "Quantification and Reporting of Uncertainty for GI Reserving" 2007 suggested standard vocabulary for communicating reserve uncertainty

Indicative percentile	75%	90 %	95 %	99%
Wording 'below' percentile	Fairly likely that the outcome will lie below this estimate	Likely that the outcome will lie below this estimate	Very likely that the outcome will lie below this estimate	Extremely likely that the outcome will lie below this estimate
Wording 'above' percentile	Reasonable chance that the outcome could lie above this estimate	Possible but unlikely that the outcome will lie above this estimate	Possible but very unlikely that the outcome will lie above this estimate	There is a possibility, albeit remote, that the outcome will lie above this estimate

- Weather scientists also use a similar approach The Intergovernmental Panel on Climate Change
- What's the percentages for "fairly likely", "likely" and "very likely" in your own interpretation?
- · Why do you think it is not used more?

13 November 2015

13 November 2015

13

Effectiveness of Methods

- · In selecting a best estimate for reserving it should recognised that a range of methods are available to achieve this
- Looking at the outputs of a range of methods can help measure the model uncertainty (the risk that your chosen model is wrong)
- The Effectiveness of Methods Working Party (2008/2009) listed the following methods and tested them for
 effectiveness

Range of Methods

• Use of an "overview grid" of results can help the Actuary understand the variation in the result based on choosing different methods

All data in £'000	ls				r											
Class 1		Da	ata					Ultima	tes					0	utputs	
									AVCC	AVCC			Selected			
Accident Year	EP	Paid	OS	Incurred	PCL (8)	PCL (12)	ICL (8)	ICL (12)	(inc Nil)	(ex Nil)	PBF	IBF	Ult	IBNR	Reserve	ULR
2005	5,836	3,901	34	3,936	3,550	3,706	3,979	3,901	3,511	4,019	3,550	3,901	3,901	- 34		66.8%
2006	6,128	5,339	143	5,482	4,945	5,162	5,542	5,434	4,890	5,597	4,945	5,434	5,434	- 49	95	88.7%
2007	6,434	4,909	216	5,125	4,895	5,110	5,486	5,379	4,841	5,540	4,895	5,379	5,379	254	470	83.6%
2008	6,756	4,588	659	5,248	4,821	5,033	5,404	5,298	4,768	5,457	4,821	5,298	5,298	50	710	78.4%
2009	7,094	3,873	1,024	4,897	4,421	4,615	4,955	4,858	4,372	5,004	4,421	4,858	4,858	- 39	985	68.5%
2010	7,449	3,692	1,384	5,075	4,651	4,856	5,213	5,111	4,600	5,265	4,651	5,111	5,111	36	1,419	68.6%
2011	7,821	3,483	2,056	5,539	5,151	5,378	5,774	5,661	5,095	5,831	5,409	5,491	5,831	291	2,347	74.5%
2012	8,212	2,864	3,832	6,697	6,174	6,446	6,920	6,785	6,106	6,988	6,483	6,581	6,988	291	4,124	85.1%
2013	9,033	1,363	4,127	5,491	5,134	5,360	5,755	5,642	5,078	5,812	5,391	5,473	5,812	321	4,448	64.3%
2014	9,937	344	3,923	4,267	4,523	4,721	5,069	4,970	4,473	5,119	4,749	4,821	5,119	852	4,775	51.5%
Total	74,702	34.358	17,399	51,757	48,265	50,387	54,100	53,039	47,735	54,630	49,315	52,347	53,731	1,973	19,373	71.9%

- Where wildly different results are being obtained this can indicate your choice of model is important and there may be model risk which should be discussed
- Model risk could also extend to choice of development factor exclusions and selection of tail factors
- · Outputs can also be shown as graphs in order to aid communication

Range of Methods

13 November 2015

Reserve Risk and ERM – qualitative aspects

- · Rating Agencies assess risks qualitatively as well as quantitatively
- · Benchmark reserve risk qualitatively?
- Reserve Risk is also often considered as part of a risk appetite within an ERM framework

13 November 2015

Risk Control Indicators

13 November 2015

True or false?

"A well defined claims management framework should lead to less reserve uncertainty than a poorly defined claims management framework, as the risk of adverse deviation in reserves and/or claims payments for operational reasons should be reduced"

"A reserving team that does not perform stress and scenario testing is less able to understand its reserve risks than a team which does and his hence more likely to assess reserve uncertainty incorrectly"

"A disjointed actuarial function spread across many territories with no central oversight is more likely to lead to an out-turn that deviates from best estimate than an integrated actuarial function with central oversight"

"A reserving function that obtains third-party review of its work is more likely to understand its reserves and risks and hence less likely to assess reserve uncertainty incorrectly"

13 November 2015

Reserve Risk within Risk Appetite

- · Deterioration of reserves is not to exceed b% in any one quarter
- · 1-in-200 deviation not to exceed c% of gross income
- "We have no appetite for significant deviations in earnings driven by reserving deficits"
- Reserves/premiums ratios.... be greater than x%
- Reserving Risk Capital Charge not be greater than x% of....
- Capital at risk from potential claims reserving losses (based on the VaR for the whole reserve portfolio) should not exceed x% (e.g. 20%) of own funds according to SII calculation

Analysis of Company Reports to understand treatment of Reserve Risk

13 November 2015

21

Measuring uncertainty beyond "Bootstrap"

Framework elements

- Data uncertainty
- Expert judgement
- Effectiveness of methods
- Reserve risk appetite

Alternative approaches

• Models for aggregate triangles

- Individual claims reserving
- Interaction with capital models

Alternative modelling approaches

Current situation	 Frequent disconnect between central estimate and uncertainty models Consequences for the uncertainty estimate 	<u> </u>
Consider	 More refined stochastic models for both central and uncertainty estimates Target better alignment between both models 	Ó
Systemic error	 Systemic error (a.k.a. model error) must always be allowed for Qualitative methods useful here 	
13 November 2015		23

13 November 2015

From the "Bootstrap" to the bootstrap

Extensions to aggregate models

- · More refined modelling of triangles
 - E.g. GLMs, log incremental reserving
 - Model effects by accident, development, calendar periods
 - Some specific actuarial packages to do these (e.g. ICRFS but can be done in stats packages like R [free!])
- Frequency/severity modelling
 - E.g. for claims that settle as lump sums
 - Reported claims
 - · Settlement rates
 - · Average payments per settled claim
- Consider granularity level
 - Month/quarter/half-year/annual

13 November 2015

25

Accident year

Individual claim reserving

- · Starting point is claims header and transactional data
- · Framework something like this (see Parodi and others)

	Total reserve					
	IBI	NR	Reported			
	number	size	size			
13 November 2015						

Specifying individual models

13 November 2015

Implications for uncertainty measurement

Practical suggestions (not exhaustive!)

Alternative approaches

- Models for aggregate triangles
- Individual claims reserving
- Interaction with capital models

13 November 2015

Making more use of capital models?

The views expressed in this presentation are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this presentation and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this presentation.

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this presentation be reproduced without the written permission of the IFoA.

13 November 2015