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Calculating and Communicating Tail
Association and the Risk of Extreme Loss

Paul Sweeting and Fotis Fotiou
University of Kent!

Abstract

In this paper we examine two aspects of extreme events: their calculation and their communication. In
relation to calculation, there are two types of extreme events that are considered.

The first is the extent to which extreme events in two or more variables occur together. This can be
gauged by using measures of tail association. Higher levels of tail association are useful for highlighting
the extent to which there are concentrations of risk. We investigate the range of approaches used to
measure tail association and propose a pragmatic alternative, the coefficient of finite tail dependence.

The second type of extreme event arises from combinations of losses from a series of risks that together
result in total losses exceeding a particular level. This is measured using ruin lines or, in higher
dimensions, planes and hyperplanes. The probability of ruin and the economic cost of ruin are
considered here. In this context, it is important to consider what the term “loss” actually means, and
whether it is in relation to a current set of exposures or a potential strategy.

The communication of extreme events is discussed not just in terms of the numbers that can be used,
but in terms of the graphical methods that can be used to aggregate information on a range of risk
combinations. This involves communicating not just the level of risk but also the importance of the risk
considered.

1. Introduction

In this paper we consider the calculation and communication of tail association and the risk of extreme
loss. This means considering a number of issues separately. Calculation is dealt with first, for both
measures tail association and of extreme loss. Communication of the results — in particular, for a large
number of risk combinations — is then dealt with separately

There are several motivations for this paper. Tail association is relevant because it considers the
relationship extent to which extreme values for two or more variables are likely to occur together,
something ignored if only the correlation between data series is used. This is important when
considering the structure and parameterisation of financial models, since focussing on the jointly
extreme observations can help ensure that the structure of a model is sound. However, there are a
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number of ways in which tail association can be measured, and some approaches are better — and easier
to apply — than others.

A separate theme within the area of calculation is the risk of joint loss. When measuring risk for an
investor, joint loss is generally more important than co-movement. There are a number of reasons why
the risk of joint loss is not simply a subset of the risk of extreme co-movement. Whilst jointly extreme
observations can cause a large loss, large losses are not exclusively caused by jointly extreme
observations. In particular, a loss can occur with an extreme value from one variable and an average
value from another, a scenario ignored if the likelihood of jointly extreme variables is the sole
consideration. Joint loss also depends on the marginal distributions of the risks. Whilst this holds for
measures of co-movement based on the linear correlation coefficient, it is not generally true. Finally,
the risk of joint loss depends on the exposure to each of the risks, or how much of each risk is being
taken. This can be thought of as an aspect of the marginal distribution, to the extent that the level of a
risk taken scales the marginal distribution. We therefore also look at measures of joint loss.

However, measuring risk is only part of the issue. The result of this sort of analysis can be a large
amount of quantitative information, and it is important that this information can be communicated
clearly. Therefore, ways of communicating the tail dependency structure are also discussed.

The level of risk faced in respect of two or more risks depends on the way in which these risks interact
and, in some cases, on the way in which the risks behave individually. These two factors can be
described independently.

The individual behaviour of risks is determined by the marginal distribution of those risks, whereas the
way in which they interact is given by the copula between them. Both can be described in a number of
ways. A common distinction is between empirical and parametric distributions and copulas. Empirical
distributions and copulas describe exactly the shape of a distribution or the relationship between two or
more distributions without trying to define a mathematical form behind the distribution or relationship.
Parametric distributions and copulas, on the other hand, provide mathematical functions that define the
shape of the marginal distribution or relationships between variables.

For copulas, there are more choices. If a parametric copula is used, then there are two aspects of the
copula that must be considered in the context of the relationships between variables. The first is the
mathematical form of the copula, whilst the second is the parameter or parameters used. Together,
these describe not just the shape of the relationship between variables, but also the overall strength of
that relationship.

However, the overall strength of the relationship between variables is not the same as the relationship
for variables in extreme circumstances. In particular, the shape of the relationship will determine
whether the overall relationship is weaker or stronger in the joint tails of the distribution.

Many of these measures concentrate on the relationship between two variables. However, it can be as
instructive to consider co-movement among three, four or even more variables. For example, if two
pairs of asset classes, with one asset class being common to each pair, each have a strong degree of co-



movement for extreme observations then this is worth noting; however, if the strength of the
relationship persists when co-movement between the three asset classes is considered then this is even
more important. In particular, it suggests that a common factor is impacting all three asset classes in the
same way rather than two factors affecting the two pairs.

The relationship between variables in the tails, whilst a useful way of measuring jointly extreme events,
does not necessarily reflect the total level of risk faced by an organisation. For example, an organisation
will suffer severe losses if two lines of business suffer large losses, but also if profits in one line are
wiped out by catastrophic losses in another. This situation can be modelled using the concept of ruin
lines. However, it is important to note that here the marginal distributions are as important as the
copulas between the variables.

The relationship between such risks can also be considered in more than two dimensions —
concentrations of risk between three, four or more lines of business, and their joint ability to cause large
losses, could be even more serious than the concentrations between two.

Before investigating these issues in more detail, it is worth describing briefly the nature of copulas, given
their importance in much of the analysis that follows. It is also worth looking at measures of correlation
that describe the overall strength of relationships between two variables.

2. Copulas

As mentioned above, a copula describes the way in which two distributions are linked. If two or more
sets of observations are being considered, this means that a copula does not describe the way in which
these observations are linked, but it describes the relationship between the order of the observations.
Importantly, the copula between two or more sets of observations is independent of the observations’
marginal distribution functions. Consider two random variables, X and Y with the following joint
distribution function:

F(x,y) =Pr(X <x,Y <y) (1)

Each of these variables will also have a marginal distribution function, Fx(x) = Pr(X < x) and
Fy(y) = Pr(Y <y). Ifuand v are defined as u = Fx(x) and v = Fy(y), then F(x,y) can also be
written as:

Fx,y) = C(w,v) (2)

where the function C(u, v) is termed the copula. In other words, the joint distribution function can be
described as a function of the individual distribution functions. Sklar (1959) shows that if Fx(x) and
Fy (y) are continuous, the function C (u, v) is unique.



Copulas can also be defined for more than two variables. For example, if u,, = Fx, (x,) where

n = 1,2,...,N, then the joint distribution function of the random variables X;, X,, ..., Xy can be written
as:

F(x1,%X3, .., Xn) = C(uq, Uy, ..., uy) (3)

where the copula C(uq,uy, ..., uy) is unique if the variables are continuous.

Various types of copula are described in Appendix 1, but it is worth describing here the approach used
to create an empirical copula, since these can be used to calculate some of the measures of tail
association we consider later. Empirical copulas describe exactly the relationship between two or more
samples without trying to define a mathematical form behind the relationship. To calculate an empirical
copula, it is necessary to use the ranks of variables to give measures that are always greater than zero
and less than one. For T pairs of observations, this could mean (for example) having values from
1/(1+T)toT/(1+T),orfrom1/2T to (2T — 1)/2T. In the first case, this means defining the joint
distribution function as:

T
1
F(x,y)=Pr(XSSxandYSSy)=mZI(XthandYtSy) @)
t=1

Where X and Y, are some X; and Y; respectively, and I(X; < x and Y; < y) is an indicator function
which is equal to one if the conditions in the parentheses are met and zero otherwise. The joint
distribution function calculated using the second case can be defined as:

T
1 1
F(x,y) =Pr(Xs <xandY; <y) =¥[21(Xt <xandY; Sy)—E )
t=1

To extend this to higher dimensions, the summations described above should be based on X, ; being
less than or equal to x,, for all n. These are joint distribution functions, but because they depend only
on the order of the observations they can be regarded as copulas.

3. Broad Measures of Association

3.1.0verview
Broad measures of association summarise the strength of relationship between variables into a single
numerical value. This means that a great deal of information about the nature of the relationship can be
lost; however, such measures are useful indicators of the overall level of co-movement. This is
important, as it indicates the measures that might usefully be adapted to describe tail association.
Measures of association are usually calculated using only two variables — that is, they describe the broad
relationship between pairs of variables. However, some measures have been constructed to quantify
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the strength of relationship between three or more variables. This can be helpful in summarising the
broad relationship between a larger number of variables. In particular, it can indicate whether a group
of variables is excessively affected by a single underlying factor.

There are in fact a number of ways of calculating such measures and the main ones are outlined below.
However, before doing this it is worth considering what constitutes a “good” measure of association.

3.2.Concordance
There is no definitive description of what makes one measure of association better than another;
however, there are a number of features that it might be desirable for a measure of association to have.
One set of criteria is collectively referred to as concordance. Concordance can be thought of as the
extent to which the orders of two or more sets of variables are related to each other. Scarsini (1984)
proposes a number of features that a measure of association, My y, should have to be regarded as a
measure of concordance between two variables X and Y. These are:

e completeness of domain: My , must be defined for all values of X and Y, with X and Y being
continuous — this is important, as it ensures that a measure of association can be calculated for
any value of X and Y, and will not produce an error;

e symmetry: My y = My x or in other words switching X and ¥ should not affect the value of the
measure — this is a “common sense” requirement;

e coherence: if C(u,v) = C(m,n) then My y > Mg where m,n,u and v are equal to
F(s),F(t), F(x) and F(y) respectively, or in other words if the joint cumulative probability is
higher, then the measure of association should also be higher — this is to ensure that if the
cumulative probability for one pair of observations is higher than for another, this is reflected in
the measure of association for that pair of observations;

e unitrange: —1 < My, < 1, and the extreme values in this range should be feasible — this is
simply for convenience, in that it is easier to interpret a measure that is scaled such that the
extremes are —1 and 1. In particular, it makes it easier to compare measures of association for
different sets of data;

e Independence: if X and Y are independent, then My , = 0 — this ensures that independence
between any two sets of data produces the same result for a given measure of association, and
a value of zero is the most intuitively sensible result in such a situation;

e Consistency: if X = —Z, then My y = —M;y, so reversing the signs of one variable should simply
reverse the sign of the measure — this ensures that the relative strength of relationships for is
consistent between sets of variables whether the direction of this relationship is positive or
negative; and

e Convergence: X{,X,, ..., Xr and Y3, Y,, ..., Y7 are sequences of T observations with the joint
distribution function FT (x,y) and the copula CT (u, v), and if CT (u, v) tends to C(u,v) as T
tends to infinity, then My ,, must tend to My y — this ensures that a measure calculated from
discrete data tends to the measure calculated from a continuous distribution as the number of
discrete observations increases.



Together, this list of features also implies that:

e if g(X) and h(Y) are monotonic transformations of X and Y, it is also true that Myxy n(y) =
My y — in other words, only the order of observations matters; and

e if X and Y are co-monotonic (when X is higher then Y is always higher), then My , = 1; if they
are counter-monotonic (when X is higher then Y is always lower), then My , = —1 —this
describes the natural limits defined above.

It is more difficult to come up with corresponding criteria for measures looking at more than two
dimensions, but Ubeda Flores (2005), Dolati and Ubeda Flores (2006), Behboodian et al (2007) and
Taylor (2007) all propose multivariate extensions of the above list.

3.3.Pearson’srho
As hinted at above, there are a range of measures of association, not all of which can be defined as
measures of concordance as described in section 3.2. The first of these is Pearson’s product-moment
correlation coefficient, also known as Pearson’s rho (p) and the linear correlation coefficient. This is the
most commonly used measure of correlation, and it is defined as:

cov(X,Y)

var(X)var(Y) (6)

The linear correlation coefficient can take any value between minus one and one, with p = —1
indicating perfect negative correlation, p = 1 indicating perfect positive correlation and p = 0 indicating
that the variables are uncorrelated.

The sample version of Pearson’s rho, r, can be calculated by applying (6) to variances and covariances
calculated from a sample of data. The linear correlation coefficient is, therefore, easy to calculate
either from a sample of data or when given population measures. It is also the natural measure of
dependence in jointly elliptical distributions such as the normal and t-distributions, where the level of
dependence is essentially defined by the linear correlation coefficient. However, it has a number of
limitations.

First, the linear correlation coefficient between two variables does not even exist if one variable has
infinite variance, as is the case with some fat-tailed distributions. Furthermore, a linear correlation of
zero does not necessarily imply that two variables are independent and whilst the linear correlation
coefficient does not change under linear transformations of the underlying variables, non-linear
monotonic transformations — such as taking the logarithm of one variable — will change the linear
correlation coefficient. This means that, under Scarsini’s axioms, it is not a measure of concordance.
The issue underlying most of these problems is that the linear correlation coefficient depends on the
marginal distributions of the variables, not just their copula. Indeed, the linear correlation coefficient
only truly describes the relationship between variables if they are jointly elliptical.



3.4.Spearman’s rho
A way of dealing with the issues caused by correlation depending on absolute values is to use measures
of rank correlation instead. These depend solely on the position — or rank — of the observations and not
on their values. Two of the most commonly used rank correlation coefficients are Spearman’s rho (ps)
and Kendall’s tau (1), both of which conform with all of Scarsini’s axioms.

The standard version of Spearman’s rho is a bivariate measure. It is defined as the linear correlation
coefficient of the ranks of the observations. If Ry, and Ry, are the ranks of the tth observations of X
and Y respectively where t = 1,2, ..., T, then it can be shown that the sample version of Spearman’s rho,
Ds, can be calculated as:

Y (Rye — RY,t)z

Ps=1-6"=pqz 7y )

The population version is given in terms of copulas. The covariance is given and, since the variance of
the uniform distribution is one-twelfth and the linear correlation coefficient is the covariance divided by
the standard deviation of each of the two variables, the following definition can be derived:

1,1
pPs = 12f f [C(u,v) —uv]du dv
0 Jo

1 1
_ 12]0 foc(u,v)du dv — 3 (8)

As well as being defined as the linear correlation coefficient of the ranks, Spearman’s rho is also closely
linked to the linear correlation coefficient for some distributions. Hult and Lindskog (2002) show that
for the normal distribution (but not other elliptical distributions) the two measures are related as
follows:

6 p
Ps = Earcslni (9)

There also exist a number of multivariate versions of Spearman’s rho, all of which reduce to (8) for two
dimensions. These give a single value that measures the strength of the relationship between any
number of variables. For example, Wolff (1980) proposes:

N+1
gt o [ 1]
[0,1]N

2N —(N+1) (10)

whilst Ruymgaart and van Zuijlen (1978) propose:



N+1
Ps =3 —(N+1){2Nf01]wl_[udc(u)_1} (11)

In each case N is the number of dimensions, u represents u4, u,, ..., uy, a vector of length N and the
term [0,1]Ymeans that N integrals (or a single N-dimensional integral) must be evaluated from the
range zero to one. Unfortunately, it is not so straightforward to derive sample versions of these two
population formulas, meaning that any measure based on simulated or observed data needs to be
evaluated numerically — in other words, by simulating a large number of observations, calculating the
shape of the copula distribution function and evaluating one of the formulas above.

3.5.Kendall’s tau
Kendall’s tau can be calculated in two dimensions from the number of concordant and discordant pairs
in a set of observations. If (X;,Y;) and (X;,Y,) are two pairs of observations, then the pairs are
concordant if the signs of X; — X, and Y; — Y, are the same (that is, both positive or both negative);
otherwise the two pairs are discordant. The formula for this sample version of calculating Kendall’s tau
is:

2(T, — Ty)
T(T — 1) (12)

A

T =

where T, and T,; are the numbers of concordant and discordant pairs respectively, with T, + T; = T. As
with Spearman’s rho, the population version of Kendall’s tau is expressed in terms of copulas. In two
dimensions, the expression is:

1 1
= 4f0 fo C(u, v)dC(w,v) — 1 (13)

where c(...) is the copula density function whose relationship with the copula is analogous to that of a
probability density function to a probability distribution function. This means that such an expression is
difficult to evaluate using an empirical copula, since such functions “jump” each time an observation is
added, making it difficult to determine the density. The expression in (13) represents the probability of
concordance less the probability of discordance. Hult and Lindskog (2002) also show that, for an
elliptical copula such as the Gaussian or t:

2
T= E arcsinp (14)

A multivariate version of Kendall’s tau is proposed by Joe (1990):

_ 1 N _
= S 1 {2 f[o’l]NC(u)dC(u) 1} (15)

T



When N = 2 this reduces to (13). As with the multivariate versions of Spearman’s rho, there is no
obvious expression for a multivariate sample statistic, suggesting that a numerical approach must be
used.

4. Parametric and Non-Parametric Approaches

At this point, it is worth making an important distinction between parametric and non-parametric
approaches in relation to measures of association, a distinction which is equally valid when considering
measures of extreme co-movement.

The parametric approach is used if the measure of association is defined by the parameters of the joint
distribution or copula. For example, if two variables are assumed to have a joint normal distribution
with a linear correlation of 0.7, then no simulations are needed to determine that the correlation
between the observations — given enough simulations — will be 0.7. Similarly, for a Gumbel copula with
a parameter value of 4, Kendall’s tau will be 0.75 and no further calculations are needed.

However, if the relationship between two variables is more complex — for example, if both are outputs
from some econometric model — then the only way to measure the correlation is to carry out
simulations and to determine the observed level of correlation. In this case, it will often be impossible
to determine the “true” underlying level of association. This is the non-parametric approach, and it
means that the statistic must be calculated using either a formula for the sample version of the statistic
or, particularly for multivariate statistics, using a numerical approximation to evaluate an integral.
Numerical and other approaches are also used to calculate some of the statistics of extreme co-
movement described below.

5. Extreme Co-Movement

5.1.0verview
The above measures of correlation give an indication of the overall level of association between two
variables. However, the way in which the strength of association varies across the range of the variables
is determined by the type of copula joining these variables. This means that it is possible for two pairs
of variables to have the same overall level of association (as measured by some correlation coefficient),
but for the correlation in the tails to be very different. This is shown in Figure 1. The parameters for
each of these Archimedean copulas is consistent with a Kendall’s tau of 0.75, implying that the broad
level of association is the same for each copula. However, the association for particular ranges clearly
differs greatly. For this reason, it is important to consider measures of extreme co-movement, of which
there are several.

Figure 1: Copula Density Functions for Three Archimedean Copulas Consistent with Kendall’s tau = 0.75



Gumbel (a =4) Frank (a = 14) Clayton (ax = 6)

Source: Authors

5.2.Conditional Correlation Coefficients
One commonly-used approach to investigating the strength of the relationship in the tails of a
distribution is to use conditional correlation. This calculates some correlation coefficient for a subset of
the full data. It mitigates the problem of copulas on routes other than the main diagonal by including a
finite portion of the distribution rather than relying on calculation at the limit.

One potential complication with conditional correlations is that the boundary at which the correlations
are calculated is subjective, although it should be straightforward to agree a limited number of
“common” boundary levels, in the same way that widely-used limits are used for tests of statistical
significance.

A number of measures have been calculated. Some of the expressions are quite involved, but they all
aim to create mathematical representations of the principles of conditional correlation coefficients
described above. Malevergne and Sornette (2006) start by proposing a conditional correlation
coefficient based on the linear correlation coefficient. This involves using K, some subset of Y:

) cov(X,Y|YeK)
p =
Jvar(XlYeK)var(YlYeK) (16)

If X and Y have a joint normal distribution with a linear correlation coefficient p, then Boyer et al (1997)
show that:

p
pE =

var(Y)
Jpz + (1-pH var(Y|YeK) (17)

Of more interest is the case where K is not just a subset of Y, but is equivalent to the values of Y above
or below some level, k. For example, if the condition YeK is equivalent to Y > k and if for simplicity
var(Y) = 1, then the upper conditional correlation coefficient pU(k) is given by:

Ul — p
1—p?
var(Y|(Y > k))

p

p?+
(18)
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Because the normal distribution is symmetrical, a similar formula can be defined for Y < k. Malevergne

and Sornette show that when k is large the following is a good approximation for pU("):

pV® ~ lim

p
k—oo I /1 — p2 (19)
Note that since k is on the denominator of the right hand side of (19), the conditional correlation

coefficient tends to zero for very large values of k.

For the t distribution, Malevergne and Sornette show that the conditional correlation coefficient p®) is
given by:

p®) = P
2 — n2y2
jpz L ELEQX|Y) = p?y2|yek}

var(Y|(YeK)) (20)

Looking at the more interesting case where Y > k, the exact expression for the coefficient pU(k) is more
involved for the t distribution. However, Malevergne and Sornette show that if k is large, the following
is a good approximation for a bivariate t distribution with y degrees of freedom:

p
jpz ro-n [ Ea-m o1

Note that k does not appear in the right hand side of this equation — in other words, as k tends to
infinity, the conditional correlation coefficient tends to the constant on the right hand side of (21).

pV) ~ lim

k-

If the conditions are imposed on both X and Y, for example X > k and Y > k, then the result is the
(upper) tail linear correlation coefficient. For large k, Malevergne and Sornette show that for the
bivariate normal distribution the following is true:

U(kk) = lim 1+p

p k—»oopm (22)

Graphical representations of conditioningon YeK,Y < k and X,Y < k are shown in Figure 2, with the
shaded regions indicating which observations are included.

Figure 2: Graphical representations of conditioningon YeK (A4),Y < k (B)and X,Y < k (C)
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Source: Authors

As noted earlier, one issue with the linear correlation coefficient is that it is only an accurate measure of
the level of association between two variables if they are jointly elliptical. This remains true for the tail
linear correlation coefficient. As such, this measure does not comply with Scarsini’s axioms of
concordance. Of broader interest are tail rank correlation coefficients, which do.

Malevergne and Sornette note that the conditional equivalent of Spearman’s rho can be calculated in
the same way as the full-sample version, by replacing the observations in the calculation of the
conditional linear correlation coefficient with their ranks.

Schmid and Schmidt (2007) show that the integral form of Spearman’s rho in (10) can be adapted to give
a conditional version of Spearman’s rho, the lower tail version of Spearman’s rho for 0 < k < 1 being
defined in N dimensions as:

k2\"
LN _ f[O,k]N C(u)du — (7>
pS B kN+1 k2 N
o (7) (23)

Restricting the number of dimensions to two gives the following expression:

fok fok C(u,v)du dv — (%2)2
k3 k2\?
7-(7) 22

It is also possible to define this tail correlation in terms of conditional copulas. Charpentier (2003)
defines the lower conditional copula, C*(u, v), as:

L(kk) _
s =

Cun(Frt(w), ()
Cup(u*, v*) (25)

C*(u,v) =

where:
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Cuw (u,v")
Cyp(u*,v*)

Cu,v (u*' 17)

Futw) = Couw (U, 0") (26)

and E,(v) =

and the values at which the functions are evaluated are suchthat0 < u < u*and 0 < v < v*. The
upper conditional copula, C*(u, v), is defined in terms of survival copulas as:

= _ C_u,v(l - Fu_l(u)r 1- Fv_l(v))
B Cup(1—ur,1—v*) (27)

where:

Cup(1—u,1—v%)
Cup(1—u,1—v*)

Copy(1—u*1—-v)

Fw) = Cun(l— w1 = v (28)

and E,(w) =

Charpentier then shows that the bivariate lower tail version of Spearman’s rho is given by:

1 ,1
k.k *
pideh) = 12f0 fo C*(u, v)dudv — 3 (29)

where u* = v* = k. This approach can be extended to higher dimensions using (12) or (13).

Schmid and Schmidt (2007) use the expression in (52) to define the following measure of (lower) tail

dependence:
N . L(k)N . N + 1f
= lim = lim —— C(u)du
PL k—>0‘*‘pS k-0t gN+1 [0,k]N ( ) (30)
For two dimensions, this simplifies to:
3 k k
2 1s L(kk) _ . =~
pi = I}Lr(r)1+p5 = I}Lr(r]1+ k3ffc(u,v)du dv
00 (31)

This alternative measure of tail dependence has the feature that it considers the asymptotic direction of
the relationship in the tail, not just the weight of observations. However, in terms of extreme risk it is
this weight which is more important.

Venter (2002) defines a bivariate cumulative tau, which is the lower tail version of Kendall’s tau, in terms
of integrals, as:

13



4 fok fok C(u,v)dC(u, v)
Cuw(k k)2
4 fok fok C(u,v)c(u, v)du dv
Cup(k k)2 (32)

TL(kk) —

This suggests that a multivariate lower tail version of Kendall’s tau could be calculated as:

1 { 2" f C(w)dC(w) 1}
T= “ e
201 — 1 {Cyup OV Jig v

N
= _1 2 f Cw)c(u)du — 1
20N=1) — 1 (Coup (DN Jjg gy (33)

In all of the cases involving integrals these can be replaced with an empirical copula and evaluated
numerically, although the difficulties of evaluation copula densities empirically have already been noted.
However, a simpler approach to calculating the tail equivalent of Spearman’s rho or Kendall’s tau is
simply to calculate the statistic using only the observations in the tail.

5.3.Adjusting Tail Correlations for the Proportion of Observations in the

Tails

As mentioned above, conditional correlation coefficients report on the strength of relationships in the
tails. However, they do not necessarily report on the importance of such relationships. For example,
strong positive relationships in the lower left- and upper right-hand corners are of little importance if a
far greater proportion of the distribution is found in the upper left- and lower right-hand corners. One
way of characterising the extent to which this occurs is “arachnitude”. This measure, proposed by Shaw
et al (2010), seeks to measure the extent to which extreme observations are found off the diagonal line
marking the main underlying dependency. For example, if a Q-Q (quantile-quantile) plot is drawn of set
of observations for two variables with a strong positive correlation then most observations would be
expected close to a diagonal line running from the bottom left to the top right of the chart. In particular,
extreme observations would be expected in the bottom left and top right corners. However, in some
cases a significant proportion of observations might also be seen in the top left and bottom right
corners. This could indicate that an extreme value for one variable was likely to result in an extreme
value for the other variable, but that the direction of this dependence was variable. Such relationships
are seen in t-distributions with low degrees of freedom. One way to measure the degree to which this is
true is to calculate the arachnitude between two variables. If, as described earlier, Spearman’s rho can
be calculated as the linear correlation coefficient between Ry and Ry, then the arachnitude can be
calculated as the linear correlation between (2Ry — 1)? and (2R, — 1)2.
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This is similar in concept to the measure known as Blomqyvist’s beta, Sy. This is defined as the the
number of observations in the top left and bottom right quadrants (N;and N3) less those in the top right
and the bottom left quadrants (N, and N,), taken as a proportion of all observations:

_(N;+N3)— (N2 +N,)  (Ny+N3)— (N +Ny)
N N; + N, + N3 + N, N (34)

This issue is important because it implies that even if the relationship between two variables measured
in the bottom left hand corner is strong, this is not necessarily a high risk if only a low proportion of the
distribution is found in this corner relative to the top left and bottom right corners.

This suggests that measures of tail correlation should be modified to take this factor into account. One
way of doing this would be to weight the measure of tail association calculated in the bottom left corner
by the proportion C/(A + B + C), where A, B and C are the volumes of the distribution covering the
areas shown in Figure 3.
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Figure 3: Areas of Interest for Measures of Tail Association

Source: Authors

An analogous measure is needed for upper tail association, in case losses are being treated as positive
rather than negative values. This is important for asymmetric copulas such as the Gumbel or Clayton
forms. Both lower and upper measures conform with Scarsini’s axioms.

5.4.Coefficient of Tail Dependence
Weighting a coefficient of tail correlation gives one way of allowing for the proportion of a joint
distribution present in the tails. However, a more direct approach is to simply measure such a
proportion. This is, in fact, a more relevant measure: the direction of a tail relationship is far less
important than the likelihood of joint observations being present in the tail.

One of the most fundamental measures of such a probability is the coefficient of tail dependence, A.
This is more commonly related to either the upper (right) or lower (left) tail such that extreme positive
and extreme negative observations are measured separately. The two measures used are the
coefficient of upper tail dependence, 1;; and the coefficient of lower tail dependence, 1;. These are
most commonly defined as:

_ C(kk)
Ay = lim — (35)

where 0 < k < 1, and:
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 CA-k1-k) 1-2k+cC(kk)
Ay = lim —————= 1—k (36)

as described by Sibuya (1960) and others. The limit in (35) means zero is approached from above, whilst
the limit in (36) means one is approached from below. The copula C(...) in (36) is a survival copula,
measuring the joint probability of survival beyond the quantiles in parentheses. In both cases, if the
result is between zero and one then tail dependence exists whilst if the result is zero there is no tail
dependence.

It is helpful to consider the rationale behind this statistic. The copula C(k, k) gives the proportion of
observations in the bottom left corner of the unit square with upper bounds of F(x) = k and F(y) = k.
If two variables are perfectly correlated, then the proportion of observations falling within these bounds
will be k. This is the maximum value of the copula. Therefore, dividing the copula by k gives a level of
tail association that falls between zero and one. Taking k to the limit of zero gives the level of
association at the limit.

The coefficient of tail dependence, and related statistics, do not conform with Scarsini’s axioms — but
they are not meant to. Those axioms are intended to give information on the strength of relationships

n o«

which can be “positive”, “neutra

I”

and “negative”; however, tail dependence (as contrasted with tail
association) is measured on a scale ranging from “absent” to “present”, meaning that the scale should
run from zero to one, rather than minus one to plus one.

As inferred above, there are two approaches that can be used to evaluate the coefficients of upper and
lower tail dependence: parametric and non-parametric. If the copula is specified parametrically, the
coefficients can often be calculated analytically. Alternatively, if only samples are available — either from
historical data or from stochastic simulation — then the coefficients can be estimated non-
parametrically.

A number of results have been derived for the coefficients of tail dependence for various copulas.
Embrechts et al (2002) show that for the t copula the coefficients of lower and upper tail dependence
(which are identical here) are equal to:

+DA-p)

ALleZZt]/ - 1+p

(37)

where t,, is the cumulative distribution function for the t-distribution with y degrees of freedom. Hult
and Lindskog (2002) generalise this result for all elliptical copulas. The expression in (37) also implies
that for the Gaussian copula — which is given as y tends to infinity — the coefficients of upper and lower
tail dependence are zero. Unfortunately, this means that the coefficients of tail dependence cannot be
used to determine the risk of extreme co-movement if variables are assumed to have a joint normal
distribution. More accurately, it is impossible to discriminate between the levels of risk for variables
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with high and low correlations. In these cases risks may still exist, even if the coefficients of tail
dependence are zero.

McNeil et al (2005) also give the coefficients of lower and upper tail dependence for a range of
Archimedean copulas. These are given with the results for the Gaussian and t copulas in Table 1.

Table 1: Coefficients of Upper and Lower Tail Dependence

Copula ‘ AL Ay

Gaussian 0 0

¢ v+ DA -p) (v + DA -p)
24\ = /T 26\ = /T

p p
Gumbel 2 _l/a 0
Clayton 0 {2—1/“ if a>0
0 if a<0
Fréchet 0 0
Generalised Clayton 2 —21/B 2-1/(ap)

Source: McNeil et al (2005); the forms of these copulas are also given in McNeil et al

5.5.Estimating the Coefficient of Tail Dependence
It is impossible to calculate exactly the coefficients of tail dependence using non-parametric approaches,
since it is by definition a limiting measure. However, it is possible to estimate the coefficients of tail
dependence. Fischer and Dorflinger (2006) propose six non-parametric estimators of 1, denoted /Tg],
based on empirical copulas C (k, k), such as those calculated from observations or simulated values
using (4) or (5) . They first order the variables defining a series of T bivariate observations from (X;,Y;)
to (X7, Yr) such that:

X1 = min(X]_, ...,XT) <--< XT = maX(Xl, ...,XT) (38)

The various measures are then defined as follows:

Cun((1—t/T, 1] x (1 — /T, 1])
1—(1—t/T) (39)

P

InC,,(1 —-t/T,1—t/T)
Bl In(1 — t/T) (40)

=2

Fischer and Dérflinger state that using a value of t ~ /T seems to be appropriate in these two cases.

The third estimate, 25], is the ordinary least squares estimator of:

Cu_,,<(1—;,1]x(1—;,1]>= AU%+ & )

18




where s = 1, ..., t, whilst /1[;,” corresponds to the @ which minimises:

t
F)= Yo (1315~ 151 -3)
s=1

2

(42)
where € (u, v) = amin(u, v) + (1 — @)uv . The fifth estimate, /1%,5] results from a least-squares
estimation of the equation:

s s
anw(l—T,l—?) 2- Auﬂn()—F% (43)
where again s = 1, ..., t, whilst:
t 2
R ] s s 5y271
/156] = argmin;[o 1] Z [Cu,v (1 -7 1- ?) - (1 - ?) ]
s=1 (44)

Fischer and Dorflinger also show that /153] = /'Alg’].

Frahm et al (2005) also propose an additional non-parametric estimator for the coefficient of upper tail

\

1
M=2-2 1 |
‘”‘"VZ“\ ———

dependence:

y,<| =

ln

(45)

where U and I are random observations sampled from the copula C(...). This final measure requires
the assumption that the copula approximates an extreme value copula, discussed later.

Schmidt and Stadtmdiller (2006) start by defining a lower tail copula as:

) x Yy
Moy = Jim o€ (7.7) (46)
and an upper tail copula as:
, =Xy
AyCy) = lim ¢ (3.7) (47)

The lower tail dependence coefficient can then be defined as:
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_ 11
A= = i e (7.7) (48)

and the upper tail dependence coefficient as:

11
Ay = Ay(L1) = lim ¢C (?'?) (49)

Both coefficients can be estimated by estimating empirically the tail copulas A; and Ay. For example, if

®) (f)
R Xn and RY,n

one empirical estimator of Ay (x, y) is:

are the ranks of the tth observations of X and Y respectively where t = 1,2, ..., k, then

Q| =

Ay =-C(77) (50)

where a is an integer between one and k is chosen by the user and I is an indicator function which is
equal to one if the conditions in the parentheses are true and zero otherwise. This then leads to the
following estimator:

A = Am(1,1) (51)

For /T[j] to /156] it is often worth adjusting the range of data covered such that s=j, ...,t wherej > 1
rather than 1, ..., t. This is because, since the Copulas for the highest and lowest quantiles are
calculated using so few observations that they can be volatile. This can be seen in Figure 4, in relation to
the coefficient of lower tail dependence.

Figure 4: Non-Parametric Calculation of the Coefficient of Lower Tail Dependence
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Figure 4 shows that it is straightforward to adapt the techniques described above to estimate the

coefficient of lower tail dependence. Consider, for example, /T[L3], the lower tail equivalent of 25].
Values of C(k, k) can be calculated using (5) based on daily UK and US equity returns for the ten years to
7 December 2010. After excluding the first ten values of k where the low number of observations gives

unreliable results, we have fitted a line to the next 90 observations. This gives a result of /T[L3] = 0.27.

Frahm et al (2005) note a number of pitfalls with both the parametric and non-parametric approaches
to calculating coefficients of tail dependence. They note that the use of parametric margins instead of
empirical margins can lead to model uncertainty and, ultimately, an incorrect interpretation of the
dependence structure. They state that failing to test or even ignoring the quality of the marginal fit can
cause the underlying dependence structure to be dramatically misinterpreted. The issues is even more
serious in the tails, and Frahm et al note that fitting a parametric model to tail dependence functions is
not robust since models can be affected by a small number of unusual or incorrect data values.

In relation to parametric calculations, Frahm et al note that it is difficult to conclude whether two
variables are tail dependent or not from a finite number of observations. They point out that one can
always specify thin-tailed distributions which produce sample observations suggesting heavy-tails even
for large samples, and conversely that one may create samples which seem to be tail independent but
are realisations of a tail dependent distribution. They conclude that non-parametric estimation a tail
dependence function is very inefficient due to the volume of data required.

Kippelberg et al (2008) seek to solve these issues by using a semi-parametric approach. They do this by
fitting an elliptical copula only to the tails of the joint distribution. They calculate Kendall’s tau from the
data and, using (16), derive the linear correlation coefficient for the copula. The shape of the joint tail is
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determined by a shape parameter, which is most recognisable as the number of degrees of freedom for
a t copula. This allows the coefficients of upper and lower tail dependence to be determined.

Although all of the analysis so far has considered the coefficient of tail dependence as a bivariate
measure, there is no theoretical reason that it cannot be extended into higher dimensions. For an N-
dimensional copula the maximum number of observations in an N-dimensional hypercube starting at
the origin with sides length k is still k, so the following formula can be derived:

1 = i Cy(k)
NAL = L (52)
and:
Ay = lim Cuk)
N U_k—>1_1—k (53)

where k represents1 — k,1 -k, ...,1 — k.

However, one practical issue is that any problems of estimation are magnified as the number of
dimensions increases — the so-called “curse of dimensionality”. Simply stated, this means that as the
number of dimensions or variables increases, the proportion of observations in the joint tail of the
distribution falls exponentially, meaning that there fewer and fewer observations available for
parameterisation.

5.6.Extreme Value Copulas
An extension of the semi-parametric approach used by Kiippelberg et al (2008) to calculate the
coefficient of tail dependence is to use extreme value theory (EVT) to model the shape of the tail for
extreme values. EVT requires an assumption that one is so far into the tail of a distribution that
simplifying assumptions can be made about its shape. In particular, it allows the use of distribution
functions that can be evaluated exactly rather than numerically — in other words, the functions have a
simple closed form rather than being given in terms of the integral of a density function that can be
evaluated only approximately. Some information on extreme value theory is given in Appendix 2.

Juri and Withrich (2003) use the Generalised Pareto Distribution to fit extreme value copulas, using the
results to allow them to determine coefficients of tail dependence. Picklands (1981) also uses extreme
value theory to create a bivariate Fréchet-type GEV distribution by linking two marginal Fréchet-type
GEV distributions using a function known as Pickand’s dependence function, A(w). This has the
following form:

C(u,v) = exp [A (lilan) In uv] (54)
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Frahm et al (2005) show that this function can be used to derive the coefficient of upper tail
dependence:

Ay =2-24 (%) (55)

Khoudraji (1995) describes Kendall’s tau and Spearman’s rho in terms of integrals based on Pickand'’s
dependence function, but there are a number of non-parametric approaches to estimating the function
itself including versions by Pickands (1981), Deheuvels (1991) and Capéraa et al (1997).

5.7.Stable Tail Dependence Function
An alternative measure of tail dependence is given by the stable tail dependence function, which
combines the coefficient of tail dependence with the values of the marginal distribution functions to
give a value that can be calculated over a wider range of values. In particular, if the joint tail of two
variables follows a power law distribution, for example if they are linked by a t copula, then Embrechts
et al (2002) show that a limiting function known as the stable tail dependence function exists. Haug et
al (2009) define this measure for the upper tail only. If this measure is [;; (u, v), then it can be defined
as:

Iy, v) =u+v—Ayuv) (56)

where Ay (u, v) is the estimate of Ay calculated at the quantiles u and v. Haug et al note that for an
elliptical distribution Ay = A;. If ly(w,v) = [, (1 — u, 1 — v), then this implies that:

Lwv)=2—-@w+v)—A,(uv) (57)

If the joint tail of two variables follows a power law distribution, then both [, (u, v) and I, (u, v) should
remain stable in the tails over a range of values. As a result, an average value of I (u, v) or I;;(u, v)
over a range of values of u and v in the tail could be used as a measure of tail dependence.

5.8.Malevergne-Sornette Coefficient of Tail Dependence
As Embrechts et al (2003) note, the Gaussian copula — and, by extension, the bivariate Gaussian
distribution — has no upper or lower tail dependence for any correlation less than one. This is unhelpful.
Whilst there may be no relationship between two variables with such a copula at the limit, there will still
clearly be a significant degree of co-movement in extreme scenarios if p is high. However, A, will be the
same whether p = 0.1 or p = 0.9: it will be zero. Some measure that distinguishes between these
different values of p would be preferable.

Malevergne and Sornette (2006) introduce an alternative measure of upper tail dependence, /TU, which
they define as:
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P 21n(1 — k) oy 21n(1 - k) .
U M N[ = 2k + Gy (o B)] - ko InCuy(1— K 1— k) (58)

This measure is based on a statistic, n, defined by Coles et al (1999). In particular, A = 2n — 1. The
expression in (9) also suggests that an analogue for lower tail dependence can be defined as:
- 2Ink

= lim —————1
A= lim, Can(k, k) (59)

Malevergne and Sornette show that if 1;; = 0, then 1, will take a value between minus one and one.
This appears to be a useful advance; however, they also show that if if 1; > 0, then 1; = 1. This means
that whilst their measure is useful for discriminating between levels of tail dependence for Gaussian
copulas (where they show that ZU = p), it cannot do the same for t copulas. In both cases, this is unlike
the “traditional” coefficient of tail dependence.

5.9.Coefficient of Finite Tail Dependence
Even ignoring the lack of discrimination between Gaussian copulas, the coefficient of tail dependence is
not without problems. The issues with both parametric and non-parametric estimation have been
discussed. However, as a limiting measure it actually concentrates on infinitely extreme co-movement.
This is unhelpful when finite co-movement can cause enough problems.

The stable tail dependence function helps, but is only valid for power law distributions — that is, those
with fat tails. This means once more that the t copula is included, but the Gaussian copula is excluded.

One potential solution is to use a finite alternative. The coefficient of tail dependence is a measure
calculated at the limit. However, it is possible to calculate an identical measure for values of k between
zero and one. Such a statistic — which we term the coefficient of finite tail dependence — also has a
lower version:

s00 _ Ckk)
L k (60)

and an upper version:

Z(k)_5(1—k,1—k)_1—2k+C(k,k)
v 1—k a 1-k (61)

It can be applied over any number of dimensions for the lower version:

FONIC))
N*L k (62)
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and the upper version:

C(k)

(k) _
NAU - 1—k (63)

Such a measure gives a non-zero answer for variables linked by both Gaussian and t copulas, allowing
discrimination between a wider range of linkages. The values for selected parameterisations of
Gaussian and t copulas and for various values of k are given in Appendix 3. These were calculated using
the statistical package R, and the code used is given in Appendix 4.

It is simple to evaluate the coefficients of finite tail dependence for Archimedean copulas. For example,
consider the bivariate Gumbel copula discussed earlier with the single parameter a equal to 2. For
k = 0.05 the coefficient of lower tail dependence can be calculated simply as:

€(0.05,0.05)

1(0.05) —
2L 0.05 (64)

It is also easy to evaluate this measure from simulated data — for the coefficient of finite lower tail
dependence, simply calculate the empirical copula using the kth quantile of each marginal distribution
and divide the result by k.

As with other measures that are not calculated at the limit, such as the tail versions of Spearman’s rho,
the choice of k is subjective; however, if finding a statistic to give a sensible comparison requires the use
of professional judgement, then this is a price worth paying. As such, this is the measure we
recommend for measuring the extent to which pairs or groups of variables are linked at the extremes.

6. Extreme Losses

6.1.0verview
So far, the analysis has concentrated on the likelihood of jointly extreme observations from two or more
variables. The measures discussed give useful insights into the concentrations of risk that can occur
between different variables. However, in many cases financial institutions are more concerned when
the impact of two or more variables causes losses exceeds a particular level. This could be when all
variables showed moderately bad losses, or it could be when the losses from several variables were
small but the losses from one variable were very bad. This suggests that for financial firms it is also
important to consider risk of extreme losses arising from two or more variables as well as the degree to
which extreme co-movement exists.

One way of assessing the risk of extreme loss is through the concept of ruin lines, discussed below.
However, this concept raises the question of what is meant by loss, in particular whether it relates to an
existing set of exposures or a potential future trade-off. The definition of loss is covered in the following
sub-section.
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6.2.Ruin Lines
A starting point for this type of measure is the ruin line. This is the line covering the combination of
results from various lines of business or risk types that will result in a loss beyond a certain level.
Consider, for example, a profit defined as P where a larger negative value of P means that the profit is
smaller or the loss is greater. If there are two lines of business whose profits are X and Y, then the ruin
line is defined as:

P=X+Y (65)

If X +Y < P,where P is negative, then the loss is regarded as excessive. This too can be extended to
higher dimensions, giving a ruin plane or even a ruin hyperplane defined for N profits, X;, X5, ..., Xy as:

P:X1 +X2+"'+XN (66)

This loss can be defined as an absolute amount or as some proportion; it is not, though, defined in
guantile terms. This means that when considering the distribution of losses beyond the ruin line, the
marginal distributions for the variables involved matter as much as the copula between those variables.
As a result, ruin line analysis is most easily carried out in terms of the observations themselves (x, y)
rather than their distribution functions (F (x), F(y) or u, v). However, it is interesting to consider the
shape of the distribution of losses as defined by a ruin line in terms of a copula.

Consider, for example, the previously mentioned profits X and Y and assume that they are correlated
and normally-distributed with means py and py, standard deviations oy and gy, and a linear correlation
coefficient of p. If the density of the losses is shown by contour lines, the area or excess loss can be
shown as the shaded area in Figure 5. If this loss is expressed in terms of copulas, as shown by the
shaded area in Figure 6, it can be seen that the area covered has a very different shape to that
measured by tail correlations. This does not mean that ruin lines are “better” than tail correlations, but
it does mean that they measure something different: the risk of extreme loss, more commonly known as
the probability of ruin, rather than the likelihood of extreme co-movement.

As mentioned earlier, the shape of the area of loss given in terms of copulas will change depending not
only on the copula but also on the marginal distributions. This means that it makes more sense to
evaluate the risk of loss directly from observations, or from the joint distribution if this is known.

Figure 5: Ruin Line Expressed in Terms of Raw Returns (Area of Excessive Loss Shaded)
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Figure 6: Ruin Line Expressed in Terms of Distribution Functions (Area of Excessive Loss Shaded)

Ruin

Source: Authors

If two variables follow a bivariate normal distribution then it is straightforward to evaluate the
probability that losses will fall below the ruin line. This can be done by taking advantage of the fact that
the sum of jointly normally distributed variables is itself normally distributed. For example, for the
profits X and Y with means uy and py, standard deviations gy and gy, and a linear correlation
coefficient of p, the sum of X and Y has a mean of u; = uy + uy and a standard deviation of g, =

Vo + a2 — 2payoy. This means that if the ruin line is defined as P = X + Y, then the probability of
ruin is given by:

o[22

Oz (67)

The same formula can be used for combinations of a greater number of risks. If px_ x is defined as the
correlation between X, and X, whilst iy and oy are the mean and standard deviation of risk X,, with
m,n=1,2,...,N, then u; and g; can be calculated as follows:

N N N
Uz = Z Hx, and af = Z Z OX 1 OXn PX o X
by (68)
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An alternative approach is to use affine transformation. This involves turning the distribution from one
where the variables have standard deviations gy and gy, and a linear correlation coefficient of p to one
where the standard deviations are one and the linear correlation coefficient is zero. The transformation
that accomplishes this results in the means of the two variables changing to uy and uy, but a new ruin
line can also be derived using the same transformation.

If an elliptical distribution can be turned into a spherical one, it can be rotated around its centre, then its
centre can be shifted to the origin, as shown in Figure 7. Consider the formula describing P, the
proportion of the observations to the left of the transformed ruin line, which is the probability of ruin:

-z 1 _x2+y2
SNt

dx dy (69)

Figure 7: Performing an Affine Transformation
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In other words, if you know z the distance from the centre of the transformed distribution to the ruin
line, then the proportion of observations below and to the left of the ruin line can be evaluated as

@ (—2z). Exactly the same approach can be used for more dimensions — if the variables of interest have
losses X4, X5, ..., Xy then rotating the hyperplane relative to the hypersphere gives:

xf+x%+~-+x,2\,
f f f 2 dx;dx, ...dxy
0 (zn)z (70)
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To find z, two sets of items are needed:

e the means of the transformed distribution; and
e the parameters of the transformed ruin line (or plane, or hyperplane).

These are found by multiplying the original parameters by the same matrix that transforms the original
distribution into one with unit variance and zero correlation: the inverse of the square root of the

covariance matrix, C~1/2

. The square root of the matrix is found by Cholesky decomposition, and the
resulting triangular matrix is then inverted. Post-multiplying the ruin line and a vector containing the
original means of the variables by this matrix gives the transformed results. If the transformed N-
dimensional ruin line is defined as ay + a@1x1 + ax, + -+ + ayxy = 0 and the transformed means are

Kx,» Bx,» - Bx,, then z can be calculated as:

N *
_ g+ Yo Anily,

Z= N 2
n=1 an (71)

The main reason for describing this more complicated approach is that it can be used not only with
jointly normal variables but also with the multivariate t distribution. In this case, the matrix used is the
matrix of co-spread parameters rather than the covariance matrix. The distinction between co-spread
and covariance is subtle. It is most easily appreciated in relation to a single variable in terms of the
difference between the spread parameter and the variance. The variance is a measure calculated from
the distribution which expresses the volatility of a series; the spread, on the other hand, is the
parameter used in the distribution that determines this volatility. For the normal distribution, spread
and variance are one and the same. However, in the univariate t distribution, for example, the spread
parameter is a2 whilst the variance is ?v/(v — 2), where v is the number of degrees of freedom). Co-
spread and co-variance are related by analogy.

For non-elliptical joint distributions, including those where the marginal distributions and copulas are
chosen separately, the proportion of observations to the left of and below the ruin line can be
calculated by carrying out a large number of simulations and counting the proportion of observations for
which 271\{=1 X, < P. If asubscript t is added where t = 1,2, ..., T, denoting the time of each
observation, then the probability of ruin calculated from simulations can be described as:

_ ?zll(zglen,t < P)
- T (72)

Q

where I(...) is an indicator variable taking a value of 1 if the expression inside the parentheses is true
and zero otherwise.

A measure closely related to the probability of ruin is the economic cost of ruin. This gives the average
value of losses given that the aggregate loss is below and to the left of the ruin line. This is helpful as it
gives an indication not only of the likelihood of extreme loss, but the severity. As with the probability of
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ruin, it can be applied to actual risk exposure or to help determine risk exposures. It can also be used for
any number of risks in combination, from just pairs of risks to all risks faced.

If multivariate normal variables are combined to give a single normal variable with a mean of y; and a
standard deviation of g, then the economic cost of ruin is given by:

P—uy
u . ¢ ( (94 )
Z7 927 D N
0y (73)
where ¢(...) is the normal density function. Affine transformations cannot be used to give simple
results for the economic cost of ruin; however, the formula for calculation from simulated data is
straightforward:
E= ?:1[1(2%:1 Xne < L) 211Y=1(L — Xn,t)]
- T (74)

6.3.Definition of Loss
One issue that has not yet been discussed is the definition of loss. For measures of tail association no
definition is needed, since it is only the order of observations that is of interest; however for extreme
loss, this definition is crucial.

There are two broad approaches that can be used, the choice depending on the use to which the
measure is being put. The first approach is used if the desire is to assess the current level of exposure to
risks. In this case, the ruin line parameter L is defined as the critical level of total loss. This can be the
maximum loss acceptable from two, three or more, even all, sources. It can also be defined in absolute
terms or as a change in value.

The next stage is to define X4, X5, ..., Xy where N is the number of risks being considered concurrently.
Each of these can be regarded as the loss arising from a particular risk. The loss from market risk is
clearly given by the distribution of market returns. However, a little thought is needed for the loss from
items such as mortality risk. For example, consider the losses from a term assurance portfolio. If the
risks under consideration were interest rate risk and mortality risk, simulations could be carried out and
the results applied to the portfolio allowing for stochastic variation in interest and mortality rates, but
with all other variables changing deterministically. The probability or economic cost of ruin from these
two factors could then be assessed by counting the proportion of observations below the ruin line.

The second approach is used if the desire is to determine the appropriate allocation between different
risks. In this case, some notional threshold loss from risk combinations must be set, say £10 per £100
invested for two risks, or £15 per £100 invested for three. The distributions of losses for different
combinations of risk exposures — in terms of ways of using the £100 of investment — can then be
determined. For example, if the threshold loss from two risks is £10 per £100 invested and the two risks
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being considered are investment in assets 1 and 2, then probability of ruin (for example) can be
calculated for combinations of £ W, and £ W,=£ (100 — W;). This can, of course, be extended to
higher dimensions, and the resulting statistic can be used in the calculation of efficient frontiers.

7. Communicating Tail Association and the Risk of Extreme Loss

The communication of the results of calculations discussed earlier is an important consideration. Whilst
calculation is helpful, the results are useful only if they can be understood easily by stakeholders. The
considerations for communication differ for tail association and extreme loss, so each is dealt with
separately.

7.1.Tail Association
When communicating tail association, there are a number of factors that should be communicated,
including:

e The level of association between two variables;
e The extent to which an asset (or liability) provides a match for a liability (or asset); and

e The importance of variables measured.

The level of association between the two variables has already been discussed. However, the level of
association between those variables that are assets and those that are liabilities is also important. A
high level of association between an asset and a liability is less of a concern than —and may be
preferable to — a high level of association between two assets or between two liabilities. Similarly, a
high level of tail association between two assets each of which are held to match liabilities is less of a
concern than the same level of association between two “return-producing” assets. However, the
definition of a “matching asset” is not straightforward — corporate bonds might be held as a matching
asset, but a large increase in spreads or an unexpectedly high level of defaults will reduce the
effectiveness of such a match to say the least. This suggests that an element of subjectivity is needed
when interpreting the results.

The final item is the importance of the variables being measured. If each variable is an asset
constituting less than 1% of the entire portfolio, then a high level of correlation is less likely to be of
concern than if each constitutes 10%.

For the examples that follow we consider a stylised final pension scheme with the following
characteristics:

e assets are initially equal to liabilities;

e liabilities are initially half nominal and half inflation linked;

e nominal liabilities are assumed to perform in line with the portfolio of assets in Table 2;

e inflation linked liabilities are assumed to perform in line with the portfolio of assets in Table 3;
and

e assets are assumed to be invested in line with Table 4.
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Table 2: Portfolio of Assets Representing Nominal Liabilities

FTSE UK Gilt Index, 0-5 Years 20%
FTSE UK Gilt Index, 5-10 Years 30%
FTSE UK Gilt Index, 10-15 Years 30%
FTSE UK Gilt Index, 15+ Years 20%

Table 3: Portfolio of Assets Representing Inflation Linked Liabilities

Asset Weight

FTSE UK Index Linked Gilt Index, 0-5 Years 30%
FTSE UK Index Linked Gilt Index, 5-15 Years 40%
FTSE UK Index Linked Gilt Index, 15+ Years 30%

Table 4: Portfolio of Investment Assets

Asset Weight Matching (Y/N)
FTSE UK Gilt Index, 15+ Years 10% Y
FTSE UK Gilt Index, All Stocks 10% Y
FTSE UK Index Linked Gilt Index, 15+ Years 10% Y
FTSE UK Index Linked Gilt Index, All Stocks 10% Y
FTSE All-Share Index 30% N
FTSE World Index, United States 8% N
FTSE World Index, Europe Ex UK 8% N
FTSE World Index, Japan 6% N
FTSE World Index, Asia Pacific Ex Japan 4% N
GSCI All Commodities Index 4% N

We propose several ways of displaying the data. The first is a scatter plot, as shown in Figure 8. Thisis a
simplified chart considering only market risk for the assets, and nominal and real interest rate risks for
the liabilities. On the vertical axis, the level of association is given — we suggest (for returns) the
coefficient of finite tail dependence with k = 0.1. The horizontal axis gives the “importance” of the pair
considered. This is measured as the sum of the natural logarithm of the asset weights or asset amounts
(the difference being only one of scale). This is equivalent to the logarithm of the multiple of the
weights or amounts. The use of both weights means that only relationships between two important
risks are regarded as important; taking logarithms ensures that the chart is legible.

Figure 8 — Scatter Plot Display of the Coefficient of Finite Tail Dependence against the Importance of Risks
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In this plot, three shades are used:

o the black dots represent the level and importance of risk between two assets, at least one of
which is a return-producing asset (that is, not a matching asset) or between two liabilities;
e the white dots represent the level and importance of risk between an asset and a liability; and
e the grey dots represent the level and importance of risk between two assets both of which are
matching assets.

The black dots in the top right corner of such a plot are the most important —these are the ones for
which the level of tail risk is highest and also for which the importance of the risk is greatest. Grey and
white dots in this area should also be considered, however, since they signify a significant reliance on
matching.

The second approach, shown in Figure 9, is a bar chart. The vertical axis is the same as for Figure 7, but
the horizontal axis gives the names of the pairs in descending order of importance. The level of
importance is overlaid as a line chart, marked on the second axis. The bars are colour coded in the same
way as the points on the scatter chart. Four charts are possible, the first of which is shown:

e all combinations of risks;

e combinations of two assets, at least one of which is a return-producing asset (that is, not a
matching asset) or two liabilities;

e combinations of an asset and a liability; and

e combinations of matching assets.

Figure 9 — Bar Plot Display of Correlation Risks
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It is also possible to show only the most important risks by coefficient of finite tail dependence (as in
Figure 9) or by position size.

Both of these charts can be used to display risks calculated in higher dimensions — in other words with
the results for groups of three, four or even more risks. However, the colour scheme requires
modification. The simplest approach is to consider only two categories of risk grouping:

e the level and importance of risk between groups of assets, at least one of which is a return-
producing asset (that is, not a matching asset) or between groups of liabilities (the black series);
and

e the level and importance of risk between groups of assets all of which are matching assets.

It is also worth recognising that if the number of risks is large, the number of combinations could grow
to be unwieldy as the number of risks considered together increases, since this process follows a
binomial expansion. For example, with 10 risks there are 10!/2! 8! = 45 pairs of risks to consider, but
10!/3!7! = 120 groups of three risks and 10!/4! 6! = 210 groups of four risks. For more combinations
from more risks the range of scenarios grows considerably.

Another approach is to use two axes of a scatter plot to denote the size of each of a pair of risks (in
terms of exposure), whilst using the size, shape or colour of the point to convey information about the
coefficient of finite tail dependence between the two risks. For example, the size of the point —as
measured by its diameter — can be used to represent the value of the coefficient with the a large, black
circle representing a coefficient of one and a dot representing a coefficient of zero, as shown in Figure
10. For this particular “balloon plot” or “bubble plot”, the exposures in terms of assets are shown as
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positive and in terms of liabilities, negative. This means the main concerns should be large bubbles in
either the top right or bottom left of the chart.

Figure 10 — Balloon Plot
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One potential problem with this approach is that for two pairs risks with similar exposures, the points
may overlap. One way of dealing with this is to instead group risks into ranges and use a sunflower plot,
with each “petal” representing a pair of risks and the colour of the petal denoting the range in which the
coefficient of finite tail dependence lies. Such a plot is shown in Figure 11.
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Figure 11 — Sunflower Plot
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Of course, if colours are used to help display the level of association, they cannot also easily be used to
convey information about the extent to which an asset class is held to match a particular risk.

7.2.Extreme Loss
Approaches similar to those used for tail association can also be used to highlight the risks of extreme
loss. When the range of risks currently faced is being considered, the probability and economic cost of
ruin implicitly allow for the level of exposure to that risk. This means that the bar chart in Figure 9 can
be used without the need for a line describing separately the size of the position.

When considering possible risk combinations, Figure 12 shows how pairs of risks could be described; a
surface can be used to show the combination of three risks, but it is difficult to see how higher
dimensions could be visualised. However, the main use of the possible risk combinations is in the
context of efficient frontiers, when contrasted with a measure to be maximised such as expected profit.
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Figure 12 — Distribution of Probability of Ruin
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8. Conclusion
This paper has two broad themes: calculation and communication. Within the theme of calculation,
there are two aspects of extreme events that can be usefully examined.

The first is the extent to which extreme events in two or more variables occur together. This can be
gauged by using measures of tail association. Higher levels of tail association are useful for highlighting
the extent to which there are concentrations of risk.

The most popular measure of tail association is the coefficient of tail dependence, which is measured at
the limit. However, for some copulas — notably the Gaussian copula — the coefficient of tail dependence
is zero for all linear correlation coefficients less than one. Conditional correlations are also used. These
look at the correlation between variables over only a small range of values, usually in the tail. However,
whilst these give the direction of the association, they do not reflect the importance of the observations
in the tail in the context of the copula as a whole. We therefore propose another measure, the
coefficient of finite tail dependence. This is similar to the coefficient of tail dependence, but is
evaluated at a finite level rather than at the limit.

The second aspect of extreme event that is of interest is the extent to which combined losses from a

series of risks result in losses beyond a certain point. This can be measured using ruin lines or, in higher
dimensions, planes and hyperplanes. Two measures that are of interest here are the probability of ruin
and the economic cost of ruin. Both can be calculated easily for multivariate Gaussian distributions, and
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the probability of ruin can be calculated relatively easily for the multivariate t distribution. As part of the
discussion of the risk of extreme loss it is important to consider the way in which loss is defined, in
particular whether it is in relation to the current portfolio of risks or some proposed change.

In relation to the second theme of communication, there are a number of ways of displaying the
information on extreme events. The most important aspects of the events to communicate are the
likelihood of extreme loss and the importance of that loss in terms of the value of the risks by some
measure.
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Appendix 1 - Types of Copulas

Explicit Copulas

There are a number of ways of classifying different types of copula. For parametric copulas, a common
distinction is made between explicit and implicit copulas. Implicit copulas take as their starting point u
and v. The Archimedean family of copulas is a good example of this type. They use a generator function
to transform each univariate cumulative probability, which by definition will be between zero and one,
into a number between zero and infinity. The “generated” numbers for each variable are summed and
the result is passed through the inverse of the generator function (or pseudo-inverse if certain
conditions are not met), which transforms any number from zero to infinity into a number between zero
and one. Thus the univariate cumulative probabilities are combined into a joint cumulative probability.

Consider, for example, the Gumbel copula. This has a generator function, ¥, equal to (- Inu)* where «
is a parameter that characterises the strength of the association. If u is 0.05, vis 0.01 and « is 2, then
the joint distribution function using a Gumbel copula is:

€(0.05,0.01) = 1/; 1[1(0.05) + 1(0.01)]
Y~ (=In 0.05)? + (=In 0.01)?]
¥»~1[8.974 + 21.208] = 1~1[30.182]

= e‘V3°182 =0.00411 (A1.1)

As mentioned earlier, this can be extended to more than two variables.

The choice of Archimedean copula determines the shape of the relationship between variables.
However, the values of the small number of parameters — often only one — used in each Archimedean
copula determine the strength of the relationship between the variables. As such these are often
closely linked to one or more measures of correlation — for example, Kendall’s rank correlation
coefficient, 7, (discussed below) is equal to 1 — (1/a) for the Gumbel copula. This means that for the
above example, T = 0.5.

Fundamental Copulas
An important subset of explicit copulas is the group of fundamental copulas. These described three
fundamental relationships between variables:

e independence, with the independence copula where C(u, v) = uv;

¢ identicality, with the minimum or co-monoticity copula where C(u, v) = min (u, v); and

e mutual exclusivity, with the maximum or counter-monoticity copula, where C(u, v) = max (u +
v—1,0).

The final two copulas are particularly interesting as they describe the upper and lower limits for all
copulas, known as the Fréchet-Hoffding bounds. As such, other copulas often tend to these limits as
their parameters take extreme values.
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Implicit Copulas

Implicit copulas are copulas derived from multivariate distributions such as the multivariate normal
(Gaussian) or t-distributions. In these cases, the distribution functions u and v are used to calculate the
values that would have been seen had the marginal distribution been, say, a standard univariate normal
distribution. For example, u if is 0.05, v is 0.01 and p is 0.75, then the joint distribution function using a
Gaussian copula is:

€(0.05,0.01) = ®y,5[P~1(0.05), ®~1(0.01)]
= & [—1.645,—2.326]
= 0.00692 (A1.2)

where @ ;5 (...) is the joint distribution function for a pair of standard normal variables with a
correlation of 0.75. These copulas can also be extended to higher dimensions. In the case of the
Gaussian copula, above, this means that the relationship between the variable is defined by a
correlation matrix.
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Appendix 2 - Extreme Value Theory

The Generalised Extreme Value Distribution

There are two main approaches used in extreme value theory. The Generalised Extreme Value (GEV)
distribution, describes the distribution of the largest observations in blocks of observations, or the
distribution of the number of observations in each block exceeding some value, is given by:

1
H(x) = exp [—(1 + Ex)_g] ifé+0
exp[—e ] ifé=0 (A2.1)

where 1 4+ &x > 0 and € is a parameter determining the family to which the limit belongs. In particular,
if £>0 the result is a Fréchet-type distribution; if ¢ = 0, the result is a Gumbel-type distribution; and if
& < 0, the result is a Weibull-type distribution. The Fréchet-type distribution has fat tails, like the t-
distribution, the tails of the Gumbel-type distribution are exponential, like the normal distribution and
the Weibull-type distribution has tails so narrow that the distribution has a finite right endpoint. This
approach — fitting the largest observations from blocks of data —is known as the block maxima
approach.

The Generalised Pareto Distribution

A second approach is the threshold exceedances approach, which attempts to fit all observations in the
tail of a distribution to a single model, the Generalised Pareto Distribution (GPD). This is used as a
conditional distribution and has the following distribution function:

1-(1+&/B) " ifE+0

66 = Pr(x — k< xlX > ) ={; ~ exp(—x/B)  ifé =0 (A2.2)
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Appendix 3a - Coefficients of Finite Tail Dependence for t Copulas: Two
Dimensions

p k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-0.9 0.0048 0.0048 0.0055 0.0066 -0.9 0.0010 0.0010 0.0016 0.0023
-0.8 0.0136 0.0143 0.0162 0.0188 -0.8 0.0051 0.0050 0.0062 0.0087
-0.7 0.0256 0.0269 0.0302 0.0346 -0.7 0.0097 0.0107 0.0137 0.0189
-0.6 0.0405 0.0414 0.0466 0.0532 -0.6 0.0171 0.0186 0.0241 0.0327
-0.5 0.0594 0.0582 0.0650 0.0752 -0.5 0.0293 0.0305 0.0390 0.0508
-0.4 0.0807 0.0799 0.0865 0.0984 -0.4 0.0408 0.0421 0.0549 0.0711
-0.3 0.0996 0.1000 0.1116 0.1249 -0.3 0.0536 0.0571 0.0753 0.0936
-0.2 0.1274 0.1287 0.1378 0.1533 -0.2 0.0725 0.0769 0.0962 0.1205
-0.1 0.1568 0.1569 0.1664 0.1844 -0.1 0.0945 0.0987 0.1229 0.1502

0 0.1788 0.1819 0.1986 0.2182 0 0.1243 0.1270 0.1530 0.1822
0.1 0.2185 0.2219 0.2338 0.2544 0.1 0.1529 0.1583 0.1853 0.2183
0.2 0.2519 0.2539 0.2708 0.2928 0.2 0.1885 0.1940 0.2236 0.2579
0.3 0.2954 0.2977 0.3148 0.3375 0.3 0.2228 0.2309 0.2646 0.3003
0.4 0.3468 0.3452 0.3606 0.3835 0.4 0.2714 0.2792 0.3130 0.3488
0.5 0.3918 0.3954 0.4135 0.4361 0.5 0.3207 0.3299 0.3666 0.4042
0.6 0.4618 0.4617 0.4732 0.4949 0.6 0.3865 0.3918 0.4304 0.4632
0.7 0.5164 0.5260 0.5404 0.5605 0.7 0.4505 0.4599 0.4978 0.5335
0.8 0.6014 0.6091 0.6212 0.6402 0.8 0.5520 0.5546 0.5868 0.6160
0.9 0.7192 0.7186 0.7278 0.7424 0.9 0.6676 0.6788 0.7055 0.7295

1 1 1 1 1 1 1 1 1 1
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df.=4 df.=5

P k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-0.9 0.0002 0.0003 0.0005 0.0009 -0.9 0.0001 0.0001 0.0003 0.0005
-0.8 0.0013 0.0014 0.0027 0.0048 -0.8 0.0010 0.0010 0.0015 0.0031
-0.7 0.0037 0.0040 0.0076 0.0121 -0.7 0.0018 0.0019 0.0045 0.0085
-0.6 0.0083 0.0091 0.0147 0.0232 -0.6 0.0045 0.0054 0.0105 0.0179
-0.5 0.0149 0.0158 0.0258 0.0381 -0.5 0.0076 0.0094 0.0188 0.0308
-0.4 0.0230 0.0247 0.0395 0.0564 -0.4 0.0138 0.0165 0.0306 0.0478
-0.3 0.0358 0.0384 0.0553 0.0767 -0.3 0.0228 0.0256 0.0447 0.0676
-0.2 0.0498 0.0547 0.0766 0.1031 -0.2 0.0354 0.0398 0.0631 0.0921
-0.1 0.0673 0.0727 0.1000 0.1310 -0.1 0.0507 0.0565 0.0867 0.1197

0 0.0872 0.0937 0.1271 0.1628 0 0.0675 0.0724 0.1116 0.1508
0.1 0.1152 0.1224 0.1601 0.1984 0.1 0.0929 0.1005 0.1424 0.1853
0.2 0.1437 0.1528 0.1960 0.2383 0.2 0.1184 0.1292 0.1801 0.2260
0.3 0.1818 0.1901 0.2380 0.2814 0.3 0.1509 0.1626 0.2185 0.2682
0.4 0.2260 0.2388 0.2854 0.3299 0.4 0.1938 0.2061 0.2661 0.3185
0.5 0.2808 0.2885 0.3400 0.3842 0.5 0.2431 0.2576 0.3216 0.3717
0.6 0.3353 0.3460 0.4033 0.4474 0.6 0.3124 0.3219 0.3856 0.4362
0.7 0.4101 0.4231 0.4727 0.5162 0.7 0.3815 0.3986 0.4606 0.5067
0.8 0.5154 0.5190 0.5684 0.6054 0.8 0.4846 0.4999 0.5546 0.5957
0.9 0.6398 0.6526 0.6897 0.7174 0.9 0.6301 0.6390 0.6839 0.7146

1 1 1 1 1 1 1 1 1 1
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p k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-09 0.0000 0.0000 0.0001 0.0002 -0.9 0.0000 0.0000 0.0000 0.0001
-0.8 0.0003 0.0003 0.0008 0.0020 -0.8 0.0001 0.0002 0.0005 0.0015
-0.7 0.0010 0.0011 0.0029 0.0064 -0.7 0.0005 0.0007 0.0022 0.0051
-0.6 0.0026 0.0034 0.0073 0.0145 -0.6 0.0012 0.0018 0.0056 0.0121
-0.5 0.0042 0.0058 0.0139 0.0261 -0.5 0.0038 0.0047 0.0121 0.0230
-0.4 0.0094 0.0118 0.0244 0.0416 -0.4 0.0062 0.0086 0.0208 0.0378
-0.3 0.0172 0.0201 0.0381 0.0614 -0.3 0.0110 0.0144 0.0321 0.0561
-0.2 0.0237 0.0284 0.0547 0.0838 -0.2 0.0184 0.0233 0.0495 0.0788
-0.1 0.0384 0.0441 0.0768 0.1113 -0.1 0.0310 0.0359 0.0692 0.1055
0 0.0546 0.0615 0.1022 0.1424 0 0.0441 0.0534 0.0936 0.1358
0.1 0.0744 0.0840 0.1305 0.1769 0.1 0.0662 0.0750 0.1256 0.1725
0.2 0.0995 0.1123 0.1678 0.2173 0.2 0.0884 0.1009 0.1570 0.2102
0.3 0.1284 0.1440 0.2054 0.2601 0.3 0.1170 0.1323 0.1985 0.2550
0.4 0.1768 0.1895 0.2559 0.3097 0.4 0.1589 0.1765 0.2454 0.3029
0.5 0.2244 0.2417 0.3087 0.3642 0.5 0.2082 0.2237 0.3008 0.3585
0.6 0.2826 0.3014 0.3716 0.4263 0.6 0.2654 0.2848 0.3633 0.4234
0.7 0.3687 0.3849 0.4512 0.5020 0.7 0.3490 0.3686 0.4444 0.4983
0.8 0.4629 0.4792 0.5446 0.5906 0.8 0.4501 0.4656 0.5396 0.5878
09 0.6100 0.6183 0.6757 0.7108 0.9 0.5980 0.6166 0.6710 0.7066
1 1 1 1 1 1 1 1 1 1
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p k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-09 0.0000 0.0000 0.0000 0.0001 -0.9 0.0000 0.0000 0.0000 0.0001
-0.8 0.0000 0.0000 0.0004 0.0010 -0.8 0.0000 0.0001 0.0002 0.0009
-0.7 0.0003 0.0003 0.0015 0.0043 -0.7 0.0002 0.0003 0.0011 0.0035
-0.6 0.0009 0.0010 0.0041 0.0103 -0.6 0.0006 0.0009 0.0039 0.0098
-0.5 0.0026 0.0037 0.0097 0.0210 -0.5 0.0017 0.0022 0.0082 0.0189
-0.4 0.0046 0.0068 0.0183 0.0354 -0.4 0.0036 0.0052 0.0160 0.0332
-0.3 0.0095 0.0124 0.0295 0.0525 -0.3 0.0070 0.0098 0.0267 0.0503
-0.2 0.0153 0.0204 0.0449 0.0752 -0.2 0.0124 0.0160 0.0413 0.0725
-0.1 0.0261 0.0318 0.0642 0.1015 -0.1 0.0216 0.0269 0.0604 0.0989

0 0.0353 0.0445 0.0874 0.1313 0 0.0329 0.0409 0.0842 0.1280
0.1 0.0533 0.0641 0.1182 0.1668 0.1 0.0488 0.0597 0.1126 0.1629
0.2 0.0816 0.0922 0.1520 0.2062 0.2 0.0712 0.0858 0.1482 0.2029
0.3 0.1052 0.1238 0.1898 0.2490 0.3 0.0984 0.1151 0.1860 0.2457
0.4 0.1478 0.1667 0.2385 0.2990 0.4 0.1313 0.1532 0.2327 0.2965
0.5 0.1901 0.2133 0.2938 0.3542 0.5 0.1767 0.2026 0.2870 0.3511
0.6 0.2539 0.2730 0.3570 0.4184 0.6 0.2383 0.2647 0.3536 0.4163
0.7 0.3318 0.3568 0.4363 0.4943 0.7 0.3265 0.3499 0.4335 0.4912
0.8 0.4342 0.4577 0.5361 0.5856 0.8 0.4269 0.4473 0.5302 0.5804
09 0.5945 0.6111 0.6675 0.7053 0.9 0.5816 0.6035 0.6639 0.7039

1 1 1 1 1 1 1 1 1 1
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df.=10 df=15

p k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-09 0.0000 0.0000 0.0000 0.0000 -0.9 0.0000 0.0000 0.0000 0.0000
-0.8 0.0000 0.0000 0.0002 0.0007 -0.8 0.0000 0.0000 0.0000 0.0002
-0.7 0.0001 0.0001 0.0009 0.0032 -0.7 0.0000 0.0000 0.0004 0.0019
-0.6 0.0002 0.0005 0.0031 0.0086 -0.6 0.0001 0.0002 0.0017 0.0062
-0.5 0.0012 0.0019 0.0070 0.0177 -0.5 0.0004 0.0007 0.0045 0.0140
-0.4 0.0028 0.0042 0.0143 0.0310 -0.4 0.0009 0.0019 0.0101 0.0258
-0.3 0.0060 0.0083 0.0245 0.0480 -0.3 0.0025 0.0043 0.0187 0.0421
-0.2 0.0113 0.0149 0.0392 0.0699 -0.2 0.0060 0.0084 0.0311 0.0630
-0.1 0.0183 0.0247 0.0585 0.0965 -0.1 0.0112 0.0157 0.0483 0.0872
0 0.0291 0.0373 0.0807 0.1261 0 0.0202 0.0270 0.0705 0.1178
0.1 0.0438 0.0534 0.1077 0.1593 0.1 0.0322 0.0427 0.0969 0.1511
0.2 0.0646 0.0783 0.1415 0.1989 0.2 0.0474 0.0627 0.1295 0.1894
0.3 0.0933 0.1092 0.1806 0.2419 0.3 0.0728 0.0914 0.1694 0.2347
0.4 0.1302 0.1471 0.2281 0.2923 0.4 0.1063 0.1281 0.2138 0.2837
0.5 0.1724 0.1985 0.2853 0.3488 0.5 0.1480 0.1773 0.2720 0.3405
0.6 0.2384 0.2605 0.3498 0.4136 0.6 0.2038 0.2332 0.3345 0.4059
0.7 0.3141 0.3374 0.4254 0.4878 0.7 0.2885 0.3165 0.4145 0.4798
0.8 0.4224 0.4457 0.5263 0.5792 0.8 0.3936 0.4247 0.5150 0.5730
09 0.5736 0.5939 0.6621 0.7007 0.9 0.5501 0.5735 0.6510 0.6979
1 1 1 1 1 1 1 1 1 1
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df.=20 d.f. =50

p k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-09 0.0000 0.0000 0.0000 0.0000 -0.9 0.0000 0.0000 0.0000 0.0000
-0.8 0.0000 0.0000 0.0000 0.0001 -0.8 0.0000 0.0000 0.0000 0.0001
-0.7 0.0000 0.0000 0.0003 0.0015 -0.7 0.0000 0.0000 0.0001 0.0007
-0.6 0.0000 0.0001 0.0013 0.0050 -0.6 0.0000 0.0000 0.0005 0.0034
-0.5 0.0003 0.0003 0.0036 0.0123 -0.5 0.0000 0.0001 0.0020 0.0094
-0.4 0.0007 0.0011 0.0082 0.0232 -0.4 0.0002 0.0004 0.0055 0.0193
-0.3 0.0017 0.0029 0.0164 0.0390 -0.3 0.0006 0.0012 0.0119 0.0337
-0.2 0.0044 0.0066 0.0279 0.0590 -0.2 0.0020 0.0035 0.0216 0.0523
-0.1 0.0080 0.0125 0.0438 0.0835 -0.1 0.0031 0.0068 0.0366 0.0763
0 0.0145 0.0210 0.0639 0.1116 0 0.0074 0.0138 0.0559 0.1054
0.1 0.0273 0.0364 0.0924 0.1468 0.1 0.0162 0.0250 0.0798 0.1389
0.2 0.0415 0.0563 0.1233 0.1854 0.2 0.0273 0.0429 0.1131 0.1773
0.3 0.0657 0.0819 0.1619 0.2292 0.3 0.0484 0.0660 0.1506 0.2217
0.4 0.0934 0.1166 0.2083 0.2793 0.4 0.0770 0.0981 0.1969 0.2713
0.5 0.1369 0.1645 0.2638 0.3381 0.5 0.1102 0.1415 0.2512 0.3296
0.6 0.1930 0.2246 0.3303 0.4020 0.6 0.1656 0.1999 0.3183 0.3961
0.7 0.2746 0.3086 0.4107 0.4786 0.7 0.2492 0.2826 0.3976 0.4710
0.8 0.3803 0.4127 0.5102 0.5712 0.8 0.3496 0.3890 0.5005 0.5659
09 0.5464 0.5741 0.6487 0.6937 0.9 0.5206 0.5552 0.6439 0.6937
1 1 1 1 1 1 1 1 1 1
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d.f. = oo (Gaussian)

p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000
-09 0.0000 0.0000 0.0000 0.0000
-0.8 0.0000 0.0000 0.0000 0.0000
-0.7 0.0000 0.0000 0.0000 0.0004
-0.6 0.0000 0.0000 0.0002 0.0024
-0.5 0.0000 0.0000 0.0012 0.0073
-0.4 0.0000 0.0001 0.0038 0.0163
-0.3 0.0001 0.0005 0.0093 0.0304
-0.2 0.0004 0.0015 0.0185 0.0489
-0.1 0.0020 0.0046 0.0312 0.0713
0 0.0052 0.0100 0.0490 0.0997
0.1 0.0106 0.0201 0.0745 0.1332
0.2 0.0201 0.0338 0.1050 0.1713
0.3 0.0368 0.0560 0.1428 0.2159
0.4 0.0618 0.0863 0.1888 0.2664
0.5 0.0977 0.1275 0.2435 0.3232
0.6 0.1524 0.1866 0.3085 0.3895
0.7 0.2256 0.2657 0.3891 0.4652
0.8 0.3400 0.3776 0.4935 0.5621
09 0.5050 0.5382 0.6350 0.6869
1 1 1 1 1
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Appendix 3b - Coefficients of Finite Tail Dependence for ¢ Copulas:
Three Dimensions

p k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-0.9 0.0000 0.0000 0.0000 0.0000 -0.9 0.0000 0.0000 0.0000 0.0000
-0.8 0.0000 0.0000 0.0000 0.0000 -0.8 0.0000 0.0000 0.0000 0.0000
-0.7 0.0000 0.0000 0.0000 0.0000 -0.7 0.0000 0.0000 0.0000 0.0000
-0.6 0.0000 0.0000 0.0000 0.0000 -0.6 0.0000 0.0000 0.0000 0.0000
-0.5 0.0000 0.0000 0.0000 0.0000 -0.5 0.0000 0.0000 0.0000 0.0000
-0.4 0.0018 0.0020 0.0021 0.0026 -0.4 0.0005 0.0004 0.0006 0.0009
-0.3 0.0071 0.0072 0.0087 0.0102 -0.3 0.0017 0.0022 0.0036 0.0049
-0.2 0.0171 0.0180 0.0191 0.0224 -0.2 0.0063 0.0069 0.0094 0.0128
-0.1 0.0321 0.0313 0.0346 0.0400 -0.1 0.0145 0.0147 0.0193 0.0257
0 0.0444 0.0471 0.0541 0.0616 0 0.0250 0.0265 0.0341 0.0439
0.1 0.0688 0.0722 0.0791 0.0890 0.1 0.0391 0.0407 0.0529 0.0664
0.2 0.1000 0.0999 0.1096 0.1216 0.2 0.0599 0.0641 0.0786 0.0958
0.3 0.1350 0.1357 0.1453 0.1602 0.3 0.0890 0.0925 0.1098 0.1317
0.4 0.1794 0.1789 0.1891 0.2058 0.4 0.1226 0.1277 0.1505 0.1755
0.5 0.2267 0.2272 0.2423 0.2612 0.5 0.1666 0.1730 0.2001 0.2295
0.6 0.2941 0.2942 0.3062 0.3251 0.6 0.2273 0.2327 0.2628 0.2926
0.7 0.3621 0.3681 0.3825 0.4031 0.7 0.2963 0.3009 0.3378 0.3720
0.8 0.4612 0.4671 0.4793 0.5000 0.8 0.4050 0.4084 0.4412 0.4719
0.9 0.6036 0.6071 0.6164 0.6348 0.9 0.5483 0.5558 0.5883 0.6169
1 1 1 1 1 1 1 1 1 1
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df.=4 df.=5

P k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-0.9 0.0000 0.0000 0.0000 0.0000 -0.9 0.0000 0.0000 0.0000 0.0000
-0.8 0.0000 0.0000 0.0000 0.0000 -0.8 0.0000 0.0000 0.0000 0.0000
-0.7 0.0000 0.0000 0.0000 0.0000 -0.7 0.0000 0.0000 0.0000 0.0000
-0.6 0.0000 0.0000 0.0000 0.0000 -0.6 0.0000 0.0000 0.0000 0.0000
-0.5 0.0000 0.0000 0.0000 0.0000 -0.5 0.0000 0.0000 0.0000 0.0000
-0.4 0.0001 0.0002 0.0003 0.0004 -0.4 0.0000 0.0000 0.0001 0.0002
-0.3 0.0009 0.0010 0.0015 0.0028 -0.3 0.0004 0.0005 0.0009 0.0019
-0.2 0.0028 0.0035 0.0055 0.0087 -0.2 0.0018 0.0020 0.0037 0.0067
-0.1 0.0066 0.0079 0.0128 0.0190 -0.1 0.0040 0.0048 0.0092 0.0151

0 0.0149 0.0162 0.0241 0.0342 0 0.0089 0.0104 0.0182 0.0290
0.1 0.0253 0.0263 0.0400 0.0551 0.1 0.0173 0.0189 0.0319 0.0481
0.2 0.0401 0.0446 0.0629 0.0831 0.2 0.0288 0.0320 0.0527 0.0745
0.3 0.0631 0.0665 0.0920 0.1170 0.3 0.0494 0.0525 0.0786 0.1065
0.4 0.0930 0.1007 0.1294 0.1593 0.4 0.0743 0.0805 0.1149 0.1487
0.5 0.1338 0.1407 0.1775 0.2119 0.5 0.1090 0.1177 0.1610 0.2000
0.6 0.1817 0.1910 0.2364 0.2764 0.6 0.1613 0.1720 0.2220 0.2656
0.7 0.2544 0.2661 0.3117 0.3541 0.7 0.2306 0.2404 0.2987 0.3442
0.8 0.3635 0.3699 0.4180 0.4585 0.8 0.3271 0.3448 0.4039 0.4482
0.9 0.5124 0.5268 0.5689 0.6028 0.9 0.4940 0.5081 0.5611 0.5988

1 1 1 1 1 1 1 1 1 1
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df.=6 df=7

p k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-09 0.0000 0.0000 0.0000 0.0000 -0.9 0.0000 0.0000 0.0000 0.0000
-0.8 0.0000 0.0000 0.0000 0.0000 -0.8 0.0000 0.0000 0.0000 0.0000
-0.7 0.0000 0.0000 0.0000 0.0000 -0.7 0.0000 0.0000 0.0000 0.0000
-0.6 0.0000 0.0000 0.0000 0.0000 -0.6 0.0000 0.0000 0.0000 0.0000
-0.5 0.0000 0.0000 0.0000 0.0000 -0.5 0.0000 0.0000 0.0000 0.0000
-0.4 0.0000 0.0000 0.0000 0.0001 -0.4 0.0000 0.0000 0.0000 0.0001
-0.3 0.0002 0.0003 0.0007 0.0013 -0.3 0.0000 0.0001 0.0004 0.0009
-0.2 0.0008 0.0008 0.0026 0.0050 -0.2 0.0004 0.0009 0.0018 0.0041
-0.1 0.0022 0.0026 0.0071 0.0128 -0.1 0.0016 0.0018 0.0055 0.0110
0 0.0060 0.0070 0.0147 0.0251 0 0.0038 0.0050 0.0124 0.0228
0.1 0.0122 0.0149 0.0270 0.0435 0.1 0.0094 0.0114 0.0239 0.0408
0.2 0.0209 0.0249 0.0465 0.0692 0.2 0.0178 0.0221 0.0413 0.0644
0.3 0.0383 0.0441 0.0708 0.1011 0.3 0.0314 0.0381 0.0667 0.0975
0.4 0.0616 0.0694 0.1071 0.1424 0.4 0.0528 0.0617 0.1000 0.1374
0.5 0.0944 0.1060 0.1515 0.1925 0.5 0.0834 0.0934 0.1437 0.1873
0.6 0.1407 0.1540 0.2092 0.2561 0.6 0.1290 0.1406 0.2011 0.2517
0.7 0.2175 0.2295 0.2896 0.3378 0.7 0.1942 0.2123 0.2814 0.3332
0.8 0.3122 0.3261 0.3921 0.4412 0.8 0.2962 0.3139 0.3851 0.4377
09 0.4753 0.4856 0.5498 0.5927 09 0.4619 0.4797 0.5436 0.5877
1 1 1 1 1 1 1 1 1 1
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df.=8 df=9

p k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-09 0.0000 0.0000 0.0000 0.0000 -0.9 0.0000 0.0000 0.0000 0.0000
-0.8 0.0000 0.0000 0.0000 0.0000 -0.8 0.0000 0.0000 0.0000 0.0000
-0.7 0.0000 0.0000 0.0000 0.0000 -0.7 0.0000 0.0000 0.0000 0.0000
-0.6 0.0000 0.0000 0.0000 0.0000 -0.6 0.0000 0.0000 0.0000 0.0000
-0.5 0.0000 0.0000 0.0000 0.0000 -0.5 0.0000 0.0000 0.0000 0.0000
-0.4 0.0000 0.0000 0.0000 0.0000 -0.4 0.0000 0.0000 0.0000 0.0000
-0.3 0.0000 0.0001 0.0002 0.0007 -0.3 0.0000 0.0000 0.0002 0.0006
-0.2 0.0002 0.0004 0.0014 0.0035 -0.2 0.0002 0.0002 0.0011 0.0030
-0.1 0.0008 0.0015 0.0045 0.0099 -0.1 0.0008 0.0010 0.0039 0.0090
0 0.0028 0.0037 0.0104 0.0206 0 0.0019 0.0034 0.0099 0.0197
0.1 0.0064 0.0085 0.0214 0.0379 0.1 0.0055 0.0077 0.0201 0.0367
0.2 0.0156 0.0188 0.0381 0.0624 0.2 0.0122 0.0161 0.0361 0.0598
0.3 0.0252 0.0319 0.0617 0.0928 0.3 0.0220 0.0285 0.0578 0.0904
0.4 0.0463 0.0559 0.0941 0.1325 0.4 0.0391 0.0483 0.0909 0.1309
0.5 0.0733 0.0850 0.1382 0.1844 0.5 0.0678 0.0793 0.1333 0.1810
0.6 0.1174 0.1314 0.1957 0.2472 0.6 0.1079 0.1249 0.1921 0.2450
0.7 0.1842 0.2036 0.2736 0.3284 0.7 0.1756 0.1951 0.2697 0.3257
0.8 0.2827 0.3033 0.3814 0.4354 0.8 0.2707 0.2927 0.3760 0.4294
09 0.4525 0.4716 0.5392 0.5853 09 0.4474 0.4673 0.5360 0.5835
1 1 1 1 1 1 1 1 1 1
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df.=10 df=15

p k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-09 0.0000 0.0000 0.0000 0.0000 -0.9 0.0000 0.0000 0.0000 0.0000
-0.8 0.0000 0.0000 0.0000 0.0000 -0.8 0.0000 0.0000 0.0000 0.0000
-0.7 0.0000 0.0000 0.0000 0.0000 -0.7 0.0000 0.0000 0.0000 0.0000
-0.6 0.0000 0.0000 0.0000 0.0000 -0.6 0.0000 0.0000 0.0000 0.0000
-0.5 0.0000 0.0000 0.0000 0.0000 -0.5 0.0000 0.0000 0.0000 0.0000
-0.4 0.0000 0.0000 0.0000 0.0000 -0.4 0.0000 0.0000 0.0000 0.0000
-0.3 0.0000 0.0000 0.0002 0.0005 -0.3 0.0000 0.0000 0.0000 0.0003
-0.2 0.0002 0.0004 0.0010 0.0029 -0.2 0.0000 0.0001 0.0004 0.0019
-0.1 0.0005 0.0008 0.0034 0.0084 -0.1 0.0002 0.0004 0.0021 0.0064
0 0.0015 0.0024 0.0088 0.0187 0 0.0006 0.0012 0.0063 0.0158
0.1 0.0038 0.0060 0.0183 0.0348 0.1 0.0023 0.0034 0.0144 0.0304
0.2 0.0100 0.0142 0.0336 0.0579 0.2 0.0061 0.0094 0.0278 0.0521
0.3 0.0196 0.0249 0.0563 0.0882 0.3 0.0136 0.0192 0.0496 0.0829
0.4 0.0372 0.0453 0.0874 0.1277 0.4 0.0289 0.0363 0.0780 0.1208
0.5 0.0634 0.0756 0.1304 0.1780 0.5 0.0512 0.0647 0.1206 0.1710
0.6 0.1079 0.1223 0.1876 0.2421 0.6 0.0826 0.1008 0.1761 0.2348
0.7 0.1677 0.1880 0.2637 0.3215 0.7 0.1470 0.1674 0.2521 0.3133
0.8 0.2672 0.2891 0.3710 0.4286 0.8 0.2416 0.2686 0.3610 0.4209
09 0.4375 0.4577 0.5334 0.5801 09 0.4101 0.4337 0.5205 0.5754
1 1 1 1 1 1 1 1 1 1
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df. =20 d.f.=50

p k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-09 0.0000 0.0000 0.0000 0.0000 -0.9 0.0000 0.0000 0.0000 0.0000
-0.8 0.0000 0.0000 0.0000 0.0000 -0.8 0.0000 0.0000 0.0000 0.0000
-0.7 0.0000 0.0000 0.0000 0.0000 -0.7 0.0000 0.0000 0.0000 0.0000
-0.6 0.0000 0.0000 0.0000 0.0000 -0.6 0.0000 0.0000 0.0000 0.0000
-0.5 0.0000 0.0000 0.0000 0.0000 -0.5 0.0000 0.0000 0.0000 0.0000
-0.4 0.0000 0.0000 0.0000 0.0000 -0.4 0.0000 0.0000 0.0000 0.0000
-0.3 0.0000 0.0000 0.0000 0.0002 -0.3 0.0000 0.0000 0.0000 0.0001
-0.2 0.0000 0.0001 0.0003 0.0015 -0.2 0.0000 0.0000 0.0001 0.0009
-0.1 0.0000 0.0001 0.0016 0.0054 -0.1 0.0000 0.0000 0.0008 0.0042
0 0.0003 0.0006 0.0049 0.0141 0 0.0000 0.0001 0.0032 0.0115
0.1 0.0012 0.0024 0.0127 0.0289 0.1 0.0006 0.0014 0.0092 0.0247
0.2 0.0040 0.0066 0.0250 0.0490 0.2 0.0019 0.0039 0.0204 0.0446
0.3 0.0103 0.0155 0.0455 0.0789 0.3 0.0058 0.0097 0.0384 0.0735
0.4 0.0213 0.0292 0.0737 0.1176 0.4 0.0146 0.0221 0.0659 0.1108
0.5 0.0431 0.0549 0.1145 0.1684 0.5 0.0315 0.0435 0.1050 0.1603
0.6 0.0755 0.0958 0.1714 0.2308 0.6 0.0583 0.0790 0.1609 0.2242
0.7 0.1330 0.1577 0.2475 0.3124 0.7 0.1170 0.1401 0.2360 0.3041
0.8 0.2287 0.2568 0.3532 0.4190 0.8 0.2042 0.2368 0.3426 0.4121
09 0.4007 0.4331 0.5181 0.5723 09 0.3762 0.4091 0.5096 0.5701
1 1 1 1 1 1 1 1 1 1
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d.f. = oo (Gaussian)

p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000
-09 0.0000 0.0000 0.0000 0.0000
-0.8 0.0000 0.0000 0.0000 0.0000
-0.7 0.0000 0.0000 0.0000 0.0000
-0.6 0.0000 0.0000 0.0000 0.0000
-0.5 0.0000 0.0000 0.0000 0.0000
-0.4 0.0000 0.0000 0.0000 0.0000
-0.3 0.0000 0.0000 0.0000 0.0000
-0.2 0.0000 0.0000 0.0001 0.0007
-0.1 0.0000 0.0000 0.0005 0.0034
0 0.0000 0.0001 0.0023 0.0100
0.1 0.0003 0.0007 0.0076 0.0221
0.2 0.0010 0.0022 0.0174 0.0418
0.3 0.0034 0.0067 0.0340 0.0696
0.4 0.0102 0.0171 0.0610 0.1069
0.5 0.0252 0.0367 0.0992 0.1555
0.6 0.0504 0.0710 0.1525 0.2183
0.7 0.1018 0.1283 0.2275 0.2986
0.8 0.1891 0.2233 0.3360 0.4078
09 0.3563 0.3909 0.5007 0.5627
1 1 1 1 1
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Appendix 3c - Coefficients of Finite Tail Dependence for t Copulas: Four
Dimensions

p k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-0.9 0.0000 0.0000 0.0000 0.0000 -0.9 0.0000 0.0000 0.0000 0.0000
-0.8 0.0000 0.0000 0.0000 0.0000 -0.8 0.0000 0.0000 0.0000 0.0000
-0.7 0.0000 0.0000 0.0000 0.0000 -0.7 0.0000 0.0000 0.0000 0.0000
-0.6 0.0000 0.0000 0.0000 0.0000 -0.6 0.0000 0.0000 0.0000 0.0000
-0.5 0.0000 0.0000 0.0000 0.0000 -0.5 0.0000 0.0000 0.0000 0.0000
-0.4 0.0000 0.0000 0.0000 0.0000 -0.4 0.0000 0.0000 0.0000 0.0000
-0.3 0.0000 0.0000 0.0000 0.0001 -0.3 0.0000 0.0000 0.0000 0.0000
-0.2 0.0017 0.0015 0.0017 0.0022 -0.2 0.0004 0.0005 0.0006 0.0009
-0.1 0.0066 0.0069 0.0072 0.0084 -0.1 0.0022 0.0023 0.0033 0.0045
0 0.0136 0.0150 0.0174 0.0200 0 0.0067 0.0070 0.0091 0.0120
0.1 0.0276 0.0288 0.0323 0.0369 0.1 0.0139 0.0141 0.0190 0.0251
0.2 0.0485 0.0482 0.0536 0.0606 0.2 0.0262 0.0285 0.0350 0.0438
0.3 0.0746 0.0752 0.0809 0.0903 0.3 0.0459 0.0466 0.0577 0.0709
0.4 0.1132 0.1122 0.1183 0.1300 0.4 0.0696 0.0721 0.0881 0.1057
0.5 0.1526 0.1538 0.1649 0.1799 0.5 0.1035 0.1092 0.1299 0.1530
0.6 0.2137 0.2151 0.2249 0.2423 0.6 0.1552 0.1602 0.1857 0.2120
0.7 0.2845 0.2880 0.3003 0.3201 0.7 0.2245 0.2273 0.2590 0.2895
0.8 0.3824 0.3902 0.4032 0.4232 0.8 0.3265 0.3312 0.3633 0.3936
0.9 0.5407 0.5418 0.5528 0.5721 0.9 0.4798 0.4885 0.5205 0.5506
1 1 1 1 1 1 1 1 1 1
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df.=4 df.=5

P k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-0.9 0.0000 0.0000 0.0000 0.0000 -0.9 0.0000 0.0000 0.0000 0.0000
-0.8 0.0000 0.0000 0.0000 0.0000 -0.8 0.0000 0.0000 0.0000 0.0000
-0.7 0.0000 0.0000 0.0000 0.0000 -0.7 0.0000 0.0000 0.0000 0.0000
-0.6 0.0000 0.0000 0.0000 0.0000 -0.6 0.0000 0.0000 0.0000 0.0000
-0.5 0.0000 0.0000 0.0000 0.0000 -0.5 0.0000 0.0000 0.0000 0.0000
-0.4 0.0000 0.0000 0.0000 0.0000 -0.4 0.0000 0.0000 0.0000 0.0000
-0.3 0.0000 0.0000 0.0000 0.0000 -0.3 0.0000 0.0000 0.0000 0.0000
-0.2 0.0002 0.0002 0.0002 0.0004 -0.2 0.0001 0.0000 0.0001 0.0003
-0.1 0.0007 0.0009 0.0017 0.0027 -0.1 0.0004 0.0004 0.0010 0.0020

0 0.0022 0.0029 0.0054 0.0082 0 0.0012 0.0015 0.0036 0.0066
0.1 0.0083 0.0081 0.0127 0.0190 0.1 0.0042 0.0049 0.0094 0.0152
0.2 0.0158 0.0172 0.0258 0.0357 0.2 0.0091 0.0106 0.0200 0.0310
0.3 0.0288 0.0308 0.0451 0.0598 0.3 0.0202 0.0228 0.0361 0.0526
0.4 0.0496 0.0533 0.0724 0.0929 0.4 0.0361 0.0399 0.0616 0.0848
0.5 0.0815 0.0875 0.1114 0.1376 0.5 0.0606 0.0672 0.0974 0.1284
0.6 0.1184 0.1275 0.1636 0.1971 0.6 0.1045 0.1121 0.1507 0.1866
0.7 0.1863 0.1966 0.2343 0.2727 0.7 0.1636 0.1727 0.2223 0.2635
0.8 0.2869 0.2953 0.3403 0.3794 0.8 0.2546 0.2713 0.3258 0.3695
0.9 0.4432 0.4559 0.5010 0.5370 0.9 0.4210 0.4364 0.4908 0.5314

1 1 1 1 1 1 1 1 1 1
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df.=6 df=7

p k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-0.9 0.0000 0.0000 0.0000 0.0000 -0.9 0.0000 0.0000 0.0000 0.0000
-0.8 0.0000 0.0000 0.0000 0.0000 -0.8 0.0000 0.0000 0.0000 0.0000
-0.7 0.0000 0.0000 0.0000 0.0000 -0.7 0.0000 0.0000 0.0000 0.0000
-0.6 0.0000 0.0000 0.0000 0.0000 -0.6 0.0000 0.0000 0.0000 0.0000
-0.5 0.0000 0.0000 0.0000 0.0000 -0.5 0.0000 0.0000 0.0000 0.0000
-0.4 0.0000 0.0000 0.0000 0.0000 -0.4  0.0000 0.0000 0.0000 0.0000
-0.3 0.0000 0.0000 0.0000 0.0000 -0.3 0.0000 0.0000 0.0000 0.0000
-0.2 0.0000 0.0000 0.0001 0.0002 -0.2 0.0000 0.0000 0.0000 0.0001
-0.1 0.0003 0.0003 0.0006 0.0014 -0.1 0.0002 0.0001 0.0005 0.0011
0 0.0008 0.0011 0.0028 0.0053 0 0.0004 0.0005 0.0020 0.0042
0.1 0.0027 0.0037 0.0073 0.0136 0.1 0.0019 0.0024 0.0061 0.0118
0.2 0.0063 0.0081 0.0169 0.0275 0.2 0.0058 0.0070 0.0147 0.0251
0.3 0.0151 0.0187 0.0324 0.0489 0.3 0.0122 0.0156 0.0293 0.0461
0.4 0.0303 0.0343 0.0564 0.0800 0.4 0.0244 0.0298 0.0517 0.0758
0.5 0.0516 0.0600 0.0905 0.1215 0.5 0.0440 0.0510 0.0846 0.1169
0.6 0.0868 0.0973 0.1394 0.1785 0.6 0.0799 0.0895 0.1340 0.1745
0.7 0.1512 0.1622 0.2135 0.2569 0.7 0.1313 0.1452 0.2050 0.2519
0.8 0.2392 0.2518 0.3140 0.3617 0.8 0.2251 0.2409 0.3068 0.3585
0.9 0.4030 0.4152 0.4794 0.5246 09 0.3907 0.4054 0.4739 0.5195
1 1 1 1 1 1 1 1 1 1
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df.=8 df=9

p k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-09 0.0000 0.0000 0.0000 0.0000 -0.9 0.0000 0.0000 0.0000 0.0000
-0.8 0.0000 0.0000 0.0000 0.0000 -0.8 0.0000 0.0000 0.0000 0.0000
-0.7 0.0000 0.0000 0.0000 0.0000 -0.7 0.0000 0.0000 0.0000 0.0000
-0.6 0.0000 0.0000 0.0000 0.0000 -0.6 0.0000 0.0000 0.0000 0.0000
-0.5 0.0000 0.0000 0.0000 0.0000 -0.5 0.0000 0.0000 0.0000 0.0000
-0.4 0.0000 0.0000 0.0000 0.0000 -0.4 0.0000 0.0000 0.0000 0.0000
-0.3 0.0000 0.0000 0.0000 0.0000 -0.3 0.0000 0.0000 0.0000 0.0000
-0.2 0.0000 0.0000 0.0000 0.0001 -0.2 0.0000 0.0000 0.0000 0.0001
-0.1 0.0001 0.0001 0.0003 0.0009 -0.1 0.0000 0.0000 0.0003 0.0008
0 0.0006 0.0007 0.0016 0.0039 0 0.0002 0.0004 0.0012 0.0034
0.1 0.0009 0.0017 0.0052 0.0107 0.1 0.0011 0.0017 0.0047 0.0101
0.2 0.0042 0.0055 0.0129 0.0240 0.2 0.0033 0.0043 0.0121 0.0223
0.3 0.0090 0.0120 0.0263 0.0435 0.3 0.0075 0.0098 0.0241 0.0415
0.4 0.0208 0.0259 0.0481 0.0725 0.4 0.0158 0.0212 0.0454 0.0712
0.5 0.0384 0.0456 0.0808 0.1146 0.5 0.0338 0.0404 0.0762 0.1117
0.6 0.0710 0.0802 0.1293 0.1708 0.6 0.0625 0.0753 0.1251 0.1684
0.7 0.1232 0.1386 0.1978 0.2473 0.7 0.1170 0.1329 0.1943 0.2452
0.8 0.2119 0.2311 0.3034 0.3557 0.8 0.2037 0.2219 0.2981 0.3501
09 0.3795 0.3985 0.4687 0.5173 09 0.3749 0.3938 0.4657 0.5146
1 1 1 1 1 1 1 1 1 1
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df.=10 df=15

p k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-09 0.0000 0.0000 0.0000 0.0000 -0.9 0.0000 0.0000 0.0000 0.0000
-0.8 0.0000 0.0000 0.0000 0.0000 -0.8 0.0000 0.0000 0.0000 0.0000
-0.7 0.0000 0.0000 0.0000 0.0000 -0.7 0.0000 0.0000 0.0000 0.0000
-0.6 0.0000 0.0000 0.0000 0.0000 -0.6 0.0000 0.0000 0.0000 0.0000
-0.5 0.0000 0.0000 0.0000 0.0000 -0.5 0.0000 0.0000 0.0000 0.0000
-0.4 0.0000 0.0000 0.0000 0.0000 -0.4 0.0000 0.0000 0.0000 0.0000
-0.3 0.0000 0.0000 0.0000 0.0000 -0.3 0.0000 0.0000 0.0000 0.0000
-0.2 0.0000 0.0000 0.0000 0.0000 -0.2 0.0000 0.0000 0.0000 0.0000
-0.1 0.0000 0.0000 0.0001 0.0006 -0.1 0.0000 0.0000 0.0001 0.0004
0 0.0001 0.0002 0.0011 0.0030 0 0.0001 0.0001 0.0006 0.0023
0.1 0.0006 0.0009 0.0041 0.0092 0.1 0.0002 0.0003 0.0028 0.0077
0.2 0.0023 0.0036 0.0107 0.0213 0.2 0.0012 0.0022 0.0082 0.0182
0.3 0.0064 0.0087 0.0228 0.0401 0.3 0.0041 0.0060 0.0193 0.0366
0.4 0.0149 0.0189 0.0432 0.0684 0.4 0.0106 0.0144 0.0368 0.0638
0.5 0.0326 0.0390 0.0753 0.1094 0.5 0.0245 0.0315 0.0674 0.1036
0.6 0.0634 0.0734 0.1208 0.1652 0.6 0.0452 0.0583 0.1115 0.1589
0.7 0.1108 0.1263 0.1898 0.2412 0.7 0.0940 0.1109 0.1796 0.2332
0.8 0.1983 0.2157 0.2928 0.3493 0.8 0.1749 0.1972 0.2829 0.3416
09 0.3663 0.3846 0.4618 0.5120 09 0.3360 0.3608 0.4485 0.5063
1 1 1 1 1 1 1 1 1 1

63



df. =20 d.f.=50

p k=0.005 k=0.01 k=0.05 k=0.1 p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000 -1 0.0000 0.0000 0.0000 0.0000
-09 0.0000 0.0000 0.0000 0.0000 -0.9 0.0000 0.0000 0.0000 0.0000
-0.8 0.0000 0.0000 0.0000 0.0000 -0.8 0.0000 0.0000 0.0000 0.0000
-0.7 0.0000 0.0000 0.0000 0.0000 -0.7 0.0000 0.0000 0.0000 0.0000
-0.6 0.0000 0.0000 0.0000 0.0000 -0.6 0.0000 0.0000 0.0000 0.0000
-0.5 0.0000 0.0000 0.0000 0.0000 -0.5 0.0000 0.0000 0.0000 0.0000
-0.4 0.0000 0.0000 0.0000 0.0000 -0.4 0.0000 0.0000 0.0000 0.0000
-0.3 0.0000 0.0000 0.0000 0.0000 -0.3 0.0000 0.0000 0.0000 0.0000
-0.2 0.0000 0.0000 0.0000 0.0000 -0.2 0.0000 0.0000 0.0000 0.0000
-0.1 0.0000 0.0000 0.0000 0.0003 -0.1 0.0000 0.0000 0.0000 0.0002
0 0.0000 0.0001 0.0004 0.0019 0 0.0000 0.0000 0.0002 0.0014
0.1 0.0001 0.0004 0.0023 0.0069 0.1 0.0000 0.0001 0.0012 0.0055
0.2 0.0005 0.0011 0.0070 0.0166 0.2 0.0003 0.0005 0.0053 0.0145
0.3 0.0027 0.0045 0.0171 0.0343 0.3 0.0011 0.0023 0.0136 0.0309
0.4 0.0069 0.0113 0.0344 0.0609 0.4 0.0048 0.0073 0.0293 0.0564
0.5 0.0188 0.0256 0.0633 0.1010 0.5 0.0133 0.0186 0.0558 0.0947
0.6 0.0414 0.0528 0.1074 0.1554 0.6 0.0287 0.0408 0.0994 0.1492
0.7 0.0812 0.1000 0.1754 0.2317 0.7 0.0687 0.0873 0.1648 0.2241
0.8 0.1647 0.1878 0.2751 0.3381 0.8 0.1440 0.1718 0.2657 0.3323
09 0.3276 0.3583 0.4456 0.5029 09 0.3022 0.3344 0.4363 0.5002
1 1 1 1 1 1 1 1 1 1
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d.f. = oo (Gaussian)

p k=0.005 k=0.01 k=0.05 k=0.1
-1 0.0000 0.0000 0.0000 0.0000
-09 0.0000 0.0000 0.0000 0.0000
-0.8 0.0000 0.0000 0.0000 0.0000
-0.7 0.0000 0.0000 0.0000 0.0000
-0.6 0.0000 0.0000 0.0000 0.0000
-0.5 0.0000 0.0000 0.0000 0.0000
-0.4 0.0000 0.0000 0.0000 0.0000
-0.3 0.0000 0.0000 0.0000 0.0000
-0.2 0.0000 0.0000 0.0000 0.0000
-0.1 0.0000 0.0000 0.0000 0.0001
0 0.0000 0.0000 0.0001 0.0011
0.1 0.0000 0.0000 0.0010 0.0044
0.2 0.0002 0.0003 0.0039 0.0128
0.3 0.0003 0.0014 0.0112 0.0282
0.4 0.0025 0.0049 0.0259 0.0534
0.5 0.0098 0.0153 0.0516 0.0908
0.6 0.0231 0.0354 0.0926 0.1440
0.7 0.0581 0.0774 0.1568 0.2187
0.8 0.1290 0.1588 0.2592 0.3277
09 0.2842 0.3182 0.4280 0.4923
1 1 1 1 1
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Appendix 4 - R Code for the Calculation of Coefficients of Finite Tail

Dependence
The code below generates 10,000,000 random observations from a t-copula with v degrees of freedom.

Suppose we have a copula with 4 variables, W,X,Y and Z. This is denoted in the code below by dim=4.
Each pair of variables (6 pairs in the case of 4 variables) has a correlation co-efficient of r(W,X),
r(W,Y)...r(Y,Z). Then the r vector “param” describes the relationship between the marginals as: paramx<-
c(r(W,X), r(W,Y), r(W,2), r(X,Y), r(X,Z), r(Y,Z)). The function c simply converts the individual elements into
a vector. The line disptr="un” means simply that the correlation coefficients are presented as a list
rather than as a correlation matrix.

In the code below we have used a single value of r in order to limit the number of tables produced;
however, separate values can instead be used.

r<-0.9

v<-50

param<-c(r,r,r,r,r,r)
t.Cop<-tCopula(param, dim =4, dispstr =
FALSE)

X <- rcopula(t.Cop, 10000000)

un', df = v, df.fixed =

Exactly the same principles are used to generate 10,000,000 random observations from a Gaussian
copula with 4 variables. No degrees of freedom parameter is needed here.

r<-0.8

param<-c(r,r,r,r,r,r)
NormalCopula<-normalCopula(param,dim=4,dispstr="un')
x<-rcopula(NormalCopula,10000000)

In each case, the matrix x contains 10,000,000 observations each of which is in the form of four co-
ordinates. As such, each observations can be described as a co-ordinate in a four-dimensional
hypercube. This information is then used to calculate the proportion of observations that are found in
the extreme corner of the hypercube between the origin and the co-ordinates (u,u,u,u). This proportion
can be defined as C(u,u,u,u). If this is divided by u — the maximum value that C(u,u,u,u) could take —
then the result is the finite coefficient of tail dependence

u<-0.005

k=0

for(i in 1:10000000){

I, <) {afi, 2]<w){ifx[i,3]<uw){if(x[i,4]<u)
{k=k+1}else{k=k}}}}}

p3k<-k/10000000

p3<-p3k/u

p3
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