Section A
INTRODUCTION

Volume 2 of the Claims Reserving Manual was first published in 1989 by the Institute
of Actuaries. At that time, Volume 2 consisted of five papers covering more advanced
reserving methods, loosely described as “statistical” methods. The criteria for
inclusion in Volume 2 were that the methods should be “statistical”, had been used by
a practitioner and had been found to be of value.

The initial edition of Volume 2 did not include any commentary on, or summaries of,
the five original papers, nor did it attempt to present them in any sort of context. The
present edition includes a précis of each of the original papers, so that the reader can
see the contents of each paper at a glance. In addition, two new papers have been
added to the Manual. Further papers will be added in the future, as appropriate.

Since the Claims Reserving Manual was first published, a considerable number of
actuarial papers on reserving have been published in a variety of journals, and some
papers have been offered to the Faculty and Institute of Actuaries for inclusion in the
Claims Reserving Manual. Clearly, not all the papers published or submitted since the
initial edition of Volume 2 can be reproduced or referred to in the Claims Reserving
Manual.

However, so that the reader is aware of some of this further work, précis of other
selected papers have also been added to Volume 2. The criteria for inclusion are that
the paper either puts forward a new approach to a claims reserving model, or gives
some useful refinement of, or variation on, an existing model. The intention is that
these summaries will be added to over time.

Whilst all the Volume 2 papers include an example where appropriate, illustrating the
use of the models, it was also felt that, with the widespread use of personal computers,
it would be useful to issue a disk with an illustration on a spreadsheet of the application
of the models. This should further aid the reader’s understanding of the model, and
assist any readers who want to try out the models in practice.

This revision of the Claims Reserving Manual therefore includes a disk and additional
description of two of the Volume 2 papers. Further computerised illustrations are

planned for other models where it is felt that this would be useful.

<>

09/97 A0



Section B
DESCRIPTION OF STOCHASTIC MODELS

[B1]
WHAT IS A STOCHASTIC MODEL?

Section 2B of the Supplementary Introduction to Volume 1 gives a general description
of reserving methodology. In that description, the process of arriving at an estimate of
future payments is described as one of constructing a model, fitting it to some set of
past observations, and using it to infer results about the future — in this case, the
future events we are interested in are the payment of claims. Several distinctions are
made between different types of model, including those between deterministic and
stochastic models.

Deterministic reserving models are, broadly, those which only make assumptions about
the expected value of future payments. Stochastic models also model the variation of
those future payments. By making assumptions about the random component of a
model, stochastic models allow the validity of the assumptions to be tested statistically,
and produce estimates not only of the expected value of the future payments, but also
of the variation about that expected value.

All the methods in Volume 2 could be described as stochastic to a greater or lesser
extent. One can distinguish between them a little, since the methods described in
Sections D1, D4, D5, D6 and D7 all allow the user to make estimates of the variation
about the expected future payments. The methods described in sections D2 and D3,
however, simply involve the fitting of curves to sets of data. The curves are then used
to predict future payments, but do not allow the modeller to make estimates of the
variation of these payments.

A further distinction can be made between those models based on individual claims,
and those which project grouped claims data. This distinction is most commonly found

amongst stochastic methods, although the only methods presently in Volume 2 which
model individual claims information are those explained in Sections D4 and D7.
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[B2]
WHAT ARE THE ADVANTAGES / DISADVANTAGES OF A
STOCHASTIC MODEL?

This section briefly highlights some of the perceived advantages and disadvantages of
stochastic models, to give the reader some idea of their strengths and weaknesses.

Section 2B of the Supplementary Introduction to Volume 1 observed that deterministic
models may often be applied without a clear recognition of the assumptions one is
making. One of the main benefits of a stochastic model is that it is totally explicit
about the assumptions being made. Further, it allows these assumptions to be tested
by a variety of techniques. Because it models the random variation of future payments,
estimates may be made of the likely variability of the estimated future payments.

This allows one to monitor whether the predictions of a model are within the bounds
one would expect. For example, a deterministic model simply makes a point estimate
of the expected future payments in a given period. The one sure thing one can say
about these expected payments, is that the actual payments will be different from
expected. Deterministic models do not give you any idea as to whether this difference
is significant. Stochastic models enable the modeller to produce a band within which
the modeller expects payments to fall with a certain level of confidence, and can be
used as an indication as to whether the assumptions of the model hold good.

The strengths of stochastic models can also be their weaknesses.

A stochastic reserving method models an immensely complex series of events with a
few parameters. Hence, as with any model, stochastic or otherwise, it is open to the
criticism that its assumptions are far too simple and hence unrealistic. Because
stochastic models are quite clear and rigid, there is very little scope for incorporating
judgement, or extraneous factors into the model.

Finally, stochastic models can be computationally quite complex to perform, and may
require a more in-depth statistical and computational ability than some of the more

simple deterministic models. This in turn can mean that the results are more difficult to
communicate than some of the more simple deterministic models.
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[B3]
WHAT MAKES A GOOD STOCHASTIC MODEL?

To appreciate what makes a good stochastic model, it is necessary to understand why
one constructs a model in the first place.

Take as an example a set of data on (say) motor claims. This may consist of tens of
thousands of claim payments, extending over a number of years. If we simply record
each of those amounts individually on reams of paper, the human mind simply cannot
grasp the essential characteristics of the data, or discern any pattern, let alone use the
data to make sensible predictions.

To understand the data in any meaningful way, therefore, requires the formulation of a
pattern that in some way represents the data. In this way, the important characteristics
of the data can be represented by a limited number of terms that can be relatively easily
understood.

Further, when considering any set of data over time, there will be some systematic
influences affecting the claims experience, such as the inflation in the cost of car repairs
in our example. There may also be some random influences, such as the variation in
the frequency of cars having accidents. To understand the data effectively, one needs
to differentiate between systematic influences and random variation.

It is this need to reduce complexity and to separate systematic influences from random
variations that leads to a stochastic model. A stochastic model allows the modeller to
replace the individual data values by a summary that both describes the essential
characteristics of the data by a limited number of parameters, and distinguishes
between the systematic and random influences underlying the data.

The parameters of a model are chosen to “fit” the data as closely as possible. The fit
can be made better and better by having more and more parameters. However, this
then becomes self-defeating, as a model with hundreds of parameters provides no real
reduction in complexity from the raw data, and allows the user only a limited ability to
grasp the key characteristics of the data.

An essential requirement of a good model, therefore, is that it has enough parameters
to describe the characteristics of the data, but not so many that its descriptive power
becomes limited. Additionally, as described in the first paper in Volume 2, as you
increase the number of parameters of the model, you decrease its predictive power.
That is, the model begins to adhere more and more closely to the raw data. Small
changes in those data can then lead to large changes in the parameters of the model,
making any predictions produced by the model unstable.

A good stochastic model should also enable one to appreciate the systematic influences
underlying the data, together with the random influences. Some data points may be
subject to considerable random variation, so the model should ensure that it is not
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DESCRIPTION OF STOCHASTIC MODELS

unduly affected by such isolated values. A good stochastic model should therefore be
capable of testing the underlying assumptions. By applying such tests, the modeller
will gain a greater understanding of the characteristics of the data and, hence, have
better control over the projected values.

The above points are, of necessity, fairly general in nature, as any sort of modelling is
as much an art as a science. To this end, it is worth observing what it takes to be a
good modeller.

The first and most important requirement is to appreciate that all models are “wrong”
to some extent. They are not “reality”’; they are just a simplified representation of
reality, enabling the user to make practical projections of the data. As a consequence,
there is no one “right” model, and many different models may be more or less equally
applicable.

So, the second requirement is that a good modeller should consider many different
models, trying to recognise all those that might be useful, rather than whether they are
“right” or “wrong”.

A final requirement of the modeller is that they should check the fit of a model. The
object of this exercise is to understand the past data, and to infer useful results about

the development of those data. This cannot be done rigorously if the modeller does
not understand where the model fits or deviates from the data.
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Section C
PRECIS OF PAPERS IN SECTION D

This section provides a précis of each paper included in Section D of Volume 2. The
intention is to give a brief summary of the paper, a description of the reserving model
on which the paper is based, and a few observations about the applicability of the
model. The précis also deal with what data are required and what level of statistical
and computational ability is needed, and offer some thoughts on the strengths and
weaknesses of the model.

The numerical heading given to each paper refers to the relevant sub-section within

Section D of Volume 2, where the full text of that paper is to be found.
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[C1]
THE CHAIN LADDER TECHNIQUE — A STOCHASTIC MODEL
Contributed by B Zehnwirth
(9 pages, see [D1])

Summary

The chain ladder technique is one of the oldest actuarial techniques to be applied
widely for estimating loss reserves. It appears intuitively natural and was for some
time widely regarded as being based on a non-stochastic model: that is, a model which
is deterministic and accordingly does not include a random component.

The paper demonstrates the intimate connection between the chain ladder technique
and a two-way analysis of variance model applied to the logarithms of the incremental
paid losses. Recognition of this connection reveals the merits and defects of the chain
ladder technique more clearly.

Description of the model

The basic model is as follows:

Log(P;) =Yij=a; + bj+e; (ejare independent identically distributed normal
error terms)

where Pij are the incremental payments for accident year i, development period j. This
model implies that each incremental paid loss, Pj;, has a lognormal distribution. The
model is fitted by least squares regression or by the application of an algorithm (known
as “Expectation-Maximisation”, or E-M) for the corresponding two-way analysis of
variance.

General comments

The basic statistical chain ladder is generally considered to be over-parameterised, and
can be criticised for not including any calendar year effects as part of the model. It is,
however, a powerful diagnostic tool for exploring payment/calendar year trends.

It can also form a basis for more sophisticated models, which are not so heavily
parameterised, and can include calendar year effects and incorporate additional
information into the reserving process.

Some of these extensions to the basic statistical chain-ladder are described in the paper
by S Christofides in Section D5, which is also summarised in section C5 of this
Volume. Further extensions to the basic model are also described in another paper by
B Zehnwirth, which is summarised in section E of this Volume. <>
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[C2]
EXPONENTIAL RUN-OFF
Contributed by B Ajne
(11 pages, see [D2])

Summary

The paper describes a model of the exponential run-off of the incremental payments
after the first few development years, based on observations for personal injuries in
motor insurance. A brief example is provided, as well as possible adjustments for the
effect of inflation.

Description of the model

The basic model is as follows:

C,=q.C.,,j=a+l, ..., A-1

ij i* -1

C.=0,j>A

y

where C; are the incremental payments for accident year i, development year j.

The q, are estimated using an algorithm to maximise a likelihood function. The
likelihood function is found assuming that:

P(X; = j)=B;. qg-a

where X, is the number of years between occurrence and settlement for claims
occurred in year i ( X, > o).

Each amount of claim payment is assumed to be independent of all others.

The reserves are calculated for each year of origin by multiplying the claims paid to
date by a ratio based on q, .

General comments

The concept of exponential run-off is particularly useful for long-tail lines of business.
The method is fairly simple mathematically, and the only data required are incremental
payments. Provided an equation “solver” is available, it can be programmed and used
very easily in any spreadsheet.

The assumptions made by the model are very strong, and it is doubtful whether
assumption (2.2) in the paper can ever be properly met in practice. Since this is central
to the exponential run-off assumed by the model, it casts some doubt on the validity of
the estimates, although the results of the model may still be useful.
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PRECIS OF PAPERS IN SECTION D

The author suggests that an examination of the residuals would be “useful”. In fact,
this may more properly be described as “essential”.
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[C3.a]
THE CURVE FITTING METHOD
Contributed by S Benjamin and L M Eagles
(9 pages, see [D3.a])

Summary

The paper describes the use of curve fitting to the progression of paid and incurred
loss ratios. A Craighead curve (otherwise known as a Weibull distribution) is
suggested with up to 3 parameters. A least squares method is proposed for the curve
fitting, with graphical examples. The use of curve-fitting is compared with other
methods.

Description of the model

The progression of loss ratios is considered by dividing the cumulative claims to date
by the estimated ultimate premiums for each year of origin. For each year a Craighead
curve y(t) is then fitted to the loss-ratios at time t, as follows:

y(t) = A(l—¢ )

where A is the estimated ultimate ratio, and b and c are parameters. b and c are fitted
to all the years of origin, and A varies for each year. For data consisting of a mixture
of short tail and long tail business, a double Craighead curve is proposed.

The fitting method is to minimise by iterations z w(t). (y(t) = Y, (1)), Where w(t) is
the weighting and y , (t) the observed loss ratio. The use of w(t) allows outliers to be

excluded, or the curve to be forced through the most recent data point. Two methods
of minimisation by iterations are mentioned, although they are not spelt out in any
detail.

General comments

The model was originally intended to be applied to London Market business, but can
be used for any type of business, provided that the run-off follows a Craighead curve.

There is no particular reason why the progression of the loss-ratios beyond the data
should follow any particular type of curve, so the use of the model to extend the curve

beyond the observed data should be treated with some caution.

The data required are paid and incurred claims, together with premiums or some
appropriate measure of exposure.

Ideally, the simple visual examination of estimated relative to observed data suggested
in the paper should be supplemented by a more formal statistical check of the goodness
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PRECIS OF PAPERS IN SECTION D

of fit of the model. The y° test, which can be performed quite easily, is suitable for
this purpose.

The paper only requires a few mathematical skills, although implementing the iterative
techniques requires a certain level of statistical and computational ability.

The model is non-linear with 3 parameters, so it cannot easily be fitted into a formal
spreadsheet. However, the existence of equation “solvers” in many spreadsheets may
provide a pragmatic solution to the problem of fitting the curve.
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[C3.b]
THE REGRESSION METHOD
Contributed by S Benjamin and L. M Eagles
(8 pages, see [D3.b])

Summary

The paper describes and illustrates a method of refining the ultimate loss ratios found
by some other method (for example the curve fitting method). A suggestion is given
as to how, using graphical means, one can assess likely upper and lower bounds for the
estimates of ultimate loss-ratios.

Description of the model

Ultimate loss ratios need to be estimated prior to applying this method. For each year
of origin and development year, IBNR loss ratios are determined by:

IBNR loss-ratio(development year t) = Ultimate loss ratio — Incurred loss-
ratio(development year t)

For a given development year, a regression line is estimated, based on all the years of
account, as:

IBNR loss-ratio(development year t) = a x Incurred loss ratio (development year t) + b
for some fixed a and b.
Reserves are then calculated from this formula.

The regression line can actually be reformulated in terms of credibility:

Future claims = Z x % x claims to date + (1-Z) x X premiums

Giving no credibility to the premiums, by regressing with b set equal to zero, is
equivalent to using a traditional chain-ladder method.

General comments

The method can be used for any type of business, provided that the ultimate loss ratios
are already estimated. It is very easy to implement in a spreadsheet. As the method is
based on regression, standard errors of the estimates of the parameters can easily be
determined by statistical techniques, as well as by the graphical method suggested.
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PRECIS OF PAPERS IN SECTION D

The paper is easily understandable, but the reader has to be familiar with the principle
of regression. The user of the method is given many suggestions as to how the
method can be presented simply to, for example, an underwriter.
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[C4]
REID’S METHOD
Contributed by D H Reid
(20 pages, see [D4])

Summary

This paper describes a class of models, set out in a series of papers written by the
author. It considers the case where a relatively complete set of information on
individual claims is available, and where past years' claim patterns may be expected to
give insight into the more recent years.

This approach was first described by the author in a paper in the Journal of the
Institute of Actuaries, “Claims Reserves in General Insurance”, Volume 105, Part 111
(1978). Subsequent papers in this series are set out at the end of this précis.

The method provides the means by which to establish a probability distribution of claim
reserves. Emphasis is given to the process of fitting and re-fitting models as necessary,
prior to the extrapolation process. The model is very flexible and allows for the
tendency of larger claims to take longer to settle, the proportion of nil claims to vary
from one origin year to another, the rate of claim settlement to vary both across and
within origin years, and for the effect of inflation on claim costs.

Description of the model

The basic model for the claims arising in a particular origin year consists of a number
of components:

1. Anunderlying bivariate distribution of the cost of positive claims by claim
settlement amount and development time.

2. A comparable univariate distribution by development time for nil claims.

3. The proportion of all claims represented by nil settlements.

4. A functional transformation of the settlement time axis from fixed calendar
period time to real settlement time (i.e. operational time) represented by the

underlying distributions (components 1 and 2).

5. A series of claim cost scale parameters intended to represent cost levels for fixed
intervals of operational time, relative to the underlying bivariate distribution.

6. A separate treatment of the largest group of claims by size.
The model assumes that the ordering of claim settlements is not affected by the rate of

settlement, and that this ordering is represented by the underlying distributions of
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PRECIS OF PAPERS IN SECTION D

components 1 and 2. Recent years' data are fitted to these underlying distributions and
components 3—6 are estimated. In conjunction with appropriate assumptions, the
fitted parameters are used to extrapolate the incomplete portion of recent years'
settlements, from which reserves and reserving distributions are derived.

General comments

The methodology is intended for situations where a detailed analysis of claims
behaviour can be obtained. It is likely to be of most relevance for Direct business,
where data on amounts and numbers of claims are available by claim size. The method
is quite complex, and requires a considerable amount of effort to implement in its
fullest form.

The method is very flexible, and can be adapted to embrace more (or less) elaborate
models of claim development. It can also be used to help develop sub-models relating
claim cost movements to extraneous variables, such as inflation.

A considerable amount of statistical knowledge is required. Some steps in the process
require the user to be able to use numerical techniques, for example finding parameters
that maximise a likelihood function, without setting out explicitly how this may be
achieved.

The original 1978 paper introduced the idea of Operational Time to the context of
claim reserving. Although the detailed modelling of the underlying bivariate
distribution has now been much simplified in the light of experience, the remainder of
the original approach remains valid. The papers in the series, all by D H Reid, are set
out below:

1. Claim reserves in general insurance, Journal of the Institute of Actuaries, 105, pp
211-296, 1978.

2. Reserves for outstanding claims in non-life insurance, Transactions of the
International Congress of Actuaries, Zurich and Lausanne, 2, pp 229-241, 1980.

3. A method of estimating outstanding claims in motor insurance with applications
to experience rating, Cahiers du CERO, Bruxelles, 23, pp 275-289, 1981.

4.  Discussion of methods of claim reserving in non-life insurance, Insurance:
Mathematics and Economics 5, pp 45-56, North Holland, Amsterdam, 1986.

5. Operational time and a fundamental problem of insurance in a data-rich

environment, Applied Stochastic Models and Data Analysis, 1995, pp 257-269.
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[CS]
REGRESSION MODELS BASED ON LOG-INCREMENTAL PAYMENTS
Contributed by S Christofides
(54 pages, see [D5])

Summary

The paper describes a statistical reserving model, based on the logs of the incremental
payments. It shows, by a simple example, how such models can be fitted and results
derived using a spreadsheet. A more realistic example is then considered, and
refinements of the model are described. Because it is a statistical model, standard
errors (a measure of the variability of the estimate) for the future incremental payments
can be calculated and statistical techniques used to test the fit of the model.

Description of the model

The basic model is as follows:

Log(P;) =Yij=a;+bj+e; (ejareindependent identically distributed normal
error terms)

where Pj; are the incremental payments for accident year i, development period j.

The a; and b; are fitted by regression, which can be done automatically in most
spreadsheets. The future payments and standard errors are then calculated using
matrix manipulation.

Refinements to the basic model are illustrated, including fitting a curve for the
development parameters, and adjusting for claims volume and inflation. Models based
on curves for the development factors can be useful for estimating tails, as they can be
used to project beyond the existing data set.

General comments

The method is of general use and is not restricted to any particular class of business.
The only data required are incremental payments. The basic method can be easily
programmed in any spreadsheet, although the matrix manipulation necessary to
calculate the standard errors may be somewhat time-consuming. Once the basic model
has been set up in a spreadsheet, however, the model can be fitted and future payments
predicted with very little time or effort for any data set of the same size.

The method does not work for negative incremental payments. There is also a limit to
the number of future payments (n) that can be predicted in a spreadsheet, to the largest
nxn matrix that a given spreadsheet package can manipulate.

The paper requires a basic level of statistical knowledge. Familiarity with matrix
manipulation and regression in a spreadsheet would be helpful, although the worked
example sets out all the steps clearly enough for this not to be a necessity.<>
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[Co]
MEASURING THE VARIABILITY OF CHAIN LADDER
RESERVE ESTIMATES
Contributed by T Mack
(65 pages, see [D6])

Summary

The author has written a series of papers on the subject of the variability of chain-
ladder estimates, most notably the CAS prize-winning paper "Measuring The
Variability Of Chain Ladder Reserve Estimates". The paper in Section D6 is a
reproduction of this paper with some modifications and additions.

The paper derives a formula for the standard error of chain-ladder reserve estimates
without assuming any specific claim amount distribution function. For ease of
reference, these techniques are described as the “Distribution-free approach”.

Description of the model

The foundation of the Distribution-free approach is the observation of three main
assumptions which are shown to underlie traditional chain-ladder techniques. These
are:

(i)  E(Cik+1|Cil, ..., Cik) = Cikfk, 1 <i<I, 1 <k <I-1,
(1) {Ci1, ..., CiI}, {Gjt, ... Gj1}, i1 # j, are independent,
(i) Var(Cik+1|/Cil, ..., Cik) = Cikok2, ] <i<L 1<k <I-1.

Where Cik denotes the accumulated total claims amount of accident year i up to
development year k, fj is the development factor from k to k+1, and oy are

parameters.

The first two assumptions seem intuitively sensible, although these can be
demonstrated to be the implicit assumptions of the formal chain-ladder model. The
third assumption is deduced from the fact that the estimator of fj, is the Cijk-weighted

mean of the individual development factors.
An important corollary of assumption (i) is that the development factors are not

correlated. That is, if we have a particularly high development factor in one period,
there is no tendency for the subsequent factor to be particularly low (or high).
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PRECIS OF PAPERS IN SECTION D

The main results of the paper are as follows. The estimate of the standard error of the
reserve estimate for accident year i, fli , 18:

— A 2 1
sedi=¢2 3 T
k= I+1 i k C

=1

The estimate of the standard error of the reserve estimate for all accident years
combined, ﬁ, 1s:

A . 1 2
sedi =y f@®, 7+, szk y
i=2 k +1 i ZC .

A hat indicates an estimator of the particular figure. The derivations of the estimators
of Cik, fk and oy are straightforward, and are set out in the paper.

General comments

Although the above formulae look quite daunting, they consist of nothing more than
basic arithmetic — addition, multiplication and so on — and are in fact quite easy to
implement in a spreadsheet. Once the formulae have been set up, a new set of data can
be brought into a spreadsheet. Activating a “calc” to the spreadsheet will then yield
the estimates of the standard errors of the reserves for each accident year, and the
reserve as a whole, for the new set of data. This is probably one of the easiest ways of
obtaining estimates of reserve variability.

There are many potential drawbacks to simple chain-ladder reserve estimates, which
are discussed in Volume 1. The approach in this paper does, however, have the
significant benefit of making clear the assumptions one is making. Also, because it is a
statistical model, it provides a series of diagnostic tools to test whether these
assumptions are valid, as well as giving estimates of reserve variability. The use of
these diagnostic tools in discussed further in Section F of Volume 2.

To understand fully the proofs in the paper requires a considerable amount of statistical
knowledge. However, the general reasoning involved and the final formulae for the

standard errors of the reserve estimates are quite simple, and within the reach of most
people with a basic grasp of statistics.

<>
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[CT]

PROBABILITY DISTRIBUTION OF OUTSTANDING LIABILITY
FROM INDIVIDUAL PAYMENTS DATA
Contributed by T S Wright
(20 pages, see [D7]

Summary

The paper describes an approach to estimating future claims using data on individual
claim payments, rather than the more usual aggregate data. The approach provides an
estimate of the whole probability distribution of the outstanding liability, rather than
just the first two moments. This additional information may be used to assess safety
loadings of reserve estimates, allowing for the skewness of the distribution of the
outstanding liability.

Description of the approach

The approach may be summarised as follows:

(1)  Estimate the distribution functions, F;(x), for the size of payments made in
development period i.

(i) Use a weighted combination of the F;(x) to estimate the distribution of future
payments, F(x).

(ii1) Fit a curve to F(x) and discretise the fitted curve so it can be used in a
compounding algorithm in step (v).

(iv) Construct a probability distribution for the number of future payments.

(v) Calculate the compound distribution of the amount of future payments based on
the estimated probability distribution functions in (iii) and (iv). This is done using
Panjer’s recursive method.

General comments

The approach relies on the availability of individual claim size information, and is
capable of implementation in a spreadsheet. To do so, one needs to be able to fit
curves to distributions. The curve-fitting and calculating of the compound distribution
would probably be quite time-consuming to implement. The approach is probably of
most use for situations where one is not considering a very large number of claims.

The paper does make a few sweeping assumptions, which are not fully spelt out. It is
intended, however, to illustrate a pragmatic approach to the use of individual claim size
information. The paper illustrates the calculation of a safety loading using the
Proportional Hazards criterion , suggested by Wang, which may not be widely known.
The use of Panjer’s recursive method may also be new to many readers.
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The paper requires a moderate level of statistical and computational ability.
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Section D
PAPERS OF MORE ADVANCED METHODS

This Section includes the full text of seven papers, covering more advanced reserving
methods than those dealt with in Volume 1. In each case, the paper is based on a
formal statistical concept, and has been found to be of value when dealing with
practical reserving issues. A précis of each paper is also given in Section C, for those
who do not wish to read each paper in full.

The papers included are as follows:

DI.

D2.

D3.

D4.

Ds.

Dé.

D7.
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The Chain Ladder Technique — A Stochastic Model by B Zehnwirth
Exponential Run-Off by B Ajne

a. A Curve Fitting Method by S Benjamin and L M Eagles
b. A Regression Method by S Benjamin and L M Eagles

Reid’s Method by D H Reid

Regression Models Based on Log-Incremental Payments by
S Christofides

Measuring the Variability of Chain Ladder Reserve Estimates by T Mack

Probability Distribution of Outstanding Liability from Individual
Payments Data by T'S Wright
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[D1]
THE CHAIN LADDER TECHNIQUE — A STOCHASTIC MODEL

Contributed by B Zehnwirth

1

09/97

Introduction

The chain ladder technique (equivalently, age-to-age development factors) is
one of the oldest actuarial techniques to be applied widely for estimating loss
reserves.

The technique appears intuitively natural and only until more recently was
always regarded as being based on a non-stochastic model: that is, a model
which is deterministic and accordingly does not include arandom component.

The principal objective of this article isto demonstrate the intimate connection
between the chain ladder technique and a two-way analysis of variance model
applied to the logarithms of the incremental paid losses. Recognition of this
connection reveals the merits and defects of the chain ladder technique more
clearly.

Chain ladder technique

We first review the chain ladder technique in order to indicate two underlying
model assumptions. The second model assumption is often not recognised by
many users of the technique.

Let P; represent the incremental paid loss made in development year j, in
respect of accident year i. The batch of data Py, i=1....,s; j=1,...,s-i+1is
represented as a matrix thus:

1 2 i 8
1
2
1 Pl]
5
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Accident years (rows) range from 1 to s and development years (columns) aso
rangefrom1tos.

We denote the cumulative paid loss in development year j, in respect of
accident year | by Cjj. Itisgiven by:

j
Ci=> Py
h=1

A matrix of development factors based onthe { C;; } array is constructed by
computing the development factor Djj as

Cij

D; = —
Ciin

1=1,..5
j=2,..,5i+1
The first basic assumption madeis

Assumption 1: Each accident year has the same age-to-age devel opment
factors. Equivalently, for eachj=2,...,s

Dij = Dj fordli= 1,2,...3.

Under Assumption 1, the most popular estimator of the development factor D;
isthe weighted average

§+1
2. Ci
—_ i=1
D = 3=

> Cin
i=1

g+1
*
> Cin* Djj
i=1
§+1

> Cin
=1

The development factor Dj; is weighted by the corresponding "volume"
measure Cij_;.

Some users of the chain ladder technique do not use the weighted average
estimator of D;. Thisis an estimation issue that we address subsequently in this
chapter. The fact remains that Assumption 1 isamodel assumption associated
with the chain ladder technique.
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Projections of the quantities Cj;; i=2,...,S, j=s-1+2,...s are computed thus:

Ciy = Cisa [] D«

k=s1+2
This technique of projection is explicitly based on the fact that a second model
assumption isvalid. Itisassumed that each accident year has necessarily a

different level estimated by that year'sindividual experience. The quantity
Cis.i+1 represents an estimate of the level of accident year i.

Assumption 2: Each accident year has a parameter representing itslevel. The
level parameter for accident year | is estimated by Ci ¢ j+1.

The last accident year sis represented by the single observation Cj;. Were we
to assume that accident years are completely homogeneous, we should
estimate the level of accident years by

2 Cll/S )
i=1

(or abetter estimator of the mean level at development year 1).

Complete homogeneity means that the observations Ciz, Czs,...,C g are
generated by the same mechanism. The chain ladder technique explicitly
assumes that the mechanisms generating the incremental paid losses Cij,
Ca1,...,C g are so unrelated that pooling of the information does not afford any
increased efficiency. | would find it very difficult to believe that this
assumption isever true. Inany case, why not find out first what the data
indicate?

Statistical modelsrelated to chain ladder technique
Based on the two assumptions discussed in the preceding section, the following
autoregressive model discussed in the paper by Kamreiter and Straub (1973)
suggests itself.

Cij = Dj Cij_1 + 5” i=1,..8
where the random variables D;, 8;; and Cij_; are independent and satisfy

E[&;] =0, E[Dj] = d.
The quantities{ D; } represent the development factors and are the same for
each accident year. Notethat it isimplicitly assumed that the observations Ci;,

Ca,..., Cq arenot related (at al). Moreover, the additive error term g;; is
guestionable — the error term should be multiplicative (see Section 4).
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We only remark that the above mentioned model satisfies Assumptions 1 and 2
of the preceding section and devote the remainder of this chapter to a second
stochastic model, discussed by Kremer (1982).
The basic model is defined by the multiplicative representation,

Pi=a'.b' e (2.2)

wherea' is the parameter representing the effect of accident year I;
by’ is the parameter representing the effect of development year j;

and gj'isarandom error term.

By taking logarithms of both sides of equation (2.1), the model may be re-
formulated as atwo-way analysis of variance model, viz.,

Yij=logPj=p+a+b+e (2.2)
where the parameter p represents the overall mean effect (on alogarithmic
scale), the parameter g represents the residual effect due to accident year i and

the parameter b; represents the residual effect due to development year j. Itis
also assumed that

§a=§m=0 (2.3)

and that { e; } represent zero mean uncorrelated errors with Var[a,-]:oz.

This mode! implies that each incremental paid loss P;j has alognormal
distribution.

In the two-way analysis of variance model (2.2), accident year isregarded as a
factor at slevels and development year is regarded as afactor at slevels. Itis
also assumed that the P;'s are independent random variables having a
lognormal distribution with

mean = exp(u + & + by + 0.567) (2.4)
and

variance = mean® * (exp(c?)-1) (2.5)
Accident year effects and development year effects are assumed to be additive
with no interaction. In other words, the effect of an accident year is the same

for each development year and vice versa.

We now turn to the estimation of the parametersp, { & } and{ b }.
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Model (2.2) is essentially aregression model where the design matrix involves
indicator variables. However, the design based on (2.2) doneissingular. In
view of constraint (2,3), the actual number of free parametersis 2s-1, yet
model (2.2) has 2s+1 parameters. By setting a;=b,=0, say, the resulting design
isnon-singular and estimates of parameters can be obtained using a statistical
regression package.

Kremer (1982) presents three recursive equations for estimating the parameters
u,{a}and{b}. Theseequationsareessentially solutions to the normal
equations of the model described by expression (2.2) and constraint (2.3). If
there are no missing data values in the matrix, estimates of the parameters can
be obtained using standard methods. When there are too many missing values,
and standard methods cannot be used, the following technique, called the E-M
algorithm has afair amount of intuitive appeal.

For a complete matrix the estimates of the parameters are well known:

2=Y. =33V, (2.6)
i=1 j=1

a=vY. Y. (2.7)
and

6] = V] V ! (2'8)
where

Yi =XYils (2.9)

j=1
Y, =XVYyls (2.10)

=1

The E-M algorithm is arecursive technique for finding maximum likelihood
estimates in the case of incomplete data. The estimates given by (2.6) to 2.8)
are maximum likelihood but are based on a complete matrix. The E in the term
"E-M agorithm" stands for Expectation and the M for Maximisation (of the
likelihood).

Sep 0: Complete the matrix by starting with someinitial expected values. For
instance, you may enter into the (empty) cell (i,j) thevalue yis i+1.

Sep 1: Compute the maximum likelihood estimates for the completed matrix
using equations (2.6) to (2.8).
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Sep 2: Usetheestimates 0, { & } and { p, } obtained in Step 1 to compute new
expected values G,+ & +,; for the empty cells (lower triangle).

Now return to Step 1 and continue the recursions until a certain prescribed
tolerance is reached, e.g. relative change in all estimates is less than 102,

Thefinal estimates, { & } and{ p,} represent the maximum likelihood
estimates. The variance o is estimated by the Mean Square Error

s si+l

o¥ = ZZ(yij ! E)j)z/(n 2s 1)

i=1 j=1
where n=total number of observationsin the upper triangle, viz., s(s+1)/2.

Forecasts of P for i=2,..., sand j=s-i+2,..., sare given by
B, = exp(ii+a+p,+055%).

Note that the two-way analysis of variance model can be applied and estimated
for any shape array of the incremental paid losses. This meansthat aformal
chain ladder technique can be applied to any shape array provided n>2s-1.

Theimportance of thelog transform — removal of heter ogeniety

Loss reservers often describe their data as being heterogeneous. For along tail
line of business, payments are necessarily made over time. Indeed, the main
cause of heterogeneity istimeitself! Time, amost always, almost everywhere,
subjects incremental paid losses (and severities) to one type of heterogeneity
we already know about: the variability in incremental paid losses (and in
severities) increases as mean level increases.

Let'sillustrate this well supported phenomenon with an example. If in 1965
average severity was 1,000 and standard deviation of severity 200, and if in
1988 average severity is 30,000, then the standard deviation of severity in 1988
is probably around 6,000. However, the standard deviation of the logarithms of
severities has remained stable between 1965 and 1988. The logarithmic
transformation stabilises the variance since it has a standard deviation that is
proportional to the mean.

Based on the foregoing discussion, the model
Rj:H+a+b]+a]

in place of model (2.1) of Section 3, cannot be correct because the variance of
the error term g; will necessarily depend on p, & and b.
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The foregoing discussion, moreover, aso indicates that the geometric mean of
development factors is a more efficient estimate of the mean development
factor than an arithmetic average.

5. Estimation of development factors

Development factors are typically based on the cumulative paid losses and are
ratios of numbers. It isnot possible to determine, by eye, if two computed
development factors are different in the sense that they are generated by a
different process. For example, suppose the incremental paid losses for the
first two development years, for two contiguous accident years, are generated
by 100 tosses of a symmetric coin. The following scenario may be observed.

Development Y ear
0 1
Accident 1 41 63
Y ear 2 59 38

The two computed development factors are 2.537 and 1.644. These, however,
are generated by the same process.

Moreover, there is a substantial loss of information when data are cumulated.
For instance, a constant incremental paid loss of 100 at every development year
has devel opment factors based on cumulative data that asymptote to one, and
indeed, even if the incremental paid losses increase according to a polynomial
trend, the development factors (based on the cumulative data) asymptote to
one. Furthermore, any trends in the payment year direction are different to
identify and estimate if the data are cumulated in the development direction.

6. Parameters

Consider the following quadratic trend model representing annual sales of a
product,

yt=2+3t2+nt

wheret =1,2,... denotes year, y; salesin year t, and the error terms{ n;} are
zero mean and independent from a Normal distribution with variance 6°.

Suppose we generate the values ys, Ya,..., Y7 (Seven year sales figures) and ask a

colleague to forecast ys. We know the compl ete specification of the model
generating the sales including o®.
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The colleague estimates the following models:
1. Linear trend
Yi=a tat+n.

The regression output indicates that R*=68% but the residual's appear to
have a systematic pattern.

2. Quadratic trend
yi=ao+art + 3 P + g
For this model R*=76% and the residuals appear to be in good shape.

The colleague observes that as the number of parameters increases, the
quality of fit isimproved as measured by R?. Accordingly, the next model
suggests itself.

3. A polynomial of degree six
yi=ag+ art +... agt®
Here R?>=100% and the fitted curve presents residuals that are all zero.
The colleague presents his forecast as
yg=ao+ 8ay +... + 8%

When the colleague presents his solution, we mention to him that the data
presented to him had an error, that is, the datum y, had been incorrectly
generated.

The colleague has now to revise his forecast in the light of this information —
the revised forecast is likely to bear no resemblance to the first forecast
especialy if 6 islarge!!

The moral of thistaleis that the polynomia model used by the colleague
produces forecasts that are extremely sensitive to the random component in the
data. The forecasts are subject to large uncertainties and accordingly are not
useful. Thisisafeature possessed by any model that has many parameters —
overparametrisation resultsin instability. The chain ladder model or technique
has many parameters. An array comprising s accident years and s devel opment
yearsinvolves 2s-1 parameters. In particular, thereis an accident year
parameter for accident year s where there is only one observation — similarly
for development year s.
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Every model contains a priori information — the chain ladder model contains
very little apriori information. The chain ladder model does not contain any
information in respect of:

(i) trendsand/or patternsin development factors;
(if) trends across accident years;
(iii) trends across payment years.

Typically in Statistics, atwo-way analysis of variance model is applied to a
rectangular array involving two factors, each at a number of levels. A factor is
aqualitative variable. We normally do not relate the different levels of a
factor. For example, when analysing the effects of different soil types and
fertilisers on yield of barley, we do not assume some kind of trend or
systematic pattern across the fertilisers! It is absurd to treat accident years and
development years as factors at different levels, the way we treat different soil
types and different fertilisers.

The example involving the sixth degree polynomial gives us some insight as to
when the chain ladder technique may work (provided the parameters are
estimated efficiently). The chain ladder technique works when the mechanisms
generating the paid losses are completely deterministic, that is, 6° = 0, or 6% is
very close to 0 and development factors are homogeneous. Unfortunately, the
real world is not like that.
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Introduction

This method has been used to assess reserves for personal injury liabilities
within direct motor third party insurance. It isarelatively straightforward
method which simply models claims run-off by an exponentia distribution. It
is based on the observation that the claimsin each development year for a
particular year of business often show an exponentially decreasing shape apart
perhaps from the first two years of development.

Thus, if the first few development years (often the first two years) are ignored,
an exponential model can be applied. Care must obviously be taken that the
modél fits the data accurately and an examination of the residuals would
perhaps be useful. The method has the advantage that prediction is possible for
later development years than any in the triangle, unlike the chain ladder
method.

A separate model is applied to each year of business written, but the results are
inspected for trends and possible pooling of years of incurrence for which there
isinsufficient data for estimation.

The method is described first without taking account of inflation; inflation is
dealt with in section 6.

The general case
In this section the model is discussed in detail, without inflation adjustments.

Define Cij =amount paid in development year j in respect of claimsincurred in
year i.

It is assumed that all payments are made before year A.
i.e. Gj=0forj>A (2.1
Also, after year o (0. < A) the claim payments are modelled by

Cij+1= Gi Gy (22)

for some fixed .
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Thisis equivalent to an exponential tail, since, under the exponential model,
Cj=A\ e for somei (2.9

thenCij. =N 40 = 4 Gj (2.9

and (2.4) isequivalent to (2.2) with a parameter transformation.

The following is a non-rigorous motivation of the likelihood which is used to

estimate ¢j. Considering one particular incurrence year i, the suffix on g; is

dropped, and it is assumed that there have been T years of run-off (T > a).

Let X = development year by the end of which aclaimispad (X > a).

Thenset PX =j)=pd™ j=a,..T (2.5)

Summing over j gives

_ 1 _1q
B_ 1 qTo:+1 - 1 qTa+l (26)
1q
The likelihood function is
T .0( N
L(d) = TT(Ba™)" 27
j=a

where Nj; = number of claimsin development year j in respect of claims
incurred in year i

It can be shown that, if each pound of claim isindependent of the rest, (2.7) can
be replaced by

L(@) = [1(q")° (28)

and (2.8) isused in all cases, even when the above assumption does not hold.

Taking logs of (2.8),
l0gL(@) = 3. G105+ ) loga) 29)

(2.9) can be maximised and the maximum likelihood estimate of q found. This
is done for each row and thus a set of g estimates found.

The mathematical maximisation is contained in the appendix: this shows the
uniqueness and existence of the maximum. However, it ismore
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straightforward to maximise (2.9) numerically using a simple search algorithm
such asinterval bisection. Thisisillustrated by the example in section 5.

3. Reserves

Let R;j be the claims reserve at the end of the development year j (wherej > o)
assuming no inflation.

S0
Rij = > Ci (3.1)
k=a
Now
Z Cix
Rij= Y Cui k_j]+1 (32
ke > Ci
k=a

and, according to the model in section 2,

© A
SC Y ra”

k=j+1 —  k=j+l

J J wherevy; = Cj,
Y. Ci > 7 qika
k=a k=a

A ko
> q

k=j+1

]
> g
k=a

_ @) ag)
(Lo ™)1 q)

_ 9 a”

g g

S(a@), say (3.3)

Now, since we are using maximum likelihood estimation, the maximum
likelihood estimate of the reserveis

Ri= k_i Cik S (6) (3.9
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The reserves in the example (section 5) have been calculated using (3.4) and
the estimate of g; from section 2.

Themode in practice

The model which has been used in practice can be summarised in the following
table.

For year of incurrencei,

development year data model
0 Cio Cio
1 Ci1 Ci1
2 Ciz Yi
3 Cis Yidi
4 Cia Yig
A-1 Ciaa Yig" 3
A Cia Yig 2
A+1 Cian 0
wherey; = Ci,.

It can be seen that this case hasa = 2. From the data, ¢ is usually estimated to
be around 0.9 for a succession of origin yearsi, and A is about 19.

Thus, in practice, the first two years are not modelled: the forecasting is applied

only to run-off years of delay 3 or more. This means that the two most recent
accident years have no forecast values of ultimate claims.
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5. Example
The method isillustrated in this section by applying it to some actual data. In
the example, the theoretical derivation of ¢ is used (as set out in the appendix).
As stated earlier, it is much easier to use a simple search method, but the
theoretical approach isused in order to illustrate the method.

Year of origin 1974
T =10, (T—22) = 2(j - 2) Cj = 30,483 2C;j =10,335

From equation (A.9)

X =2.9495 < TTZ

Hence a solution of f(q) = 0 is needed where

9 1.
19°1¢q

f(o) = 8 X) (equation (A10))

As afirst approximation, using equation (A11)

qzl[ TZY) 12 _osa2

2 TT 2
q f(a)
0.842 5.102 - 5.05>0
0.860 4976 -5.05<0
0.850 5.046 — 5.05~ 0

- ~085

Year of origin 1975

T=09, T2 =35 (- 2) Cij=24,000 2Cj;=8,354

2
X =2.8836 < 2
2
8 1 _—
)= = L1 (7X
(@ lqslq( )

Asafirst approximation, q = 0.883
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q f(a)
0.883 4143 -41164>0
0.890 4103-4.1164<0
0.885 4131-4.1164>0
. q ~ 0.89
and so on.

Continuing the process for years of origin 1976 to 1981 gives the following table:

Y ear of origin q
1974 0.85
1975 0.89
1976 0.84
1977 0.78
1978 0.74
1979 0.69
1980 0.78
1981 0.79

These values of § can be substituted into the formulain section 3 to calculate the
reserves.

The simpler search method can be illustrated by considering, for example, year of
origin 1974. Thevaluesof g and | =logL(q) (which has to be maximised) in the
relevant range are

q |
0.82 ~21875.7
0.83 ~21854.2
0.84 -21841.7
0.85 ~21837.9
0.86 _21842.7
0.87 _21855.8
0.88

—21877.2
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Thus the maximum likelihood estimate of q is
g ~0.85 (ashefore)

For the most recent years of origin there is very little datato use in the estimation
procedure, and an IBNR computation is needed. For these years a"smoothed”
common g value may be chosen which is a conservative estimate (e.g. 0.85 or 0.90) in
the sense that it over-reserves: it is preferable that the predicted claims should be
greater than the actual claims.

Adjustment for futureinflation

Future inflation can be taken into account by modifying the claims reserve at the end
of yearj, Rij.

Suppose future inflation with inflation factor r per year isto be taken into account.

Thisimpliesthat R;; has to be increased by a factor

A e
a J'}/
> Vit
K=j+1
A

2 Viqika

k=j+1

_ gt @nMaarny
a“ (a1 aq)

_ M@ q) ifgre1

(LgM(aqr

or

%0 H
- A Ndg) ifgr=1 6.1)
1q”

Thisfactor is called lj(q;, r).
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If future inflation is to be taken into account, but its influence limited to n years ahead,
then the factor by which R;; has to be increased isinstead (for j < A —n)

j+nl K A K
a  Kj%o a  n%o

2% Tt Y g
k=j+1 k=j+n

A k

(24
> 7iq
k=j+1

_ @ @nM@ gnt+m™ag™a g™ a a)
" @ q) @ a)

%0 nl N%o ~N1 Ajn+1:
— r (1 (qir) )(1 qi)+r q; (1 q; )(l g I’) if gr=1l

LaM)(Lqgrn

or

%o %o Ajn+1:
_ r (nl)(lqi)+r (1q| ) ifqirzl

1q"

(6.2)
Thisfactor is called 1;"(q;, r).

Summarising, it can be seen that if future inflation is taken into account then the
reserve must be

Rili(G.n o Rl (@,.n
depending on how many years’ inflation are taken into account.
Appendix

In section 2, the log likelihood is derived in equation (2.9) as
T -
logL.(a) = ¥ Cjj(log 8 +(j a)logq)
jTa

This expression has to be differentiated with respect to g. First of all, note that

d_,B: 1 + (1gg (T a+l) (A.1)
dg (19" (1q™"’
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and so
d, (1La)(T a+D)q™ (19
dq Z CIJ{ (1 qTa+l)2 : (1 q)
1 ( Ta+1) (Ja) }
(1d™ (10 q
_ 3 [ @etnd” 1 (a)
ZC{ Tqg™ @a g }
(A.2)
Put X = Tl ™ ; and note that
Z Cij 2

Ta

q 1 1 ]
— g == It |-
(1 qTa 1) q[ (1 qT 1)

(A.3)
Substituting into (A.2) it can be seen that
d (T a+1)( 1 ] 1 X }
— logL = ¥ G — 1 | —+=
dg Z '{ q 1qg“h J1lqg g
T 1] = q Ta+l
= ii - X — (T +1)+———
o ) rgrente])
T 1 = 1 Ta+l
= Ci |=| X| —+( @) — }
2o ]q{ { 1q 1q™"
(A4
A solution of d_q logL = 0isneeded, so consider
1 Ta+l
fQ) = X L—+(T a) %} (A5)
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and note that
Ta+l 1 -
f(q) = —-(T X A.6
() 1qm+1lq( a X) (A.6)

Hence f(0:) = X > 0.

It iseasy to show that f is a decreasing function of qfor 0 < g <1 (just differentiate

and show that the derivative isalways < 0). Soif it can be shown that f(1.) < 0 it will
have been proved that there is an unique solution of f(q) =01in 0 < q < 1 and that this
Is the maximum likelihood estimator of q.

To calculate f(1.), first consider g=1—-¢. Then

Ta+l 1

1(1e) e
Ta+l

f(q) = (T a X)

- UUT a+1)e +%o(Ta +1)(T )2 (Ta +1)(T a)(T al) e+ O]

10X
&
L : (1 aXx)

el %(T @) + 3t )T a 1+ 0], e

1 (T a T )T a De (T aj8+o(2) 1 T o X

B 2 6 2 1%

Tza [Tza [T g 1T2a j&""O(gZ) T « Y) (A7)

%YTTQ ase—0
Sof(1) <0if X <%
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A value of qis needed such that f(g) = 0. If Y<T—a, and if g =1 - & then from the
above equation (A.7) it can be seen that afirst orde? approximation for ¢ is given by

= (T d ?j 12 (A.8)
2 (T a)(T a+2)
For the model in practice (section 4),

= 1 7.
X == Z(J 2) C; (A.9)
Ty
Thenif X EL;; , gisasolution of
T1 1 =
f(q) = —= — (T 2 X) (A.10)
g 1q
and afirst order approximation for € is given by
= (T 2 Yj 12 (A.12)
2 T(T 2

A more accurate maximum likelihood estimate of g can be found by a numerical
search method around thisfirst order approximation. Thisisillustrated in the example
in section 5.

The approximate maximum likelihood estimate of q can be found from equation (A.8)
using

g=1-¢.
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A CURVE FITTING METHOD AND A REGRESSION METHOD
Contributed by S Benjamin and L. M Eagles

Introduction

This method models the run-off triangle row-by-row and then ties the rows together.
Each row, or year of account, is modelled by a Weibull distribution function. This
model was suggested by D H Craighead, and so the Weibull distribution function has
become to be known as the Craighead curve when it is used in this context. It is not a
linear model and the three parameters have to be estimated using an iterative search
method. Once this has been done, the ultimate loss ratio for each year of account can
be estimated.

The second part of the method relates the known loss ratios (paid or incurred) to the
predicted ultimate loss ratio. Taking a particular development year, each row of the
triangle has a known loss ratio for that development year and a predicted ultimate loss
ratio from the first part of the method. There is thus a set of pairs of known and
dependent variables: one pair for each year of account. A line of best fit is found,
using standard regression methods. From this regression line, another estimate of the
ultimate loss ratio for each year of account can be read off. This new estimate has the
advantage that it takes into account the information from all years of account, rather
than just one particular year of account. The regression line can also be used to
produce a confidence interval for the estimated ultimate loss ratio, and to estimate loss
ratios for future development years (ie the lower triangle).
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THE CURVE FITTING METHODContributed by S Benjamin and L. M Eagles
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1.3
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Introduction

In the London Market details of numbers of claims are generally not available
or not relevant. Data is usually available for each "year of account" or year of
origin, i.e. for all risks written in a particular accounting year which is usually a
calendar year. The items normally available are:

(i) Premiums paid to date

(i) Claims paid to date

(iii) Claims outstanding, typically the case estimates as notified by the
brokers to the companies for outstanding claims.

For each year of account separately, a past history of premium payments, claim
payments and claims outstanding will be available. This information, split by
year of development, may not be complete (e.g. no information may be
available on the claims paid by the end of the first or second year of
development). Sometimes quarterly development data is available. Data is
normally available subdivided by currency and possibly by line of business.

The curve fitting method works by estimating the Ultimate Loss Ratio ("ULR")
for each year of account, from which the necessary reserve is easily derived.
Years of account do not need to be homogeneous.

The method will provide a reserve for each year of account for which
sufficient past development data is available. As will be seen, even where little
historical development for any one year is available, the information from
adjacent years can be used to help.

The method lends itself well to interactive graphical illustration and is therefore
easy to follow by actuaries and non-actuaries.

Method

Run-off triangles are drawn up for as many years of account as possible
showing the development year by year (or quarter by quarter) of premiums and
claims.

An estimate of the ultimate premiums receivable is made for each year of
account. Ifitis necessary to calculate the estimate then development factors
are normally applied which are calculated from the data without smoothing.
Other methods, such as the Regression Method described below, could be used
in appropriate circumstances. Often the underwriters' estimates are used since
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the underwriters have a better feel for the way in which, in practice, policies
are being signed.

The estimates of ultimate premiums are divided into the relevant claims to give
a run-off triangle of loss ratios.

The loss development patterns analysed may be either

(a) paid loss ratios

(b) incurred loss ratios (where incurred claims are paid claims plus claims
outstanding), depending on which is believed to be more useful, or

(c) both.

For each year of accunt for which there is sufficient development a curve is
fitted to the loss ratio development. The chosen curve y(t) is described below;
it tends to a finite limit (the estimated ULR) as the development time, t,
becomes very large.

Choice of curve

The curves used to fit the loss development pattern for a particular year of
account are chosen:

(a) to fit the past history of claims payments as best as possible,
and
(b) to allow for additional future claim development.
Empirical considerations suggest that if a smooth curve is sought to fit the
shape of the loss ratio at development time t, plotted against t, that curve would
have a negative exponential shape. The actual formula is:

y() = A(l —e )

The parameters of such a curve have specific meanings:

A: Astbecomes very large y(t) tends to a value of A, i.e. A is the estimated
ULR.

b:  Att=b y(t)=A(1 —e ') i.e. b is the time taken to reach a loss ratio of about
63% of the ultimate loss ratio. b is measured in the same units of time as t;
for example, if t is in years, then so is b.

c: c defines the steepness of the curve.

This curve has been called a "Craighead Curve". It was originally suggested in
a paper by D H Craighead (1979).

Two graphs showing how this curve varies if the b and ¢ parameters are varied
are set out at the end of Section 4.
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Other curves can be used; for example a double Craighead curve (if it is
thought that the data consists of two parts, one short-tail and one long-tail), of
the form:

YO = A (1 ™)+ A, (1 ")

can be fitted. This is useful when the data are given quarterly and hence the
number of data points is larger than the number of parameters.

It is not always necessary, or advisable, to fit the curve to each year of account
separately. The important more recent years of account cannot be fitted
anyway. Within the same class of business it is useful to fit the same b and c
(i.e. shape) to all years of account and let A (the ULR level) vary. Looking at
all the curves thus generated on the same screen (graph) is helpful. Scaling
them all to the same nominal ULR of 100% shows by eye whether acceptable
homogeneity exists or whether, typically, one year may be an outlier and
deserves to be fitted separately by allowing b or ¢ or both to vary also.
Knowledge of a structural break in the type or mix of business can be brought
into the judgement.

It can also be helpful to fit A, b, ¢, to the paid loss ratios and A, b,, ¢, (i.e. a
common ULR, A) to the incurred loss ratios, and to view the graphical results
on the same screen.

Certain classes of business have typical values of b and c. These may be
imposed on data which is otherwise unhelpful.

Method of curve fitting

Any appropriate method of curve fitting could be used. Typically, however, a
method which chose curve parameters in such a way as to minimise the sum of
weighted least squared deviations of the curve from the data has been used.
For example, if an individual year is being fitted in isolation, the quantity to be
minimised is D where

D = Zw(t) (y(t) — yobs(t))*

observed loss ratio at time t
weights assigned to the loss ratio at time t

where  yobs(t)
w(t)

and y(t) is the curve being fitted.

When using the Craighead curve, it is possible to determine algebraically the
value of A needed to minimise the measure of deviation, D, provided b and ¢
are known (or fixed).

When b and/or ¢ are not known, or a more complicated curve is being fitted, it
is normally necessary to determine the curve parameters using an iterative
minimisation technique, such as steepest descent, or the Davidon, Fletcher and
Powell algorithm. These iterative techniques normally (but not always)
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converge quite quickly. The parameters they converge to will define a "local"
minimum of D, which may not always be the "global" minimum.

Any weights could be attached to the individual data points fitted by the above
approach (thus outliers can be excluded by giving such points zero weight).
Typically, however, the following could be used:

(a) equal weights of 1 to each non-zero data point,

or

(b) w(t)=t thus giving more weight to the more developed data,

or

(c) A weight of 1 for the most recent data point for the given year, 0.9 for the
next most recent point, 0.9 for the next most recent, etc.

A special case, which can be considered as an "adjusted Craighead curve", is
where the curve is forced through the most recent data point (e.g. by giving this
point a very large weight, or to fit A, b, c, and to adjust A, keeping b and ¢
fixed to make the curve pass through latest point). Curves fitted in this manner
ensure that further development is non-negative.

Typically, the loss ratios and the curves fitted to these loss ratios would be
plotted graphically. A qualitative goodness of fit can then be determined, by
visual examination. Signs of heterogeneity or structural breaks between
different years of account can be seen visually. Curve fits can then be refined,
if necessary, by the actuary if he or she believes that different curves would fit
the data better.
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Comparison of the curve fitting method with other methods

The curve fitting method can model claims development (or even premium
development) directly, rather than modelling loss ratios. Graphically, however,
it is easier to visualise and present loss ratios.

The link ratio method may technically be reformulated in a manner closely
analogous to the curve fitting method. If a single curve is chosen for every
year of account so that each successive link ratio matches those derived from a
chain ladder or other link ratio method and if, when fitting this curve to the data
no weight is given to any data point for a given year of account other than the
most recent then the curve fitting approach will produce the same estimated
reserves as the link ratio method.

Three potential weaknesses inherent in the link ratio method are:

(i) over parameterisation of the data (analogous to the curve chosen being
fitted with too many parameters).

(ii)) undue weight given to the most recent data point in each account year, and

(iii) inability to reflect structural breaks in the underlying business run-off
patterns.

It can be seen from 5.2 that the first two weaknesses can be partially overcome
using a curve fitting method which chooses curves according to fewer
parameters than those implied by a link ratio method, and by giving some
weight in the curve fitting to data points other than the most recent. The curve
fitting method can also accommodate structural breaks (as mentioned in 3.6).

The curve fitting method as we have applied it uses premiums as a measure of
exposure (by analysing loss ratios). In principle the curve fitting method could
instead use other exposure measures, such as number of policies, if they were
appropriate to the type of business being analysed.
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Introduction

The regression method is used to refine estimated ULR's (Ultimate Loss
Ratios), particularly those derived from the curve fitting method.

The method can provide explicit confidence limits for the ULR thus estimated.
These confidence limits are not those in the strict statistical sense but do give a
practical range in which the ULR can be expected to lie.

This method also lends itself well to graphical illustration and is therefore easy
to follow by actuaries and non-actuaries.

Further details of the method, and of its potential application to a minimum
reserving basis used by Lloyd's were set out in 1986 in a paper by S Benjamin
and L. M Eagles.

Method

ULRs for each year of account are estimated using an alternative reserving
method. It is not necessary to have estimates for every single year of account,
although it is usually helpful to have them for as many years as possible.

IBNR loss ratios are calculated as the difference between the ULRs and the
incurred loss ratios.

For each development year in turn, a regression line is fitted to the set of points
obtained from plotting the IBNR loss ratios against the incurred loss ratios at
the development year under consideration; each year of account being
represented by a separate point.

At one extreme, the points may all lie on a straight line so that the relationship
may be deduced with little uncertainty. At the other extreme, the points may
appear to be scattered at random which suggests that there is little relationship
between losses at the development year under consideration and the eventual
level of future losses. In fitting this regression line the fitting can be found as a
"confidence interval”; this is a region about the line where future results are
likely to fall.
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The regression line can be expressed in terms of its "Slope" and "Constant" and
leads to an expression of the form:

Estimated IBNR loss ratio = Slope x (incurred Loss Ratio at development
year under consideration) + Constant %

This expression can thus be used to estimate the IBNR loss ratio and hence the
ULR for the year of account whose latest development year corresponds to the
development year under consideration. The regression lines arising from other
years of development can similarly be applied to estimate the ULRS for the other
years of account.

‘Where very few years of account have advanced to a particular development
year, a curve fitted to the underlying loss ratios can be used to provide estimates
not only of IBNR loss ratios but also of the expected incurred loss ratios to each
development year. These expected loss ratios for any development year can
then be plotted against estimated IBNR loss ratios in exactly the same way as
actual loss ratios. A line of best fit and a confidence interval can then be
derived. For some recent years of account this approach may also be adopted
where there is a large amount of fluctuation in the data for the early
development years generally.

It is possible to estimate ULRs (or to estimate IBNR and/or outstandings) by
regressing one of these items against either paid, incurred or outstanding loss
ratios. It is also possible to use more complicated regression, e.g. log-linear
regressions rather than linear regressions. The mechanics of the method remain
unchanged.

The decision as to which regression to make is made after looking at the plots of
residuals in each particular case.

Comments

A qualitative degree of confidence in the reserves established by this reserving
method can be gained by visual examination of the plots mentioned in 2.3.

Plots consisting of points scattered apparently at random (such as described in
2.4) do occur, particularly for more recent years of account. In such cases it
may be appropriate to take the regression line as the Estimated IBNR loss ratio
= Constant (where the constant is chosen as the average IBNR loss ratio, or
from other considerations).

In many other cases confidence intervals, again particularly for more recent
years of account, can be quite large. It is believed that this usually reflects
inherent difficulties facing any loss reserving method, rather than weaknesses of
this particular method.
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The regression line stated in 2.5 may be algebraically reformulated in terms of
credibility theory, as:

Future Claims = z x k x claims to date + (1 - z) x 1x premiums
(z is the degree of credibility given to the claims data).

As the development year (and the credibility given to claims data) increases we
would therefore expect the constant and the slope of the regression line both to
tend to zero.

The actual regression lines adopted may be adjusted if desired to exhibit this
behaviour. For years of account when the regression line constant has become
zero the method becomes analogous to the link ratio method.

In practice, for discussion with underwriters, it is more effective to plot
separately for each year of development the ULR as ordinate and the paid (or
incurred) loss ratio as abscissa, and to fit the line of regression.

A simple measure of the inherent variability can then be demonstrated visually
by:

(a) drawing a line parallel to the regression line and passing through the data
point furthest from it, followed by

(b) drawing a further line parallel to it at the same distance on the other side.

Thus, a path symmetrical about the line of regression is formed which just
encloses all the data points. The width of the path is an intuitively appealing
display and measure of the inherent variability. The width of the path obtained
by regressing ULRs against paid loss ratios can be compared with the width
obtained by using incurred loss ratios.

Outliers can be identified visually and lead to useful discussion.

At the first level of presentation, if curve fitting is to be avoided, a sufficient
number of ULRs must be available. Hence either sufficient history must be
available or the underwriter's own estimates of ULRSs on partly developed years
of account must be used.
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Introduction

The method used by D H Reid is essentially non-parametric in nature. A
central feature isthe use of an empirical estimate of the distribution of claims
by size and delay-time, based on one chosen year of origin, the "base year".
This estimated distribution is assumed to underlie al the other years of
business. The number of claimsfor each year is assumed to be known or
estimated. Instead of estimating arate of development for the other years of
business, each is compared with the base year. For example, if the proportions
of the total number of claims from year of origin 2, developed to the end of the
first, second, third etc year of their run-off are calculated, then the
corresponding points of time for the same proportions in the base year are
|abelled 21, 22, I3, EtC.

The way in which corresponding points of time in the run-offs, and the
corresponding sizes of claims are developed and used are described in the
paper and shown graphically in Figure 5.

The complications arise mostly from the special treatment required for the end-
periods, and for large claims.

Various complicated expressions are evaluated using numerical techniques
which are typical of modern computer-based calculations; in principle, they do
not affect the method, although they are part of the work of implementation.

Thisisadescription of areserving method first proposed by D H Reid (1978)
and subsequently developed in a series of papers (Reference 1to 3). Itisa
very powerful method of most relevance in direct business where dataiis
available subdivided by claim size.

The following aspects of the claims reserving situation provide motivation for
the particular approach taken:

1.2.1 In most reserving contexts for the claims arising from a particular period
acorrelation exists between their cost and the period of time elapsing
between origin and settlement. Rates of settlement are at |east partially
within the control of claim officials and are not necessarily constant
from year to year. Primafacie, adequate understanding of the
developing experience of aclaim portfolio upon which reserves can be
constructed can thus be gained only by monitoring both development
time and cost variablesjointly. Thus both of these variables and in
particular cost must be treated in any thorough reserving process.
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The standard actuarial approach to graduation by means of a standard
table would appear to provide aframework suitable for generalisation in
this context. It turns out, however, that, because of the subjectivity
involved in what constitutes a claim at the practical level — leading to
varying proportions of "nil" claims — the relevant features of the
process require careful specification.

The actual cost of claimsis determined partly by factors extrinsic to the
company, and partly by company policy. It isimportant that historic cost
movements should be visible in aform which enables the effect of these
sources to be viewed, before extrapolation to the future, and that this
view should as far as possible be free of corruption through point 1.2.1
above.

It goes almost without saying that the general insurance market is highly
competitive. Particularly in the context of a small market share thereisa
considerable premium on estimating claims experience levels as
precisely as possible, and to this end maximum benefit from available
datais needed. The objective should be to create claim estimation
methods which make explicit use of data and use visible valuation bases
and are thus directly under management's control. Present day
computing power is such as to render computational labour transparent
to the user.

Although the method is relatively complex, it is readily capable of being
implemented on a PC.

The underlying model represents a deliberate simplification of the claim
process (although more elaborate than any other currently in use). The
extent to which it isrefined in application will depend on the context —
in most applications the model as proposed will be adequate. For some,
for example where radically different types of payment are embraced
within a claim, and where factors affecting each may be different, a
version of the model which reflects this may be necessary (see e.g.
Section 4 of Reference 2), or a"DP" solution may be adequate which
subdivides the experience into two or more parts each of which can be
valued separately. Nevertheless, it should be said that experience over
10 years has shown the basic model to be applicable in most cases
without further elaboration.

Any vauation method — from case estimates onwards — involves the
use (explicitly or implicitly) of a conceptual model, and it iscritical to
the success of the method that the degree of adequacy of the model
should be visible — and where inadequate the model should be capable
of modification, or, in the last resort, rejection.

Whilst the method has wide application — and can easily cope with,

e.g., the effect of Excess of Loss reinsurance cover on claims experience,
it isnot readily applicable to "pathological" types of claim, such as
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certain long term industrial diseases— at least until considerably
extended data bases are available.

1.2.9 Itisimportant to mention that in the original paper much of the
presentation was concerned with modelling the two way distribution of
the base year in considerable detail. The author has now indicated that a
relatively simple approach to the distribution based on linear
interpolation will suffice for most practical purposes. Thisresultsina
much less labour-intensive approach than formerly.

2. The structure of the method is quite involved and the flowchart (fig. 1) may
help clarify the interdependence of the various stages. The heart of the method
isabivariate distribution intended to express the relationship between ultimate
cost and time of settlement of claims originating in one year.
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Figurel
2.1 Thevariable x represents size of claim (aggregation of individual payments)
The variable t represents time of development (time elapsing from the
beginning of the origin year to the date of settlement).

09/97 D4.3



2.2

2.3

2.4

09/97

PAPERS OF MORE ADVANCED METHODS

Then M(x,t) represents the probability that a claim exceeds amount x and is
settled at atime of development greater than t.

2.1.1 Origin date can refer either to date of originating event or date of
notification to the company: in the second case estimation for known
outstandings is produced; in the first some method of forecasting IBNR
numbers is needed — then the method can produce total reserves
(known cases and IBNR).

2.1.2 Consistency isrequired in the definition of aclaim and its "time of
settlement”. The latter could for example relate to "time of first closure"
— leaving liability in respect of reopenings to be determined separately.
The important thing is consistency — other arrangements are possible.

The underlying method is as follows for a particular year of origin of claim:

e aproportion p of the claims are zero (i.e. settled at no cost);

e of the zero claims, M*(t) is the proportion whose time to settlement
exceedst;

e of the non-zero claims M™(x,t) is the proportion whose cost exceeds x
and time to settlement exceedst.

The distributions M*(t), M™(x,t) are empirically determined from the
experience of awell (i.e. nearly completed) developed year of origin (the "base
year"). For later years of origin this distribution is assumed to apply, athough
the model allows for different rates of settlement and for claim inflation by
fitting mappings from the actual time and monetary amounts of later yearsto
the operational time and monetary amounts of the base year. It also alowsfor
varying proportions of zero claims.

The function M™(x,t) is truncated so that large claims and claims settled at very
late durations are treated differently in thisanalysis.

2.4.1 Thedefinitions of cut-off points for large and late claims should be
chosen to fit convenience.

2.4.2 Lateclaimsareincluded in the last time period analysed (the "end
group”). For most direct lines of business the end group should form a
very small proportion of all the claims and no significant distortion need
be introduced by this approach.

2.4.3 Large claims are modelled separately. The assumption here is that the
number of large claimsis binomially distributed and that the amount can
be modelled by a Pareto curve. The most recent years will not (yet)
supply much data for large claims and older years, including years
earlier than the base year, can be used. The large claims modelled in this
section may also include claimsincluded in the main analysis so asto
provide more data; obviously in any final calculations care should be
taken to avoid double counting on any claim.
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2.4.3.1 The proportion of large claimsis settled from the base year data
by judgement. This same proportion isthen used to determine
the actual large claimsin each year of origin j.

2.4.3.2 Datafrom anumber of years of origin are deflated back to the
base year by a number of assumed large claimsinflation factors.
When a Pareto curve provides a good fit, this combination of
inflation factor and curve is adopted. Projections of future sizes
of large claims can then be carried out on afuture large claims
inflation factor, which may be based upon the fitting above.

2.4.3.3 The chosen proportion of large claimsis used on the future
probability of alarge claim arising. This probability is applied
to the total number of claimsin each year of originj to find the
expected number of large claimsfor year j. This number isthen
combined with the size as found above.

A year which iswell developed is chosen as the base year. Experience has
shown that the actual choice of base year does not have a maor effect on the
final results, as the fitting of mappings between the base and later years will
correct for any unusual effects. In any case of doubt, alternative base years can
often be selected for comparison.

Fitting the time mappings
"Operational Time"

A critical feature of the model (necessary because of 1.2.1 above) is the manner
in which allowance is made for varying rates of claim settlement on the claims
arising in each origin year. Thisisachieved by the introduction of an
"operational time" mapping in each origin year subsequent to the base year.
Theideaisthat the proportions of claims settled at each point of development
of agiven origin year equate to those for the base year at the operational time
value specific to that point of development.

The operational time scale for each origin year is determined entirely on the
number of claims settled, and not the cost of claims.

Thus (refer to figure 2) ry; represents the value of operational time for origin
year 2 corresponding to the stage of development (by number of claims and not
amounts) which that origin year has reached at development time 1 year.

More generally rj« is the operational time at which the base year has reached
the same stage of development as origin year | at its kth year of development.
Total number of claims by origin year

If the origin year is defined as year of notification, thereis no difficulty in

ascertaining the number of claims. If however the origin year is defined as
year of event, some meansis required at this stage for estimating the eventual
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number of IBNR claims. Usually asimple procedure based on reporting
patterns will suffice.

Settlement time (in years)
1 2 3 .

21 144 12 Ty
BASE — ——4 '
TEARQ

ORIGIN ) ; .
YEAR 1

ORIGIN ¥ ! i
YEAR 2

YEAR

Figure 2
3.3  Fitting rjx and p
The datawill then provide us with:

Q™jk=the number of origin year j claims settled at positive cost in calendar
time (j+k, j+k+1).

Q’k = the number of origin year j claims settled at zero cost in calendar time

(+k, j+k+1).

Q = thenumber of origin year j claims still unsettled at calendar time s
(where sisthefinal calendar year of development currently
available).
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Diagrammatically:

origin year | Q

——— et et ~

settlement timet=0 1 2.. sj-1 S

Figure3
We would expect these relative ratios to be:

(l—pj)* (1—pj)* C P Mz(rj s—j)
[M™(0,0-M™(0,ri)] | [M™(0,1;))-M"™(0,r;2)]

o (o

l_ . an X
[M*(0)-M*(rj1)] [M?(rj)-M*(rj2)] + (L-p)M™(r;

s—j)

Figure 4

We can construct alog-likelihood function for thisfit:

sl slj
L= Z{ kZO[N,<Zk+N?f]+Nj }

=1

where

NG = QLIN{M Trd M Tryeal} + Q5 Inp,

Nk = Qi IN{M ™y, 0] M ™rjis, O} + Qi In (1 p))
N;j = Q;In{pM Tris] +(1 p) M™r;s, O]}

Estimates of rx and p; are found by maximising the log-likelihood function.
Thisis achieved by standard computational methods.

3.4 Validation

At this stage the actual and predicted results can be compared, and if the base
year isinappropriate for the data this should become evident.

3.5 Alternatives
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In the event that a significant diversion should be found at this stage between
actual and predicted results, various alternative models are available — for
example it may be appropriate in some contexts to sever completely the
connection between zero and non-zero claims and proceed accordingly,
alowing different rj for zero and non-zero claims.

Fitting the monetary mapping
The development of numbers of claimsin each origin year has been compared
to the base year, and it is now necessary to compare each origin year to the

base year on the basis of the cost of claims. Thiswill produce a set of inflation
factors.

bk represents the factor by which the cost of claims originating in year j and
settled in development year k exceeded that of those base year claims which
were settled between rjx and r; k+1, i.€. the equivalent time in the base year.

Againitispossibleto fit by for al the j,k available using alog-likelihood
method.

To bring size of claim into the analysis we group by size into bands (i, Xj+1). If
we then let Qjj represent those claims included in Q™ falling between x; and
Xi+1, Where the x; are dividing points between the bands, we can express the
distribution of Q. as:

M i*jk -M ?+1jk

where

* Xi Xi
Mi' = M n T M n — ljk+
jk { bjk jk } { bjk jk+1 }

The log-likelihood function is proportional to:
2Qyk log (Mij - Minije)

and the values of by, which maximise this can be found by numerical
techniques.

Again, at this stage we can examine the by, to determine whether they accord
with intuitive understanding. We can al'so compare the fitted and actual
distributions of claims by size. In the event that what appears to be a poor fit is
obtained three possibilities need to be distinguished.

e Thesample of claimsinvolved may be so small that appreciable random
fluctuation is anticipated.
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e The choice of bands of claim size on which the fit has been carried out
may be inappropriate relative to the weight of the distribution concerned.

e It may bethat a substantive change in the underlying distribution has taken
place which does not permit of representation by the underlying surface
mapped by the successive transformations involved.

In the first of these cases typically recourse would be had to comparative
values from earlier years, or alternatively the period concerned would be
grouped with one or more surrounding periods in order to provide amore
statistically viable sample.

In the second case, an alternative choice of fitting points can be examined, and
it would be the intention to develop an "expert" system to provide this facility
automatically.

In the third case a decision must be made as to whether the feature concerned is
one which can be expected to persist in future and should therefore be carried
forward or may safely be disregarded from the point of view of future
projections.

It is now possible to examine the effect of inflation on past settlements. Before
doing so, however, it is necessary to allow for changes in rate of settlement,
which may distort the observed values of by, (see section 1.2.1). Thisisdone
by deriving adjusted inflation factors Bjx, which relate to fixed periods of
operational time rather than calendar time.

i.e. whereas by relates to the period between settlement times k and k+1,
corresponding to operational times rjk and r; x+1, Bjk relatesto the period
between operational times k and k+1.

Comparisons of By for successive origin years should then be free of the
distorting effect of changesin rates of settlement and should reflect the "true"
effect of inflation.

Note — for notational convenience the fixed periods of operational timeto
which the Bji relate are termed "groups".

4.4.1 The Bj are obtained as weighted averages of those by which lie wholly
or partly between operational time k and k+1. The weights used are the
contributions to the mean non-zero claim cost from the component parts
of the base year distribution.

This derivation assumes that each by applies uniformly over the period

to which it relates. Other assumptions, and other methods of combining
the component by could be used. It would also be possible to calculate
the Bj directly, using by derived from them to fit the data.

4.4.2 Sincethe Bjx correspond to periods of operational timeit is desirable to
be able to relate them to calendar times so that secular changesin claim
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cost can be properly measured. Thisis done via Rjx, which is defined as
the time to settlement in origin year j of the beginning of group k; i.e. Bjk
relates to the period of settlement Rj« to Rjk+1. The Rjx are obtained from
the ry by linear interpolation, though other means for obtaining them
could be used. Figure 5 demonstrates the relationship between the bk
and Bjk and between the lik and Rjk.

4.4.3 Because groups and calendar years of development rarely correspond
exactly, the situation often arises, for a particular origin year, where past
bjk provide information for only part of a group, the remaining part being
outstanding. Such outstanding parts of groups are known as fringe

B e — Bjk —_—
— bk -
I T.
ke jk+1
base \—I\ v

\ 2N
§ N . \

\ ~ « \

J Rk Rik+1
k k+1

groups. Usually each origin year will have one fringe group (never more
than one).

The treatment of these groups has to be considered carefully. If only a
small part of the group is outstanding then it may be appropriate to apply
the Bjx obtained from the settled part to the outstanding part.

Conversely, if only asmall part is settled then it would be more
appropriate to use preceding origin years Bji for the same group, along
with projected inflation, as a guide to the By, for the outstanding part.

Figure5
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Estimating Reserves

The process of estimating reserves arises as a natural consequence of the
underlying conceptual framework — a bivariate claims distribution (by size
and time) is modified to reflect the observed experience of individual origin
years. The required modifications are produced by the Bj.

In the reserving context, what isrequired is that part of the modified bivariate
distribution which is outstanding at the time of inspection, i.e. that part which
lies after Mi(s-j+1)-

Estimation of reserves thus boils down to estimation of the outstanding Bix.
This may normally be done by assuming a constant rate of future claims
inflation (f, say) and applying the formula Bj+1 k=(1+f)B;k for outstanding
groups but other adjustments may also be made to alow for, e.g., anticipated
changesin rate of settlement or inflation rates which vary by origin year or
settlement year.
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5.2.1 The expected settlement amount for each outstanding group is then
calculated as the product of

() Bik
(i)  mean non-zero claim cost for the group
(iii) expected number of non-zero claimsin the group.

To obtain (iii), the expected number of non-zero claimsin each group,
the estimated total number of outstanding non-zero claims (as obtained
from the fitting procedure described in 3.3) is spread over the group pro
rata to the proportion of al non-zero claims attributable to each group.

It isthen asimple matter to accumulate the total settlement amount
outstanding.

5.2.2 It should be borne in mind that, as mentioned in 2.1, the claim costs
reserved represent aggregations of individual payments, i.e. the ultimate
cost of outstanding claims. To obtain the outstanding monetary amounts
any payments made on account on these claims should be deducted from
the reserve calculated as described above.

5.2.3 Fringe groups, described in 4.4.3, require specia consideration. The
appropriate B should be obtained as discussed in 4.4.3 and the mean
non-zero claim cost and expected number of non-zero claims are derived
from the distribution for only the outstanding part of the group.

5.2.4 Large claims also require special consideration. When assigning the
outstanding non-zero claims to groups, the proportion of large claims
may be reduced in line with the number of such claims aready settled
for each origin year, in order to allow for the time development of these
claims. The appropriate Bjx may be obtained from an assumed constant
inflation rate, though it should be borne in mind that for these claims
origin year is the important determining factor for cost level.

Miscellaneous
The advantages of the method cover two main headings:
(i) Analysis

By removing the effect changesin the rate of settlement have on observed
claim cost the method allows a proper analysis of the underlying
movementsin claim cost and, unlike other standard methods (e.g. chain
ladder, separation method) is free from the distorting influence of such
changes. Inspection of the fits, both by size and time, may also indicate
whether observed changes can be attributed to secular movement or relate
to underlying changes in the nature of the business, in which case
appropriate steps may be taken to amend any assumptions for the future.

(i) Control
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By suitable adjustment of the parameters affecting the reserves (e.g. rate of
inflation, individual Bjx, proportion of large claims) senior management
can ensure that the reserves reflect their judgements as to general
economic conditions and the nature of the business (possibly as indicated
by the method's own analysis). The flexibility of the method allows such
adjustments to be precise and specific.

The method can also be extended to experience rating of larger commercial
risk, though a number of constraints may be required because of greater
variability, e.g. by reference to an extended model using B, from alarger
portfolio. Thisisof particular significance to those contexts where rating is
based on "burning cost". (For afuller discussion see Reference 3.)

As pointed out in the original paper, the method gives rise to the possibility of
estimating confidence intervals for outstanding claims. Beyond thisit becomes
apractical possibility to examine the "strength” of reserves in terms of the trade
off of variability against mean cost at a given reserve level.
Example

Example Accounting Date: 31.12.87
MODEL (Section 2)

The Base Y ear for the model is 1982 with truncation points of 6 for operational
time t and £80,000 for claim size x (see paragraph 2.3-2.5).

The model for Nil claims, M*(t), is:
(x 10°°)

t: 0.00 0.5 1 2 3 4 5 6
M?(t): 100,000 84,835 37,299 1288 46 13 3 1
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The model for Non-nil claims, M™(x,t), is:
(x 10®)

t: 0 0.5 1 2 3 4 5 6
X

£0 100,000 71,556 28,296 2,278 598 243 112 70

£25 95126 68,026 26,889 2,147 568 234 106 68
£100 56,228 43,280 19,881 1,852 513 213 99 65
£200 35,885 28,612 14386 1552 454 201 97 63
£500 15,727 13,189 7,577 1,136 384 180 93 59
£1,000 7,336 6,529 4,158 859 334 160 84 53
£1,500 4512 4115 2,798 728 304 150 80 4
£2,000 3030 2,792 1,989 615 275 139 76 49
£3,000 1529 1425 1,126 462 234 122 68 44

£4,000 918 876 745 376 211 112 68 44
£5,000 595 570 511 310 184 104 65 42
£6,500 414 407 372 255 160 99 59 40
£8,000 285 279 258 190 133 87 55 40
£10,000 203 203 186 148 112 76 49 38
£15,000 104 104 97 85 74 51 34 28
£20,000 68 68 66 63 57 47 34 28
£25,000 55 55 55 ol 49 40 28 25
£30,000 40 40 40 38 36 27 21 19
£40,000 28 28 28 28 27 21 15 13
£50,000 17 17 17 17 17 15 11 9
£65,000 17 17 17 17 17 15 11 9
£80,000 13 13 13 13 13 13 9 8
£100,000 6 6 6 6 6 6 4 2

The above matrices are based on 23,679 Nil claims and 52,643 Non-nil claims
forming the actual datafor the Base Y ear as seen at 31/12/87. The values of
M?(t) and M™(x,t) at intermediate values of x and t are derived from linear
interpolation of In(M) against t and/or In(x). For this purpose, the deviceis
used of re-assigning the lowest value of x to 1, in order to avoid singularities
when taking logs.

For large claims (see paragraph 2.4.3) the model consists of atruncated pareto
distribution over the range £80,000 to £420,000 with parameter 1.29. The
proportion of large claimsis 0.00012. Thisisslightly different from the
proportion shown in the bivariate model above becauseit is derived from the
inspection of a number of years data as described in paragraph 2.4.3, asare
also the truncated limit £420,000 and the pareto parameter 1.29.
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FITTING THE "TIME" MAPPINGS (Section 3)

The actual number of claims settled and outstanding for later yearsis:

ORIGIN
YEAR

1983

1984

1985

1986

1987

Fitting the p; and rjx as described in paragraph 3.3 gives the following

parameter values:

ORIGIN b
YEAR

1983 0.7015
1984 0.7019
1985 0.7073
1986 0.7195
1987 0.7361

09/97

Nil
Non-nil
Nil
Non-nil
Nil
Non-nil
Nil
Non-nil
Nil
Non-nil

YEAR OF DEVELOPMENT

0 1 2 3 4
15,204 7,609 289 13 6
39,052 14,006 %4 192 76
16,381 9,569 457 35
43,971 16,561 1,299 280
18,132 11,025 786
51,167 18,919 1,712
18,511 12,885
58,257 21,218
19,080
62,522

M1

1.014
0.981
0.974
0.958
0.906

fi2

1.982
1.900
1.826
1.780
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i3

2.918
2.743
2.638

lia

3.720
3.569

OUTSTANDING

— — — A [

fi5

4.486

92

217

725

4,104

46,531



PAPERS OF MORE ADVANCED METHODS

which generate fitted data as follows:

ORIGIN YEAR OF DEVELOPMENT
YEAR
0 1 2 3 4  OUTSTANDING
1983 Nil 14,902 7,917 302 10 3 2
Non-nil 39,515 13,558 931 193 79 91
1984 Nil 16,282 9,702 449 23 6
Non-nil 44,051 16,430 1,302 302 223
1985 Nil 18,314 10,980 647 46
Non-nil 50,959 18,964 1,856 704
1986 Nil 19,358 12,016 871
Non-nil 57,423 22,027 3,280
1987 Nil 19,091 14,717
Non-nil 62,548 31,777

FITTING THE MONETARY MAPPING (Section 4)

The actual numbers of claims settled in size bands are shown in detail in the
Appendix. The numbers shown represent the numbers of claims settled at a cost
greater than the corresponding value of x (claim size). In thisway, the number of
claims settled greater than £0 can be seen to correspond to the number of non-nil
claims settled in fitting the time mapping above. Numbers of claims settled within
Size bands, Qjjk, can easily be obtained by differencing.

Fitting bk as described in paragraph 4.2 gives the following results:

ORIGIN bio by b
YEAR

1983 1.138 1.091 1.235
1984 1.216 1.190 1.216
1985 1.327 1.355 1.458
1986 1.372 1.471

1987 1.416

bj3 bj4
1.103 1113
1.406

which generate the modelled numbers of claims by size shown in the Appendix.
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As described in paragraph 4.4, the fitted by are transformed to Bjx, which are free
of the distorting effect of changes in settlement rates evidence from thery.. The
resultant By, using the method described in paragraph 4.4.1, are:

ORIGIN Bjo Bj1 Bj2 Bjs Bja
YEAR

1983 1.138 1.093 1.228 1.105 1113
1984 1.216 1.191 1.251 1.406

1985 1.328 1.363 1.458

1986 1.376 1.471

1987 1.416

Note that each of the Bjx in the bottom diagonal corresponds to afringe group, as
discussed in paragraph 4.4.3. The effect of the special considerations applied to
fringe groups will be apparent in the section on estimating reserves.

The Ry, discussed in paragraph 4.4.2, define the periods of calendar time covered
by groups in the fitted data. Derived from the rjx, they have the following values.

ORIGIN Rio R Ri2 Ris Ria
YEAR

1983 0.986 2.019 3103  4.366 5.000
1984 1.020 2.119 3311  4.000

1985 1.031 2.214 3.000

1986 1.051 2.000

1987 1.000

ESTIMATING RESERVES (Section 5)

In this exampl e the outstanding Bjx have been estimated by assuming a constant
rate of 7.5% p.a. for future claims inflation but the following two cases of special
treatment should be noted:

(8 Fringe Groups (see paragraph 4.4.3)

For 1985-87 the outstanding part of the fringe group has been assigned the
same value of B, as was fitted to the settled part. For 1983-84, however, the
settled part has been deemed to be too small to give areliable indication of the
Bj« for the whole group and the By for the outstanding part has been projected
at the assumed rate of inflation from the By for the previous year.
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(b) End and Large Claims Groups (see paragraph 2.4)

The B for these groups are projected at the assumed rate of inflation from the
Base Y ear, for which the Bk are automatically equal to 1. A similar
consideration also appliesto Group 5. The resultant B are:

GROUP
ORIGIN LARGE
YEAR 0 1 2 3 4 5 END CLAIMS
1983 1075 1075 1075 1075
1984 1188 1156 1.156 1.156 1.156
1985 1458 1277 1242 1242 1242 1242
1986 1471 1567 1373 1335 1.335 1335 1.336

1987 1416 1581 1685 1476 1436 1436 1436 1.436

The corresponding mean claim costs, derived from the model after application
of the estimated outstanding Bjk given above, are:

GROUP

ORIGIN LARGE
YEAR 0 1 2 3 4 S5 END CLAIMS
1983 6,229 7,257 15768 165,539
1984 5396 6,160 7,802 16,951 177,954
1985 2653 5107 6622 8387 18222 191,300
1986 1174 2287 5490 7,119 9,016 19589 205648

1987 448 796 2,459 5902 7,653 9,692 21,058 221,071

Note the effect of the positive correlation between time to settlement and
claim size on the outstanding fringe groups mean claim costs, which are
greater than those for the corresponding complete groups. The number of
outstanding non-zero claims for each year, as estimated in "Fitting the Time
Mapping" above, is assigned to individual outstanding groups pro ratato the
corresponding probabilities from the model. This gives the following
expected numbers of non-zero claims in each group:

GROUP
ORIGIN LARGE
YEAR 0 1 2 3 4 5 END CLAIMS
1983 28 21 34 7
1984 68 75 23 37 9
1985 260 248 89 28 44 10
1986 1379 1373 290 104 33 51 12
1987 5001 24562 1585 335 120 38 59 14
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Note that for 1983 the probability of being assigned to the Large Claims group has been reduced
slightly because of the known settlement of one large claim. The resultant outstanding settlement
amounts (product of numbers and averages) are, in £000:

GROUP
ORIGIN LARGE
YEAR 0 1 2 3 4 S END CLAIMS
1983 177 155 530 1171
1984 365 460 183 624 1,567
1985 691 1269 590 234 799 2,007
1986 1619 3140 1594 741 294 1,004 2522

1987 2281 19560 3,898 1979 920 365 1,246 3,130

Total 2,281 21,179 7,729 5208 2887 1231 5,154 12,451

Aggregating these amounts for each origin year and subtracting payments made on account (see
paragraph 5.2.2) gives the following table of claims reserves, in £000:

ORIGIN OUTSTANDING AMOUNT PAID RESERVE

PERIOD SETTLEMENT ON ACCOUNT
COSTS
1983 2,033 789 1,244
1984 3,199 1,075 2,124
1985 5,590 1,525 4,065
1986 10,915 3,836 7,079
1987 33,380 10,435 22,945
Total 58,120 19,377 38,743
References
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MBERS OF CLAIMS BY SIZE (ACTUAL DATA)

YEAR
OF
ORIGI
N
| 1983 | 1984 | 1985 | 1986 | 1987
CLAIM
SIZE YEAR OF DEVELOPMENT YEAR OF DEVELOPMENT | YEAR OF DEVELOP\
0 1 2 3 4 0 1 2 3 0 1

£0 39,052 [14,006 | 964 | 192 76 |43.971 |16,561 | 1,299 | 280 |51,167 [18.919 | 1.
Fago )= 27 270K 12 AN7 aojnN 101 [~e} AD 14N 1K QRO 1 221 27N A0 AQR 1Q 201 1
£1NN 2N Q01 1N\ NRR 709 1R2Q r2 271" _”R1R 12 NAR 1 N71 I2NE 2N EQn 11 2ER 1
£oONN 12 ENR 7 27N1 ~ARQ 111 [~/ 11 EQO2 Q 011 anoa 217 1Q 270K 1N 729 1
LENN E NnO7 2 72K NAn 112 VI~ /111 VI ~301~ [~aTa) 17N 7 rOR E 72N
£1 NNN 2 120 1 0ON0 2971 anr nn 20 211 297 110 [~/ 2 N20
£1 ENN 1 22K 1 21Q 2”1 Q2 20 1 NER 1 EAR 22/ 127N 1011 1 ORR
£9 NNN [eJats) oAN 219 71 2R aoj'nN 1 20R 272 1NE 1 21 1 272
£2 NNN 2AN N1 A 12Q [~30] 29 N17 [~ ] 1Q7 Q2 r1"2 wi~a)
£A NNN 177 22/ ar nn 29 211 297 110 an 21K 200
CE NNN [e]e] 1AN r7 21 21 192 a2NA on7n Nno a2NA 221
e ENnn N1 70 A9 2n 2N rQ a7z Ea N1 199 11Q
£9 NNN 20 n2 21 29 1R 27 aN nn 21 "r1 ra
1N NNN 11 10 29 10 12 21 21 29 17 292 2R
L1E NNN [~ [~ 11 a a A a 7 Q a 19
£oON NNN ko] 1 7 2 n = [~ 2 2 2
LOE NNN 1 n = 2 2 n 2 Vi ko] 2 1
£2N NNN 1 n [~ 2 2 n 2 2 n 1 1
AN NNN n n 2 a) 2 n 1 2 n n 1
LEN NNN [a] [a] 1 n 2 n 1 1 n n n
oz NNN n n n n 2 n n 1 n n n
£on NnNnn n n n n 1 n n 1 n n n
£1NN NNN n n n n 1 n n n n n n
C1EN NNN n n a) a) n n n n n n n
£200.000 0 0 0 0 0 0 0 0 0 0 0
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APPENDIX — ACTUAL & MODELLED NUMBERS OF CLAIMS BY SIZE (MODELLED DATA)

YEAR
OF
ORIGIN
| 1983 | 1984 | 1985 | 1086 | 1087
CLAIM
SIZE YEAR OF DEVELOPMENT YEAR OF DEVELOPMENT YEAR OF DEVEL
0 1 2 3 4 0 1 2 3 0 1

£0 39,052 | 14,006 | 964 | 192 76 | 43,971 | 16,561 | 1,299 | 280 |51.167 | 18,919
Fago ] =4 27 220 12 22R a1nN 101 72 A1 Q79D 12 702 1 929Q I~ AQ aNR 1Q NAN
£1NN 21 1N aa12 ToRr 12D [AYAY 21 2R0 11 QR7 1 NAR 21N 20 ENE 12 O1Q
£oONN 12 N1 1 7 22Q [~ 12Q EQ 1E 22N Q 79/ Q71 219 10 ORD 1N _AD
LENN E 10 2 792 ARR 1N0O A0 Q119 AN R7D Ean 121 7 Q29 E Aa00
£1 NNN 2 1N2 1 QONQ 290 a1 Vhol 2 EAN 2 ANQ ANE 122 2 291 2 NR7
£1 ENnN 1 1E0Q 1 211 201 on 20 1 ANQ 1 EA0 217 11R 1 QRr2 2NnN0O
£9 NNN 722 AR 299 71 2R Q00 1 N71 20N 1NA 1 10R 1 N27
£2 NNN 2N ADKR 1ER [} 20 201 EEN 178 o7 EER WA
£A NNN 111 211 11RE EN bo)]~ 100 21K 127 TN 270 AnA0
CE NNN 79 1AN [e]e) nn 29 anr 109 aR ~1 11 202
£re ENnn 21 77 /A 29 2N A2 an rRr AQ r2 1A
£9O NNN 2N N7 [ =} 21 17 2R r2 E1 20 20 a1
£1N NNN 19 lol~3 2N 1Q 12 1R 2R 2N 20 21 B2
£L1E NNN [~ o 19 11 (e} 7 19 11 12 (e} 10
£oON NNN kol 2 = [~ [~3 2 = = 1N = o
LORE NNN 1 2 2 A = 1 2 2 /a3 kol 2
£2N NNN g} 1 1 A A g} 2 1 A 1 2
£AN NNN n n 1 2 2 n 1 1 A n 1
LEN NNN n n 1 1 2 n n 1 2 n [a]
ez NNN [a} n n 1 1 [a} n n 1 [a} n
£on NnNnnN [a} n n [a} 1 [a} n n 1 [a} n
£1NN NNN g} a) a) g} 1 g} a) n n g} n
LC1EN NNN g} a) a) g} a) g} a) n n g} n
£200.000 0 ol o 0 0 0 0 0 0 0 0




[D3]
REGRESSION MODELSBASED ON LOG-INCREMENTAL PAYMENTS
Contributed by S Christofides

Thefirst article in Volume 2 of this Manual by B Zehnwirth has shown the close
connection between the intuitive Chain Ladder technique and the more formal two
way analysis of variance model based on the log-incremental payments.

Models initiated by this more formal definition of the basic chain ladder have recently
started to gain acceptance in loss reserving work and a number of papers on the
subject have now been published. These models differ from the traditional techniques
by amore formal definition of both the model assumptions and the parameter
estimation and testing. With the formal models statistical estimates of reserves, that
is both mean estimates and the associated model standard errors, can be cal culated.
The basic chain ladder is deterministic and produces point estimates of reserves.

The purpose of this paper isto serve as a basic introduction to these methods for the
practitioner. To facilitate this a PC spreadsheet package is used to show how run-off
models of the log-incremental payments can be identified and fitted in practice using
multiple regression.

The approach adopted considers the basic chain ladder technique first and shows how
the intuitive chain ladder model can be made more formal. The parameters of this
model are then estimated and the implied underlying payment pattern compared with
the chain ladder derived pattern. Both models are used to fill in the square and the
results compared. In the case of the forma model it is aso shown how the regression
results are used to derive estimates of the individua future payments and their
standard errors and how accident year and overall standard errors can be cal culated.

The simple example makes it easier to follow the calculations and is intended to alow
the reader to focus on the more interesting modelling aspects of the later sections.

A morerealistic exampleisthen analysed. The dataisfirst viewed graphically to
identify an appropriate run-off model to fit. Theidentified model isfitted and tested.
The model is then redefined with fewer parameters and refitted. The results, both
future payments and their standard errors, from these models are calculated and
compared.

The datais then adjusted for inflation and for claim volume and a series of models are
identified and tested. Three of these are used to obtain estimates which are then
compared.

A degree of theory isassumed. The model parameters are estimated using multiple
regression and matrix operations are used to calculate the variance-covariance
matrices. All the computations and graphs are done in a PC spreadsheet package,
Supercalc 5 in this case athough Lotus 123 could have been used equally effectively.
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The wide availability, ease of use and power of these packages makes these methods
accessibleto all. Alternatively any programming language with matrix manipulation
capabilities, such as APL or SAS, could be used for thiswork. Programs have aso
been written in GLIM (see A Renshaw, 2).

A. I ntroduction

Almost all actuarial methods for estimating claims reserves have an underlying
statistical model. Obtaining estimates of the parametersis not aways carried out in a
formal statistical framework and this can lead to estimates which are not statistically
optimal. These traditional methods generally produce only point estimates.

The models, such as the basic chain ladder, are often overparameterised and adhere
too closely to the actual observed data. This process can lead to a high degree of
instability in values predicted from the model as the close adherence to the observed
values results in parameter estimates which are very sensitive to small changesin the
observed values. A small change in an observed value, particularly in the south-west
or north-east regions of the data triangle, can result in alarge change in the predicted
values. In practice attempts may be made to achieve some stability in the results by
using benchmark patterns, by selection of development factors and a number of other
such techniques.

Formal statistical models are used extensively in data analysis el sewhere to obtain a
better understanding of the data, for smoothing and for prediction. Explicit
assumptions are made and the parameters estimated via rigorous mathematics.
Various tests can then be applied to test the goodness of fit of the model and, once a
satisfactory fit has been obtained, the results can be used for prediction purposes.

This process alows us to focus on the model being fitted and should also highlight
any inadeguacies in the model. The estimates of the parameters, on the basis of the
model, can be made statistically optimal. Peculiarities in the data may be identified
and often investigation of these can yield useful additional information to the
modeller.

All modelling, whether based on the traditional actuarial techniques such as the chain
ladder or on more formal statistical models, requires afair amount of skill and
experience on the part of the modeller. All these models are attempting to describe
the very complex claims process in relatively simple terms and often with very little
data. The advantage of the more formal approach is that the appropriateness of the
model can be tested and its shortcomings, if any, identified before any results are
obtained.

09/97 D5.2



REGRESSION MODELS BASED ON LOG-INCREMENTAL PAYMENTS

B. Thebasic chain ladder technique and the underlying stochastic model
The following simple example considers a4 by 4 triangle of cumulative payments:

CUMULATIVE PAID CLAIMS

DEVELOPMENT YEAR
ACCYR 0 1 2 3
0 11073 17500 19339 20105
1 14799 24156 26500
2 15636 26159
3 16913

The usual (weighted) basic chain ladder development factors are (see Vol 1 Section
ES8):

Otol lto2 2t03

1.633781  1.100418  1.039609
where 1.633781 = (17500 + 24156 + 26159)/(11073 + 14799 + 15636) etc.
Using these factors the square can be completed in the usual way:

CUMULATIVE PAID CLAIMS

DEVELOPMENT YEAR
ACCYR 0 1 2 3
0 11073 17500 19339 20105
1 14799 24156 26500 27550
2 15636 26159 28786 29926
3 16913 27632 30407 31611

The actual and fitted portions of the square have been separated for illustration. Itis
assumed in this example that there are no payments beyond the 3rd devel opment
period so that the first (zero th) accident year is complete.

The chain ladder produces successive cumulative |osses from which the future
incremental payments can be derived by subtraction. It istherefore possible to split
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the overall chain ladder derived reserve estimate for an accident year into its
incremental or payment year values.

The underlying model is better illustrated by these incremental payments which are
shown in the table below.

INCREMENTAL PAID CLAIMS

DEVELOPMENT YEAR
ACCYR 0 1 2 3 0/S
0 11073 6427 1839 766
1 14799 9357 2344 1050 1050
2 15636 10523 2627 1140 3767
3 16913 10719 2775 1204 14698
Total 19515

The accident year projected future payments and the overall estimate are shown in the
last column. The chain ladder estimate of future payments to development period 3
for all accident yearsis 19515.

Dividing each of these incremental amounts by the final, or ultimate, accident year
value gives the following:

PERCENTAGE PAID CLAIMS

DEVELOPMENT YEAR
ACCYR Ultimate 0 1 2 3
0 20105 55.08 31.97 9.15 3.81
1 27550 53.72 33.96 8.51 3.81
2 29926 52.25 35.16 8.78 3.81
3 31611 53.50 3391 8.78 3.81

The basic chain ladder has produced the following underlying incremental payment
pattern:

Development year 0 1 2 3
Incremental paid % 53.50 33.91 8.78 381
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Note that this underlying pattern can be calculated directly from the development
factors.

The basic chain ladder assumptions can be restated as follows:
a Each accident year hasits own unique level.

b: Development factors for each period are independent of accident year or,
equivaently, there is a constant payment pattern.

These assumptions can now be used to define the model more formally.
Let:
A, bethe ultimate (cumulative) payments for the i-th accident year.

B. bethe percentage of ultimate claims paid during the j-th development
period.

P. betheincremental paid claimsfor accident year i paid during development
period j

The chain ladder model can thus be described by the following equations
P,=A xB,forijfromOto3

and the condition
2 B=1 wherejissummed fromOto 3

The next section considers how these equations may be solved and estimates of the
parameters obtained.

C. Estimating the parametersof the formal chain ladder model

Asthe main set of relations involves products the usual approach isfirst to make
these linear by taking logarithms and then use multiple regression to obtain estimates
of the parametersin log-space. It will eventually be necessary to reverse this
transformation to get back to the original data space.

Dealing with the main set of equationsisrelatively easy. Taking logarithms (natural
logarithms will be assumed throughout and denoted by In) gives

In(P)=1InA +InB,

Unfortunately taking logarithms of the second condition does not produce a linear
eguation as

In(=B) =% (InB)
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It is possible to obtain estimates of these parameters using iterative procedures but
thisis not pursued here. It is more convenient to drop the condition and concentrate
initially on obtaining the parameter estimates from the remaining, now linear, set of
equations.

Dropping the condition gives rise to asingularity and so it is hecessary to introduce a
new condition in order to obtain the parameter estimates. This does not affect the
eventual results but it does change the interpretation of the parameters.

For ease of reference the parameters are now redefined (In A, = g etc) and an error
term introduced.

InP)=Y,=a+b +e
where g, is some error term.
As indicated above without some restriction these equations are singular. Note for
example that a, appears only in one equation which involes b, and an error term. An
infinite number of combinations of a, and b, are possible aslong as they sum to the
same view.
For convenience in this example b, is set to zero. Another approach is to set both a,
and b, equal to zero and introduce a constant, k, into the model. The chain ladder
assumes each accident year has a unique level so the model to be fitted below will
follow the former description. The alternative definition is considered later in Section
H and the advantages of this choice outlined.

The predictions obtained by either approach will be the same so the restriction can be
chosen at the convenience of the modeller.

The model to be fitted is described by:
In(P)=Y,=a+b +¢
wherei andj gofromOto3andb,=0

The model has seven parameters to be estimated, the same number as the basic chain
ladder model.
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The following table isin the form most convenient for the regression facility of any of
the popular spreadsheet packages.

Y -variate < Design Matrix X —
i Pi Yij & & & a& b b b
0 0 11073 9.31226 1 0 O 0 0 0 O
0 1 6427  8.76826 1 0 O 0 1 0 O
0 2 1839  7.51698 1 0 0 O 0 1 0
0 3 766  6.64118 1 0 O 0 0 0 1
1 0 14799 9.60231 0O 1 O 0 0 0 O
1 1 9357  9.14388 0O 1 O 0 1 0 O
1 2 2344  7.75961 0O 1 O 0 0 1 O
2 0 15636 9.65733 0O 0 1 0 0O 0 O
2 1 10523 9.26132 0O 0 1 0 1 0 O
3 0 16913 9.73584 0O 0O O 1 0 0 O

Each row corresponds to a data value and its representation by the model parameters.
The last but one row, for example, describes the accident year 2, development year 1,
value in log-space as the sum of the & and b; parameters. The coefficients of the
other parameters are zero for this data value.

The resulting matrix of parameter coefficients, made up of ones and zerosin this case,
will be referred to as the model design matrix X. It is governed by the model chosen.

Within the class of log-linear models changing the model just involves changing
the design matrix.

The regression takes the In(P;) or Y; values as the dependent variable and each of the
columns of the matrix X as the independent variables.

The spreadsheet regression command, which requires a columm for the dependent
values and arange for the independent values (i.e. the design matrix) is then used to
carry out the regression and output the result. It is necessary to specify that thefit is
without a constant and to define aresults or output range. Thisis quite
straightforward in practice and the results are produced almost instantly.

The spreadsheet output in this case will be:

Regression Output:

Constant 0

Std Err of Y Est .0524
R Squared(Adj,Raw) .9976 .9992

No. of Observations 10
Degrees of Freedom 3

Coefficient(s)  9.288 9.591 9.692 9.736 -.4661 -1.801 -2.647
Std Err of Coef. .0400 .0400 .0428 .0524 .04277 .05015 .06591
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A brief description of thisfairly standard spreadsheet regression output will be found
in Appendix 2.

The results can also be obtained by matrix manipulation. An indication of how this
can be doneisgivenin Section D.

The coefficients are the parameter estimates and are in the same order as the columns
of the design matrix.

So the model estimate for ayis9.288, for a; it is9.591 and so on until bs whichis
estimated as —2.647.

The payment pattern can be derived from this output. Thisis done by exponentiating
the development year parameters b;’s, remembering to bring in the by which was set
to 0, and scaling so that the exponentiated values add up to the required 100%.

A formal proof of thisis beyond the scope of this paper and the interested reader is
referred to Verrall’s paper (5) “Chain Ladder and Maximum Likelihood”. The table
below, and the comparison with the basic chain ladder result, may be sufficient to
satisfy the majority of practitioners.

The following table shows these basic cal cul ations

Parameter bo by b, bs

Coefficient 0 -4662 -1.8015 -2.6472 sum
exp (b)) 1 0.6274 0.1651  0.0709 1.8634
Payment % 53.67 3367 8.86 3.80 100

Thisis very close to the basic chain ladder derived pattern.

BCL Payment% 5350 3391 8.78 381

The dlight differences arise from the way the parameter estimates are derived. The
same underlying model is assumed in both cases. Unfortunately however afair
amount of further manipulation is necessary to obtain estimates of ultimate values for
each accident year. These cannot be derived simply from the accident year regression
coefficients.

In order to progress further it is now necessary to go back and consider what
assumptions were made by the spreadsheet in deriving the parameter estimates. This
requires amore detailed consideration of the formal model and in particular the
structure of the assumed error term.

These aspects are considered in the following section.

D. Fitting assumptionsand error terms
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The spreadsheet regression isfitted by least squares. That is by minimizing the sum
of the squares of the error terms e;.

It isusual and convenient to assume that the error values g; are identically and
independently distributed with a normal distribution whose mean is zero and variance
some fixed 6%

i.e. @ =1IDN(O, 0

In matrix form it can be shown that, under these assumptions, the parameter estimates
are given by

(X™X) XY

where X is the design matrix and X" itstranspose and Y is the data vector. The
standard errors can aso be calculated in matrix form.

These assumptions can be tested by analysis of the residual (error) terms, by plots and
other diagnostic tests. Residual plots are shown and discussed later.

Recalling that the original payments were transformed by taking logarithms the error
normality assumption in log-space implies that the data in the original space are log-
normally distributed.

The 11D assumption estimates are also the maximum likelihood estimates in this case
and it can be shown that the parameter estimates so obtained are unbiased. Since
maximum likelihood estimates are invariant under transformation Verrall (5) showsin
“Chain Ladder and Maximum Likelihood” how maximum likelihood estimates of
development factors can be obtained by direct substitution.

Asthelog-normal distribution is skewed with atail to the right some extreme high
values are to be expected. Thisis sometimes afeature of incremental claims payment
triangles. The causeisusualy alarge claim payment in later development periods,
the settlement perhaps of a particularly large claim, when the overall level of
paymentsis low.

These assumptions are not claimed to be theoretically justified for log-incremental
claims payments. They have an intuitive appeal and are chosen primarily for
convenience. Alternative assumptions, which may well be more generally applicable
to claim payments, can be made and results obtained. These tend to require more
complex computations or iterative procedures which generally necessitate the use of
specially written software.

Further comments on the error terms are to be found in the final section of this paper
which aso includes some suggestions for dealing with negative incremental
payments.

E. Predicting future paymentsand their standard errors
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In order to derive estimates of the model parameters it was convenient to take
logarithms and work in log-space. To obtain resultsin the original spaceit is
necessary to reverse this transformation.

Obtaining the parameter estimates in log-space isrelatively straightforward. To
revert back to the original spaceis not so simple and it is necessary to use the
rel ationshi ps between the parameters of the log-normal distribution and the
underlying normal distribution.
Again for simplicity the easiest approach is adopted here. This approach is also used
by Zehnwirth and by Renshaw and again the justification can be found in their papers.
These estimates, in the original space, are not necessarily unbiased especially where
asmall number of data points are being fitted. Verrall (6) shows how it is possible to
obtain unbiased estimates but the cal cul ations are more complicated.
The estimates to be used here are given by the following
The future values p; *s are calculated from the estimates obtained in the log-space
y; asfollows

a  p=exp(v, +05var(y,))
Their standard errors are given by

b) se(p;)=p; sart(exp(var(y N

So thefirst step isto derive the predicted values and their standard errorsin log-
Space.

The predicted values in log-space are obtained from the estimates of the parameters
produced by the regression.

For example the first future value to be predicted is for accident year 1 development
year 3 and thisis given by

?13 =ay+bs
=9.5901 - 2.647
=6.944
To obtain the variance of this, and the other estimates, it is necessary to calculate the
variance-covariance matrix.
This matrix is given by
o® X (XTX) X"

where 6° is the model variance (scalar) and depends on the data

Xt isthe design matrix of the future values and
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Xi' isitstranspose and

(X"™X)* isthe model information matrix

with X the design matrix and X its transpose.

In a spreadsheet a small macro can be written to carry out this calculation. The
results of each stage of this calculation for the simple example above are to be found

in Appendix 1.

Note that changing data valuesin the original triangle only affects the scalar factor ¢
and so the lengthy matrix calculation only need be done once for a given size model.

The usual practice therefore isto calculate the matrix product
Xi (XTX) X"
and multiply by the specific data 6 as necessary.

A library of these matrices could be built up for the models to be used, to cater for
different sizes of triangles for instance, and stored for future use.

The design matrix of future values X, following the same format as the original
design matrix, isasfollows:

«Future Design Matrix X —

&4 & a b b b

WWWNN R
WN R, WN W
coocooooo |&
cNeoNoNaNal
OO0OOoORrRErRO
PR RPROOO
OOoORrOOO
OroOoOOPRrROo
RPOORrROR
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The matrix
Xi (XTX) X"

inthis caseis (see Appendix 1)

1.66667  .00000 1.33333 .00000 .00000 1.33333
.00000 1.25000 .75000 .00000 .75000 .25000
133333 .75000 1.91667 .00000 25000 1.41667
.00000  .00000 .00000 1.66667 1.33333 1.33333
.00000  .75000 25000 1.33333 1.91667 1.41667
133333 .25000 141667 1.33333 1.41667 2.58333

The variance-covariance matrix of future valuesis calculated from the above by just
multiplying through by the model ¢® which in this caseis

.0524% = 002744

The variance-covariance matrix isthen

.00457  .00000 .00366 .00000 .00000  .00366
.00000  .00343 .00206 .00000 .00206  .00069
.00366  .00206 .00526 .00000 .00069  .00389
.00000  .00000 .00000 .00457 00366  .00366
.00000  .00206 .00069 .00366 00526  .00389
.00366  .00069 .00389 .00366 .00389  .00709

Note that these matrices are square and symmetric with each side equal to the number
of future valuesto be projected. The diagonal el ements contain the variances of each
of these values and are in the same order as the future design matrix elements.

To obtain the variances to be used for projecting future values we will follow
common practice and add the mode! variance (6°) to the variances calculated above.
These two sources of error are the estimation and statistical errors. These variances
recognise that the parameter coefficients are estimates (and subject to error) aswell as
the inherent noise in the process or data. We do not attempt to correct or estimate any
specification or selection errors which may well be equally significant contributors to
atotal overall error term. Our final example gives some indications of how projected
values can be affected by the choice of model parameters. For amore detailed
explanation of these types of error the reader is referred to the paper by Taylor (3).

The variances for the future values in log-space are the sum of the variance-
covariance matrix val ues obtained above and the model variance o2

So the variance for the first projected value which was estimated above, Y 13, is
1.66667 x 0.05238 + 0.05238% = .007317

The following table shows the various values and their variances and standard errors
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i J ?ij Var(?ij) |5ij var( Isij Se(lsij)
)

1 3 6.94395 .007317 1041 7953 89
2 2 7.89094 .006174 2681 44520 211
2 3 7.04521 .008003 1152 10662 103
3 1 9.26969 .007317 10650 833010 913
3 2 7.93438 .008003 2803 63122 251
3 3  7.08865 .009832 1204 14328 120

We note here that the sum of the variances is 973595 which is avalue that will be
used later.

F.  Accident year and overall standard errors
Calculating the variances or standard errors across accident years and in total requires

one further step involving the covariances. The information needed isin the last
matrix above together with the values calculated for p, ’s and their variances.

The variance of the sum of two values A and B is given by
Var(A+B) = Var(A) + Var(B) + 2Cov(A,B)

and this extends to sums of more than two values by including all pairs of
covariances. Notethat Cov(A,B) = Cov(B,A).

A justification is given in Renshaw’s paper that in the case of log-linear models the

covariances can be calculated in the original space by the following convenient
formula

COV( Isij J ISH) = E(?ij) E(?M) (exp(Cov({(ij ’ ?kl ) _1)
In practice this can be set up fairly easily in the spreadsheet once the individual values
have been estimated and the variance-covariance matrix computed. It does
nevertheless involve afair amount of computation. To illustrate the calculation

consider the standard error for the second accident year.

Two valuesareinvolved p,, and p,,, which were estimated as 2681 and 1152.
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Their standard errors obtained above were 211 and 103 respectively. The covariance,
in log-space, for these estimates can be found in the variance-covariance matrix and is
0.00206. So the covariancein the original spaceis

Cov(p,,, Py)= 2681 x 1152 (exp(.00206) 1)
= 6363

The required variance of the sum is then given by

Var(p,, + P, ) = 2117+ 103° + 2 x 6363 = 67868

So the estimated standard error of the total assumed outstanding claims for thisyear is
261 or just under 7% of the estimated value of 3833 (2681 + 1152).

This process can be applied to obtain the standard errors for any combination of
values, for instance for each accident year or each payment year and more
interestingly for the overall total reserve estimate.

Thetotal reserve estimate is the sum of al the projected values and so its variance
calculation will include all possible combinations of covariances (of pairs) of values
involved in the calculation. This, surprisingly, makes the spreadsheet calculation
easier asthere is no need to exclude or select any values. One simply sums arange.

The calculations are as in the previous example and can be tabulated fairly easily to
produce the following matrix of covariances.

(i,)) 13 (22 (23 (31 (3.2 (33)
w3 | — 0 4394 0 0 4593
(2,2) 0 — 6363 0 15481 2216
2,3) | 4394 6363 « — 0 2216 5403
(3,1) 0 0 0 — 109410 47006
(3,2) 0 15481 2216 109410  — 13145
(33) | 4593 5403 47006 13145 —
2216
Total = 420452

Note that the diagonal elements are left blank as the values here should be the
variances which were estimated previously. The matrix is symmetric, asisto be
expected, and so summing the range produces the sum of covariances of all possible
pairs of values. Thissum of al pairs of covariancesis 420452.

The sum of the variances of the projected values obtained earlier was 973595 and so
the overall variance, which is the sum of these two values, is 1394047.

The overall standard error, which is the square root of thisvalue, istherefore

estimated as 1181 or just 6% of the overall reserve estimate of 19531. The overall
error isrelatively small in this ssmple example. In practice, with real datainvolving
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more accident and devel opment years, the percentage errors tend to be higher. The
table below summarizes the results.

Project values and their standard errors:

Development Period

AccYr 0 1 2 3 Tot AccYr

1 Amount 1041 1041
s error 89 89
2 Amount 268 1152 3833
serror 1 103 261

211
3 Amount 10650 280 1204 14657
S error 913 3 120 1118

251
Overall Total 19531
Standard Error 1181

The chain ladder overall estimate was 19515. Theindividual values obtained by the
two methods are also close but the chain ladder estimates are point estimates whereas
the regression based estimates are statistical estimates with both amean and a
standard error estimate.

All the usual information that can be produced from the traditional chain ladder can
be derived from the regression chain ladder including estimates of development
factors. The stochastic approach as shown above can produce additional information,
based on the model assumptions, such as standard errors of parameters and reserve
estimates, that the traditional approach does not. The statistical estimates obtained by
the regression approach also facilitate stability comparisons across companies and
classes.

This completes our consideration of the regression chain ladder. The technique does
not require that we have a complete triangle of data and can work with almost any
shape data as long as there are sufficient points from which to obtain estimates of the
parameters.

In the next section alog-linear regression model is fitted which is motivated by the
run-off shape of the data. This model has fewer parameters as the development
parameters are subject to some curvefitting. Thisis used to project values outside the
original triangle shape, that isatail is projected. The computation approachis
identical to the above. The only differences are that there are now more data points to
be fitted and the design, and future design matrices are different.
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G. Identifying and fitting a regression model
1 Preliminary analysis: Identifying the model.

We will now consider a new data set and attempt to identify and fit an appropriate
log-linear model to this data.

Thefirst stage isavisual examination of the data. Asa spreadsheet isbeinguseditis
very easy to plot the values and look at the resulting line charts rather than attempt to
visualize these by looking at the data triangles.

The cumulative claims payments, which are from a UK Motor Non-Comprehensive
account, are as follows:

Development Y ear

AccYr 0 1 2 3 4 5 6
0 3511 6726 8992 10704 11763 12350 12690
1 4001 7703 9981 11161 12117 12746
2 4355 8287 10233 11755 12993
3 4295 7750 9773 11093
4 4150 7897 10217
5 5102 9650
6 6283
A CUMULATIVE PAYMENTS CHART1
M 15000 : : : : :
0 13000
u
N 11000
T %000
T ...
P.
A 5000
L 3000
D

ACCIDENT YEAR
() Ty 42 -3 w4 D5

The graph below shows these figures as line charts.

Thisisauseful presentation but it is hard to identify from this alone an appropriate
model to use. Part of the problem arises from the fact that cumulative payments are
clearly not independent. The incremental payments are expected to eventually
decline but it is not easy to see any pattern or trend from this cumulative plot alone.
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For these reasons the incremental data are now considered.

The incremental payments are

AccYr 0

OO~ WNEO

3511
4001
4355
4295
4150
5102
6283

1

3215
3702
3932
3455
3747
4548

Development Y ear

2

2266
2278
1946
2023
2320

3

1712
1180
1522
1320

4 5 6
1059 587 340
956 629
1238

Even before these values are plotted a more promising trend can be detected across
the development direction. Plotting these values we have:

HZO0oE >

g =9
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LOG-INCREMENTAL PAYMENTS CHART 3

ACCIDENT YEAR
W) Tl 42 -3 4 WF

Finally taking logarithms (base €) of these values and plotting as before produces the
following line chart:

Looking at the accident year lines the first four or five look fairly bunched together
and the last two (the last one is only a single point) appear to be at a higher level.
From development year one the lines ook reasonably straight and to have the same
slope. These observations indicate that incremental payments from devel opment year
1 on are decaying exponentialy, as their logarithms appear to lie approximately on a
straight line.

Thefirst model to be fitted is based on these observations and will assume that each
accident year has its own parameter or level. Development year zero will be assumed
to have its own parameter and in line with the observation above the devel opment
parameters from d; on will be assumed to be linearly related or to lie along a straight
line with some slope to be determined.

Thisisastart to the modelling process for this data set. The model is not expected to
be the final or best for the data but is being used to illustrate various aspects of the
modelling process. Notein particular that the plotted log-incremental data has been
used to identify an appropriate model to start the process.

The techniques here can be applied in exactly the same way to more complex
situations. Asan example a different decay rate can be assumed for each accident
year if the plot indicates that there is support for such a hypothesis. The model will
then be very similar to the one described by Ajnein the second article of this volume.
The only difference, apart from the decay rates, is that he fits the first two
development periods before curve fitting whereas the exampl e here curve fits from
development one as this appears to be supported by the data.

The use of spreadsheets with their comprehensive graphics capabilities enables the
modeller to carry out the initial stages of the data analysis phase very quickly asthe
above chartsillustrate. Graphical presentation can also enhance reserving reports to
management who may be less actuarially inclined than the writers of such reports.
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H.  Defining the model
The first model asidentified above will now be defined more formally. Thereisa
unique level for each accident year and a unique value for the zero devel opment
period. The parameters for development periods 1 to 6 are assumed to follow some
linear relationship (straight line) with the same slope or parameter s.
Using the terminology developed earlier we have

Yi=a+d+eg; fori,jfromOto6

wheredg=d, dj=sxj forj>0

and e; isthe error term assumed iid normal with zero mean.
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Following the previous example, the spreadsheet table and design matrix are as

shown below.

Table 1: Regression Table for the Full Parameter Model

design matrix —

(_

@ & & & & d

a1

<))

1
1
1

Yij

0
1

0O 0 0 0 0 1

0
0
0
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0
0
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8
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0
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3
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0
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374
7
232
0
510
2
454
8
623
8

The regression output for this model is given below. For ease of reference two extra
lines have been inserted in this output. Firstly the parameter labels are shown above
the parameter coefficient estimates and secondly the T-Ratios are shown.

Regression outpult:

Constant 0

Std Err of Y Est 1139
R squared(Adj,Raw) .9762  .9832
No. of Observations 28
Degrees of Freedom 19

s & = & =l =] % d S

Coefficient(s) 8.57 8574 8.665 8554 8.637 8.846 9.042 -296 -.435
Std Err of Coef. 3 .072 .069 .070 .076 .091 .134 070 .018
T-ratios 076 1199 1249 1218 1138 976 67.6 -42 -235
113.
3

The development parameters, d and s are significantly different from zero as their T-
Ratios (parameter estimate divided by its standard error estimate) are —4.2 and —23.5
respectively which are well outside the usual 95% confidence interval (critical) range
of —21to 2.

The accident year parameters are also all significantly different from zero, as they
surely have to be with this model's assumptions (all accident year levels are
significantly above zero), but they do look close to one another. In order to test
whether these are distinct it is necessary to redefine the model by dropping the ag
parameter and replacing it with a constant. The only change to the design matrix is
that the first column is now made up of ones.

The regression output of the redefined model is almost identical:

Regression Outpuit:

Constant 0

Std Err of Y Est 1139
R Squared (Adj,Raw) .9762 .9832
No. Of Observations 28
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Degrees of Freedom 19

k a&a & & & & & d s

Coefficient(s) 8573 .001 .092 -019 .064 .273 .469 —-296 -.435
Std Err of Coef. .076 .064 .069 .075 .084 .098 .132 .070 .018
T-ratios 113.3 .0 13 ) 8 28 36 -42 235

The output clearly shows a much better definition of the same model asit identifies
that the accident years 1,2,3 and 4 parameters are not significantly different from zero
or, in comparison to the previous definition, significantly different from the zero’th
accident year parameter which has now become the constant level value k. Based on
this definition the model parameters for accident years 0,1,2,3 and 4 can be set to zero
and be effectively estimated by a new common value k. This new constant of the
reduced parameter model should now be an average value for the five accident years
whose individual parameters have been dropped from the model.

A theoretically more appealing approach for inducing a partition in the accident year
parameters, based on the multicomparison t-criterion test, can be found in Renshaw

).

Setting &y to a4 to zero reduces the model parameters to just the five parameters k, as,
as, d and s which we expect to be significant.

The design matrix is now simpler as can be seen from Table 2 below.

Table 2: Regression Table for the Reduced Parameter Model

«design matrix —

i ] P, i Yi j k a 36 d S
5
0 O 3511 8164 1 0 0 1 O
0 1 3215 8.076 1 0O O 0 1
0 2 2266 7.726 1 0 0 0 2
0 3 1712 7.445 1 0 0 0 3
0 4 1059 6.965 1 0 0 0O 4
0 5 587 6.375 1 0 0 0O 5
0 6 340 5.829 1 0O O 0O 6
1 0 4001 8294 1 0 0 1 0
1 1 3702 8217 1 0 0 0 1
1 2 2218 7731 1 0 0 0o 2
1 3 1180 7.073 1 0 0 0O 3
1 4 956 6.863 1 0 0 0 4
1 5 629 6.444 1 0O O 0 5
2 0 4355 8379 1 0O O 1 0
2 1 3932 8277 1 0 0 0 1
2 2 1946 7574 1 0 0 0o 2
2 3 1522 7.328 1 0 0 0O 3
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2 4 1238 7121 1 0O O 0 4
3 0 4295 8365 1 0O O 1 O
3 1 3455 8.148 1 0O O 0 1
3 2 2023 7.612 1 0O O 0 2
3 3 1320 7.185 1 0O O 0 3
4 0 4150 8331 1 0O O 1 0
4 1 3747 8229 1 0O O 0 1
4 2 2320 7.749 1 0O O 0 2
5 0 5102 8537 1 1 0 1 O
5 1 4548 8422 1 1 0 0 1
6 0 6283 8.746 1 0 1 1 0

The regression output for this reduced parameter model is

Regression Output:

Constant 0
Std Err of Y Est 1119
R Squared(Ajd,Raw) .9770 .9804
No. of Observations 28
Degrees of Freedom 23
k 3 % d S

Coefficient(s) 8.608 244 441 -303 -.440
Std Err of Coef. .052 .085 122 .068 .017
T-ratio 167.1 29 3.6 -45 -26.4

As expected the constant has now changed asit is an average value for thefirst five
accident years. The other parameters have also changed slightly.

All the parameters are now significantly different from zero, with t-ratios exceeding
absolute 2, as expected. The quality of fit is still good and the number of parameters
has been reduced from nine to five. The model 1ooks reasonable enough to warrant
further investigation.

The next section considers some basic testing using residual analysis plots of the first
(all parameter) model and this reduced parameter model.

Projections from both these models will be calculated and compared after this
analysis.

l. Testing the models by residual analysis plots

The parameter estimates from the regressions can now be used to calculate the model
estimates, in log-space, which can then be compared with the observed valuesin log-
space. Itisusual to use standardized residuals, defined as the difference between
observed and fitted values divided by the model standard error, and considering these
in graphical form. Under the I1D assumptions used to derive the model estimates
these residual's should exhibit afair degree of randomness.
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Testing now turnsto the analysis of these standardized residuals. In practice these are
plotted against development, accident and payment year and also against the fitted
values. Working in a spreadsheet makes this process very easy as each chart can be
defined asan X-Y chart with Y the standardized residuals and X the other variable in
turn.

Table 3 below shows the actual values, their logarithms and the model fitted valuesin
log-space for the full parameter model as defined in Table 1. The residuals are just
the differences between the observed and fitted values in log-space and the
standardized residuals are the residuals divided by the model standard error, which
was .1139 for this model.
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Table 3: Residuals Table for the Full Parameter Model.

Acc Dev Pay Stand
i ] I+j P,j Yij ?ij Resid Resid
0 0 0 3511 8.164 8.277 -.113 -.991
0 1 1 3215 8.076 8.138 —.062 _547
0 2 2 2266 7.726 7.703 023 201
0 3 3 1712 7.445 7.268 177 1557
0 4 4 1059 6.965 6.833 132 1.159
0 5 5 587 6375 6398 _ 023 —.202
0 6 6 340 5829 5963 _134 -1.177
1 0 1 4001 8.294 8.278 017 147
1 1 2 3702 8217 8139 (g 583
1 2 3 2278 7731 7704 (7 939
1 3 4 1180 7.073 7.269 ~196 ~1.717
1 4 5 956 6.863 6.834 029 253
1 5 6 629 6.444 6.399 045 396
2 0 2 4355 8379 8369 010 o091
2 1 3 3932 8277 8230 o7 412
2 2 4 1946 7574 7795 501 1043
2 3 5 1522 7.328 7.360
2 4 6 1238 7.121 6.925 ggg 1: igg
3 0 3 4295 8.365 8.258 107 942
3 1 4 3455 8.148 8.119
3 2 5 2023 7.612 7.684 _832 _égi
3 3 6 130 718 7249 0 oo
4 0 4 4150 8.331 8.340 _' 010 _' 084
4 1 5 3747 8.229 8.202 ' 007 ) 237
4 2 6 2320 7.749 7.767 ' )
5 0 5 5102 8537 8549 07 -153
5 1 6 4548 8422 8411 012 104
6 0 6 6283 8746 8746 012 104
.000 .000

To produce the residual plotsin X-Y chart form the standardized residuals column is
defined asthe Y -variate and the first three columnsin turn as the X-variate for the
accident year, development year and payment year plots. For the final plot the fitted
values column is picked instead.

The various residua plots from this model are shown below in Charts4to 7.
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The residuals for the Reduced Parameter Model, which is defined in Table 2
(common level value for the first five accident years), are shown in Table 4 below.

Table 4: Residuals Table for the Reduced Parameter Mode!.

Acc Dev Pay Stand
i j i+] Pi Yij Qij Resd Resid
O 0 0 3511 8164 8304 _141 _1.259
O 1 1 3215 8076 8168 _(093  _828
0 2 2 2266 7726 7729 _003 025
0 3 3 1712 7.445 7.289 156 1.398
0 4 4 1059 6.965 6.849 116 1.035
o 5 5 587 6375 6410 _035 309
O 6 6 340 5829 5970 141 _1260
1 0 1 4001 8294 8304 o519 ool
1 1 2 3702 8217 8168 g9 430
1 2 3 218 778 1729  op 022
1 3 4 1180 7073 7.289
1 4 5 956 6863  6.849 :gig 1:?31
1 5 6 620 6444 6410 o3 209
2 0 2 435 8379 8304 57
2 1 3 3932 8277 8168 ;09 071
2 2 4 1946 7574 7729  ee  _1ags
2 3 5 152 7328 7289 oo Py
2 4 6 1238 7121 6849 oo oo
3 0 3 4295 8365 8304 oo 13
3 1 4 3455 8148 8168 o .o
3 2 5 208 7612 7729 _To oo
3 3 6 1320 7185 7280 :

4 0 4 4150 8331 8304 104 925
4 1 5 3747 8229 8168 026 236
4 2 6 230 7749 7729 060 540
5 o0 5 5102 8537 8548 021 185
5 1 6 4548 8422 8412 011 09
6 O 6 6283 8746 8746 011 095
000 000
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The various residual plots from this model are shown below in Charts 8 to 11.
This reduced parameter model has a standardized residual for accident year 2,

development period 4, of 2.431 as the maximum (absolute) standardized residual
value. The full parameter model had alowest standardized residual of —1.943 (i=2,
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j=2). The second model has a dlightly smaller standard error of .1119 compared to
the .1139 of the full parameter model. There is however little difference overall
between these model s detectable from the above tables. Both seem to fit the data
fairly well.

The next stage isto consider these residuals in graphic form to examine whether any
unmodelled trends are detectable.

In al these residual plots, according to the model error assumptions, we expect a set
of fairly random points bounded in about 95% of cases within the -2 to 2 range.

AsTable 3 and Table 4 above indicate, all the standardized residuals for the full
parameter model are just in this range (Table 3) with just one value outside the range
in the case of the reduced parameter model (Table 4). Values outside this range will
sometimes occur and often identify outliers that may warrant further investigation.

The development year plots (Charts 4 and 8) will generally be the most interesting
and particularly where, asin these cases, it has been assumed that there is some
relationship connecting the development parameters. A particular feature worth
looking out for in these plotsis any tendency for the residuals to spread or fan out
with development. Thisis not too noticeable in these examples. Note however that
the residuals for development periods 4 to 6 in both cases do not appear very random.
There are however only afew values involved and these may well be impacted by the
outlier identified earlier (i=2, j=4). We have used a very simple shape to describe the
run-off from development period 1 and these residual plots are quite reasonable in the
circumstances.

The accident year residual plots are shown in Chart 5 for the full parameter model and
in Chart 9 for the reduced model. Considering the former first, as each accident year
has its own parameter in this model, the plot should be boringly predictable with the
residuals balanced about the zero horizontal. Chart 5 shows this quite clearly.

The reduced model accident year residuals, Chart 9, look very similar although here
the first five accident years have effectively been fitted by a single parameter. The
only visible differences are the accident 4 residuals which are al greater than zero. In
afuller analysis this parameter should be added back to the reduced model and tested
for significance. It ispossible that it may become more significant if measured
against the average for accident years 0 to 3 although this turns out not to be the case
in thisinstance.

In both cases the accident year residuals appear to get closer to the zero horizontal
line, with increasing accident year, resulting in the left half of both charts diverging
from thisline. Thisisdue, at least in part, to over-parameterisation. In the extreme
right, for example, as only one point isfitted and with its own parameter a perfect fit
Is obtained and the residual has to be zero. For accident year 5 two points are fitted
and so the accident year parameter is again effective in ensuring aclosefit. The
values in these late accident years are also relatively large, asthey are from earlier
development periods when payments tend to be higher, and they may be relatively
more stable. Thisis considered |ater.
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The payment year residuals (Charts 6 and 10) can be interesting but more difficult to
interpret. Inflationary forces are expected to operate along this direction but as
accident year levels have been assumed independent this may mask any such
influences. The plots for both models look very similar, which is not very surprising,
as neither model considersthisdirection in its definition. Both these charts appear to
show a definite non-random shape for the early payment years and this would warrant
further investigation. Changesin claims inflation rates during the period concerned,
which are not incorporated in the model, may well be the cause. Thisis not pursued
here. The regression analysis at least identifies areas that would warrant further
investigation in practice.

It wasindicated earlier that higher values, generally in earlier development periods,
may be relatively more stable than later, generally lower, values. This can be tested
by plotting residuals against fitted values asis shown in Charts 7 and 11. In both
these charts the last few residuals on the extreme right ook close to the horizontal
zero line but these points are the same points identified earlier as the last two or three
accident year values. The residuals show atendency to increase (in absolute terms) as
values decrease. This effect, generally known as heteroscedasticity, is also detectable
from the development year plots as incremental payments eventually decrease with
development. No attempt is made here to overcome any heteroscedasticity.

The error term normality assumption can also be tested more formally within the
spreadsheet if required. It ispossible for instance to use the Data Distribution
command to calculate and tabulate a frequency distribution of the residuals and
compare valuesin this table with preset values cal culated from the standard normal
distribution.

Theresidua analysisindicates that these models have some weakness along the
payment year direction and there are sufficient reasons to doubt some of the model
assumptions. A full analysis would follow these up. In particular some inflation
adjustment should be made to the data and the modelling process repeated to see
whether this adjustment removes the non-random look of these residuals along the
payment year direction. However for the time being it will be assumed that both
these models are satisfactory and the regression results will be used in the next
section to project the future payments and their standard errors from these two
models.

A later section will consider a model with inflation and claim volume adjustment to
seeif abetter model can be found.

J. Using the modelsto project future paymentsand standard errors

When the basic chain ladder model with independent devel opment parametersis fitted
it is not possible to extend the projections beyond the |atest development contained in
the triangle without resorting to some form of external curve fitting of development
factors such as the Sherman inverse power curve for example.

In these examples as a curve (straight line) has been fitted to the development

parametersit is possible to extend the model projections to development periods
beyond those contained in the data triangle.

09/97 D5.30



REGRESSION MODELS BASED ON LOG-INCREMENTAL PAYMENTS

The model has a natural stop as the payments are decaying exponentially and so
become small relatively quickly. So we could simply sum the implied geometric
series or take the values to some development period beyond which we would expect
no more paymentsin practice.

In what follows it is assumed that there are no payments beyond development 12, as
thisis sufficient for purposes of illustration and cuts down the values to be projected.
In practice thiswill need to be decided on the merits of each case and knowledge of
the likely run-off period of the particular class being investigated.

The data triangle contained 28 values and our compl eted rectangle has atotal of 91
data points (7x13). There are therefore 63 individual payments and their standard
errorsto calculate.

The design and future design matrices are first produced and these are used to
produce the variance-covariance matrix of the future values. Thisisnow a63 x 63
matrix and should be within the capability of areasonable spreadsheet. Both Lotus
123 Version 2.2 and SuperCalc5 Version 5.0 can handle square matrices of around 89
x 89.

For producing the future values and their associated (individual) standard errors only
the diagonal elements of this matrix are needed. The calculations from here are fairly
simple and are shown in the Tables 5 and 7 below. These tables are set in the way
one would normally produce them in a spreadsheet. The values are arranged by
accident year first, asthisis how the future design matrix was set out. The accident
year order was adopted here as this order facilitates the computation of the accident
year standard errors.

The second table in each set (Tables 6 and 8) show the projected values and standard
errorsin amore traditional format and also include accident year and overall totals for
both values and standard errors. These calculations are also set out in the spreadsheet
asexplained in Section F. In view of the size of the matrices involved they have not
been shown here.

The various matrix products needed to calcul ate the variance-covariance matrix (as

set out in Appendix 1 for the earlier chain ladder example) took under two minutes on
a12MHz PC fitted with a maths co-processor.
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Table 5: Projection for the Full Parameter Model: Part a
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?ij

5.528
5.093
4.658
4.223
3.788
3.353
5.964
5.529
5.094
4.659
4.224
3.789
3.354
6.490
6.055
5.620
5.185
4.750
4.315
3.880
3.445
6.814
6.379
5.944
5.509
5.074
4.639
4.205
3.770
3.335
7.332
6.897
6.462
6.027
5.592
5.157
4.722
4.287
3.852
3.417
7.976
7.541
7.106
6.671
6.236

Var?ij

.0195
.0223
.0258
.0301
.0350
.0405
.0185
.0210
.0241
.0280
.0325
.0377
.0436
.0179
.0199
0227
.0261
.0302
.0350
.0405
.0467
0177
.0193
.0216
.0246
.0283
.0327
.0378
.0435
.0499
.0181
.0193
0212
.0237
.0269
.0308
.0354
.0407
.0466
.0532
.0202
.0208
.0220
.0240
.0266

ﬁ)ij

254
165
107
69
45
29
393
255
165
107
69
45
29
664
431
279
181
117
76
49
32
919
595
386
250
162
105
68

29
1542
999
647
419
272
176
114
74
48
31
2939
1903
1232
798
518

se Isij

36
25
17
12
8
6
54
37
26
18
13
9
6
89
61
42
29
21
14
10
2
123
83
57
39
27
19
13
9
7
209
139
95
65
45
31
22
15
11
7
420
276
184
124
85

% error

14.0%
15.0%
16.2%
17.5%
18.9%
20.3%
13.7%
14.6%
15.6%
16.8%
18.2%
19.6%
21.1%
13.4%
14.2%
15.2%
16.3%
17.5%
18.9%
20.3%
21.9%
13.3%
14.0%
14.8%
15.8%
17.0%
18.2%
19.6%
21.1%
22.6%
13.5%
14.0%
14.6%
15.5%
16.5%
17.7%
19.0%
20.4%
21.8%
23.4%
14.3%
14.5%
14.9%
15.6%
16.4%
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7 5801 .0298 336 58 17.4%
8 5366 .0338 218 40  18.5%
9 4931 .0385 141 28 19.8%
10 449 .0438 92 19 21.2%
11 4061 .0498 59 13 22.6%
12 3626 .0565 39 9 241%

o1 o1 o101 01Ol
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Table 5: Projection for the Full Parameter Model: Part b

—

~ ~ ~ ~ 0
Yij var y; Pi Se Py Yo error

8607 .0296 5550 962 17.3%
8172 .0290 3592 616 17.1%
7737 .0290 2325 399 17.2%
7302 .0298 1506 @ 262 17.4%
6.867/ .0313 975 174 17.8%
6.432 .0334 632 116 18.4%
5997 .0362 410 79 19.2%
5562 .0397 266 53  20.1%
5.127 .0439 172 36 21.2%
10 4.692 .0487 112 25  224%
11 4257 .0543 73 17 23.6%
12 3.822 .0605 47 12 25.0%

DO OO OO
O©CoOoO~NOOUIDdWNPE

TOTAL = 34377
Table 6: Projected values and Standard Errors.

Full Parameter Model.

Development Year

Yr 1 2 3 4 5 6 7 8 9 10 11 12 Tota
0 £ 254 165 107 69 45 29 669
se 36 25 17 12 8 6 79

393 255 165 107 69 45 29 1063
54 37 26 18 13 9 6 119

664 431 279 181 117 76 49 32 1830
89 61 42 29 21 14 10 7 19

919 595 386 250 162 105 68 44 29 2559
123 83 57 39 27 19 13 9 7 265

1542 999 o647 419 272 176 114 74 48 31 4324
209 139 9% 65 45 31 22 15 11 7 443

2939 1903 1232 798 518 336 218 141 92 59 39 8274
420 276 184 124 8 58 40 28 19 13 9 890

5550 3592 2325 1506 975 632 410 266 172 112 73 47 15659
962 616 399 262 174 116 79 53 36 25 17 12 2158

n
g 8|8 g™ g™ |8

Overdl Total 34377
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Standard Error 2742
Percent. Error 7.98

Table 7: Projection for the Reduced Parameter Model: Part a

09/97

P Yi vary; p, sep, %error

0 7 5530 .0182 255 3B 13.6%
0 8 5091 .0209 164 24 145%
0 9 4651 .0241 106 17 15.6%
0 10 4211 .0279 68 11 16.8%
0 11 3772 .0322 44 8 181%
0 12 3332 .0371 29 6 19.4%
1 6 5970 .0161 395 50 12.8%
1 7 5530 .0182 255 3B 13.6%
1 8 5091 .0209 164 24 14.5%
1 9 4651 .0241 106 17 15.6%
1 10 4211 .0279 68 11 16.8%
1 11 3772 .0322 44 8 181%
1 12 3332 .0371 29 6  19.4%
2 5 6410 .0146 612 74 121%
2 6 5970 .0161 395 50 12.8%
2 7 5530 .0182 255 3B 13.6%
2 8 5091 .0209 164 24 145%
2 9 4651 .0241 106 17 15.6%
2 10 4211 .0279 68 11 16.8%
2 11 3772 .0322 44 8 181%
2 12 3332 .0371 29 6 19.4%
3 4 6849 .0136 950 111  11.7%
3 5 6410 .0146 612 74 121%
3 6 5970 .0161 395 50 12.8%
3 7 5530 .0182 255 3B 13.6%
3 8 5091 .0209 164 24 145%
3 9 4651 .0241 106 17 15.6%
3 10 4211 .0279 68 11 16.8%
3 11 3772 .0322 44 8 181%
3 12 3332 .0371 29 6 194%
4 3 7289 .0132 1474 170 11.5%
4 4 6849 .0136 950 111 11.7%
4 5 6410 .0146 612 74 121%
4 6 6970 .0161 395 50 12.8%
4 7 5530 .0182 255 3B 13.6%
4 8 5091 .0209 164 24 14.5%
4 9 4651 .0241 106 17 15.6%
4 10 4211 .0279 68 11 16.8%
4 11 3772 .0322 44 8 181%
4 12 3332 .0371 29 6  19.4%
5 2 7972 0195 2927 411 14.0%
5 3 7532 0199 1886 267  14.2%
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4 7.093 .0208 1216 176 14.5%
5 6.653 .0224 784 118 15.0%
6 6213 .0244 506 79 15.7%
7 5774 .0270 326 54  16.6%
8 5334 .0302 210 37 17.5%
9 4894 .0340 136 25 18.6%
10 4455 .0382 88 17 19.7%
11 4015 .0431 57 12 21.0%
12 3575 .0485 37 8 22.3%

o1 o1 o101 0101010101
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Table 7: Projection for the Reduced Parameter Model: Part b

—

~ ~ ~ ~ 0
Yij vary Pi Se Py Yo error

8609 .0285 5562 946 17.0%
8170 .0279 3582 603 16.8%
7730 .0279 2308 388 16.8%
7290 .0284 1487 252 17.0%
6.851 .0295 959 166 17.3%
6.411 .0311 618 110 17.8%
5971 .0333 399 73 18.4%
5532 .0361 257 49 19.2%
5.092 .0394 166 33 20.0%
10 4.652 .0432 107 23 21.0%
11 4213 .0476 69 15 221%
12 3773 .0526 45 10 232%

DO OO OO
O©CoOoO~NOOUIDdWNPE

TOTAL = 33847

Table 8: Projected values and Standard Errors

Reduced Parameter Model.
Development Year
Yr 1 2 3 4 5 6 7 8 9 10 11 12 Totd
0 £ 255 164 106 68 44 29 666
se 35 24 17 11 8 6 75
1 £ 395 255 164 106 68 44 29 1060
se 50 3B 24 17 11 8 6 106
2 £ 612 395 255 164 106 68 44 29 1672
se 74 50 3% 24 17 11 8 6 146
3 £ 950 612 395 255 164 106 68 44 29 2622
se 1117 74 50 35 24 17 11 8 6 200
4 £ 1474 950 612 395 255 164 106 68 44 29 4096
se 170 112 74 50 35 24 17 11 8 6 275
5 £ 2927 1886 1216 784 506 326 210 136 88 57 37 8173
se 411 267 176 118 79 54 37 25 17 12 8 851
6 £ 5562 3582 2308 1487 959 618 399 257 166 107 69 45 15558
se 946 603 388 252 166 110 73 49 33 23 15 10 2101

Overdl Total 33847
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Standard Error 2545
Percent. Error 7.52

K. Overall standard error and accident year standard errors

The calculations necessary to produce the accident year and overall standard errors
shown in Tables 6 and 8 above are arepeat of those shown in Section G. The only
complication is that in the above cases there are more values to project (63 rather than
6) so thereisalot more to calculate.

Theresults are very close. The full model produces estimated future payments of
34377 with a standard error of 2742 or 7.98%. The reduced parameter model
produces estimated future payments of 33847 with a standard error of 2545 or 7.52%.
The two estimated values are not significantly different but the second model has a
proportionately smaller standard error. Thisis purely due to the smaller number of
parameters used in defining this model. The second model may therefore be
considered to have the slight advantage over the first.

The closeness of these resultsis not particularly surprising as the two models are very
similar. Most of the future payments relate to the last two accident years and here
both models have assumed these years to have independent levels (just like the chain
ladder model) and so any smoothing from the reduced parameter model affects only
the earliest accident years where the projected future payment values are not so large.

In fact assumptions about the most recent accident years are crucial to any reserve
analysis. The base data used in this example is unadjusted for inflation and claim
volume and the levels for the various accident years are not normally expected to be
as close as those of the first five accident years above.

The next section will consider modelling the inflation and volume adjusted data.
L. Adjusting for inflation and claim volumes

It is possible to reduce the model parameters further by using an inflation index to
bring al payments to current value and a claims volume adjustment or weight for
each accident year so as to normalize these payments.

The claim volume values to be used in this example are based on the number of
claims reported by the end of the first development period. They are scaled for
convenience.

Accident Y ear 0 1 2 3 4 5 6

Claim Volume 143 145 152 135 129 147 191
An earnings index for the relavant period will be used in this case to bring payment
values to payment year 6 (the latest payment year) values. In practice caseis needed

to ensure that the index used is the most appropriate index for the class of claims
under investigation.
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Payment year 0 1 2 3 4 5 6
Index 155 141 130 123 113 105 1

The inflation adjusted, volume normalized incremental payments (shown in integer
format but calculated and used to many decimal places) are now as follows:

Development Y ear

AccYr 0 1 2 3 4 5 6

0 3806 3170 2060 1473 837 431 238
1 3891 3319 1932 920 692 434

2 3725 3182 1447 1051 814

3 3913 2892 1573 978

4 3635 3050 1798

5 3644 3094

6 3290

Even before any further analysisis carried out it is clear from this triangle that thereis
afair amount of consistency and stability in the adjusted data.

Plotting the log-incremental adjusted data, as can be seen from Chart 12 below,

LOG-INCREMENTAL PAYMENTS CHART 12
0 DATA ADJUSTED FOR INFLATION AND CLAIM YOLUME
Based) T ! T
oF
ADJUSTED
AVERAGE
FATD

ACCIDENT YEAR
wep Ty o= 3 -y A

appears to confirm this observation. The various lines, each representing an accident
year, look closely grouped together for at least the first couple of devel opment
periods.

The chart indicates that accident year effects may have been reduced or eliminated
and the first test will be to confirm whether thisisthe case. As the shape of these
linesis as before the same assumptions will be made in modelling the shape.

The design matrix isinitially exactly asin the previous example which assumed

accident years 1 to 6 as independent variates and had an independent first
development level (d) and then alinear trend with common slope s.
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The regression output using the adjusted values and including the extratwo lines as
beforeis:

Regression Output: Full Parameter Model.

Constant 0

Std Err of Y Est 1153
R Squared(Adj,Raw) 0.9788 .9851
No. of Observations 28
Degrees of Freedom 19

Kk & & & & & @& d s

Coefficient(s) 8.627 -.087 -.114 -.175 -.120 -.110 -.237 -.292 -.505
Std Err of Coef. .077 .065 .070 .076 .085 .099 .133 .071 .019
T-Ratios 1126 -13 -16 -23 -14 -11 -18 -41 -270

Accident year 3 turns out to be the only one whose parameter has a T-ratio whose
absolute value exceeds 2 and may be considered significant.

So the next stage isto eliminate all the accident years with T-Ratios less than absolute
2 and refit. There are now four parameters namely

k & dand s
The regression output of thismodel is:

Regression Outpuit:
Constant 0
Std Err of Y Est 1157
R Squared(Adj,Raw) .9787 .9810
No. Of Observations 28
Degreesof Freedom 24

k & d S
Coefficient(s) 8.523 —-.088 —.296 -.493
Std Err of Coef. .054 .063 .068 .017
T-Ratios 157.2 -14 -4.3 -28.7

The parameters of this model can still be reduced as the accident year three parameter
iIsnow not significant. What has happened isthat it is now being measured against
the “average” of al the other accident year levels rather than just the first accident
year level and this has been sufficient to make this last accident year parameter close
enough to the average value. Care needs to be taken to ensure that none of the other
parameters have become significant in the new model.

So this remaining accident year parameter will be dropped, leaving only three
parameters, one for the common level k, and the two shape parametersd and s.
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The regression output of this three parameter model is:

Regression Output:

Constant 0

Std Err of Y Est 1179

R Squared(Adj,Raw) .9779 .9795

No. Of Observations 28

Degrees of Freedom 25

k d S

Coefficient(s) 8.501 —.286 —-.489
Std Err of Coef. .053 .069 .017
T-Ratios 161.3 -4.1 -28.3

Thisisan interesting stage. There are now only three parameters and all are
significant. The model has a high R-squared value and appears to describe the data
reasonably well. It isnow tempting to use this model to project future payments.

The process is as before with the minor irritation of scaling the estimated values for
claim volumes and using some future inflation index to take the projected payments to
final values. Theinflation rate to be used here is 7.5% p.a. which ischosen asit is
close to the average annual historic rate implied by the index used to adjust the
historic payments and will facilitate the comparison of the results. In practice amore
appropriate prospective rate or rates will normally be utilized and a number of these
used to obtain estimates.

Table 10 below shows the results derived from the full parameter model and inflation
a 7.5% p.a
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Table 10: Projected values and Standard Errors.

Full Parameter Model with inflation at 7.5%

Development Year

Yr 1 2 3 4 5 6 7 8 9 10 11 12 Tota
0 £ 253 164 107 70 45 29 669
se 36 25 18 12 9 6 80
1 £ 389 253 164 107 70 45 29 1058
se 54 37 26 18 13 9 6 120
2 £ 658 427 278 181 117 76 S50 32 1820
se 89 61 43 30 21 15 10 7 198
3 £ 911 592 384 250 162 106 69 45 29 2547
se 123 84 58 40 28 19 14 10 7 267
4 £ 1524 990 643 418 271 177 115 75 49 32 4292
se 209 140 95 65 45 32 22 15 11 7 445
5 £ 2910 1889 1226 797 518 336 219 142 93 60 39 8229
se 421 277 185 126 8 59 41 29 20 14 10 896
6 £ 5544 3596 2334 1515 984 639 415 270 176 114 74 48 15709
se 972 624 406 267 177 119 81 55 38 26 18 12 2191

The results are very close to those obtained earlier (Table 6) from the almost identical

model without explicit inflation assumptions.

Increasing the inflation rate to 8.5% p.a. increases the overall estimate to 35210 with

Overdl Total 34324
Standard Error 2779
Percent. Error 8.10

astandard error of 2858. So the one percentage change in the assumed future

inflation rate impacts the estimated future payments by 2.6%.

Turning now to the reduced parameter model, that is the three parameter model with

no accident year effects apart from the common level we obtain the following results

assuming future inflation at 7.5% p.a.

09/97
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Table 11: Projected values and Standard Errors.

Reduced Parameter Model with inflation at 7.5%.

Development Year
1 2 3 4 5 6 7 8 9 10 11 12 Totd

249 165 109 72 47 31 673
36 25 18 13 9 6 79

412 272 179 118 78 52 34 1145
55 39 27 19 14 10 7 120

703 464 306 202 134 88 58 39 1994
0 62 4 31 22 16 11 8 184

1018 671 443 292 193 127 84 56 37 2921
1125 86 59 42 29 21 15 11 7 235

1585 1045 690 455 300 198 131 87 57 38 4586
192 129 88 61 43 30 21 15 11 8 323

2045 1942 1280 845 557 368 243 160 106 70 46 8563
358 235 158 108 75 52 37 26 19 13 9 541

g™ (BB |B™(B™ BT

6241 4114 2712 1788 1180 778 514 339 224 148 98 65 18201
777 500 329 220 151 105 /3 52 37 26 19 13 1090

Overdl Total 38083
Standard Error 1725
Percent. Error 4.53

The results now look, and are, different. The overall estimate is significantly up on
the previous estimates and the standard error is much reduced. The reduction in the
overall standard error is due to the smaller number of parameters left in the reduced
model and reflects the increased degree of smoothing that this parameter reduction
has produced.

Theincrease in the overall projection, at just under 11%, is however too high to be
explained by the derived standard errors. The main contributor can be clearly
identified from the tables as the last accident year. Thisis not too surprising with
hindsight. Thereisonly asingle data point from which to project. If it isassumed, as
in the first case, that each year has an independent level then this point alone
determines the level of the last accident year. The accident year residual plot for the
latter model (Chart 14) shows the standardized residual for accident year 6 at around
—1. Although thiswill not generally be considered statistically significant itsimpact,
in areserving context, has become significant.
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Assuming acommon level (in the adjusted figures) substantially reduces the influence
of thislast data point on its accident year estimate of future payments. Asthe
adjusted triangle figures show, the one and only value for this last accident year is
substantially below the corresponding values of the prior years. Using the same
average value for al accident years gives the last accident year an average value
which is now just under 16% higher than the value estimated from its own single data
point.

Putting the last accident year back into the model will produce results which will
broadly match the full model overall estimate but with a reduced standard error.
These are shown below.

Table 12: Projected values and Standard Errors.

Reduced Parameter Model with Acc Yr 6, inflation at 7.5%.

Development Year

Yr 1 2 3 4 5 6 7 8 9 10 11 12 Tota
0 £ 249 165 109 72 47 31 673
se 35 25 18 13 9 6 79
1 £ 412 272 179 118 78 52 34 1145
se 55 39 27 19 14 10 7 120
2 £ 703 464 306 202 134 88 58 39 1994
se 0 62 4 31 22 15 11 8 183
3 £ 1017 671 443 292 193 127 84 56 37 2921
se 125 8 59 42 29 21 15 11 7 234
4 £ 1585 1045 689 455 300 198 131 87 57 38 4585
se 192 128 88 61 43 30 21 15 11 8 322
5 £ 2045 1942 1280 845 557 368 243 160 106 70 46 8562
se 357 235 157 108 75 52 37 26 19 13 9 540
6 £ 5494 3621 2387 1574 1038 685 452 299 197 130 86 57 16021
se 981 639 421 280 188 127 87 60 41 28 20 14 2258

Overdl Total 35902
Standard Error 2609
Percent. Error

1.27
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RESIDUAL ANALYSIS CHART 14
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(IT RESULTSIN A 7.3% INCREASE IN THE OVERALL ESTIMATE)

Both these models are reasonable. They fit the data well and the standard errors are
quite small. Theresults are quite different and these differences are clearly not
explained by the standard errors, and are primarily due to the choice of parameters.
Aswe know little about the underlying account it will be very difficult to choose
between these models. In practice additional information, and informed views, will
need to be sought to assist in this choice. This can then be used directly in deciding
which parameters are to be left in the model.

A theoretically more appealing approach isto use some form of external or prior
distribution and estimate in a Bayesian framework. Thisis explained in more detail
by Verral (6). Itispossible to carry out the necessary calculationsin the spreadsheet
but more computation is necessary. The Bayesian approach combines formal
statistical theory and informed prior estimates (knowledge and expertise!) and would
appear to represent almost an ideal combination of theory and practice for reserving
work. In practice more work is necessary in order to understand how sensitive the
results are to these prior estimates, especially as these are made in log-space which,
while convenient, are nevertheless somewhat alien from the immediate everyday
experience of practitioners.

M. Final comments
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This section will briefly consider some other aspects of these models which were
deliberately avoided in earlier sections as the main emphasis has been a practical
rather than a theoretical one.

a Sandard errors of reserve estimates

In practice, and as an approximation, as long as a sufficiently large number of future
values are being projected it may be assumed that the distribution of the overall
estimate obtained is normal with mean and standard error as calculated above.

That iswe can use normal probability tables to establish approximate confidence
intervals around the model reserve estimate. In the last example shown in Table 12
above for instance and under the conditions of the model, we have (approximately) a
95% probability that the required reserve will be less than 40194 ( 35902 + 1.645 x
2609). Recall however that the error estimate may be incomplete and future inflation
is assumed fixed reducing the possible error further.

In practice the specific variability of a particular class reserve estimate may be less
important to management than the variability of the overall company clamsreserve
Balance Sheet figure.

The individua class standard errors may be used to obtain estimates of this overall
variability. For example if mutual independence of reserve estimates by classis
assumed the overall variance may be obtained as the sum of the individual variances.
Under these circumstances the percentage error in the overall reserves can drop to low
figures.

Much work remainsto be donein thisarea. At least these methods provide a start
point to such considerations.

There will clearly be other factors, not incorporated into the model, that in practice
will add to the error terms. There was no attempt to explicitly adjust for inflation in
the first examples although the models incorporated an implicit assumption which is
then implicitly projected into the future.

In the later examples values were adjusted for past inflation, using an index that may
or may not have been the most appropriate, and projected values cal culated using an
assumed future rate of inflation, or more correctly claims cost escalation. The
examples assumed a future rate which was based on the average past inflation used in
adjusting the data.

Relatively small changes in these assumed future rates can lead to relatively large
changesto the overall projected values. These models can be used to produce a series
of results, with varying future claims escalation assumptions, from which it may be
possible to derive a measure of the additional variability that may arise from this
source.

These models do not attempt to alow for changesin the speed of settlement of

claims. Payment developments may appear stable due to a combination of
accelerating costs counteracted by a slowdown in settlements. Clearly under such
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circumstances estimates from a regression model on log-incremental payments, or a
chain ladder projection based on cumulative payments, are likely to produce estimates
which may be seriously biased.

Finally there will generally be alot more information available to management than
that used in fitting any statistical model. It isjust possible that a combination of
statistical derived estimates with informed estimates based on specific and detailed
knowledge of the particular business, its environment and claims, may produce final
estimates that have reduced variability. Thiswill be however difficult to prove.

b. Negative valuesin incremental data sets

One particular problem with log-linear models is the occasional negative value in the
original space.

Negative values occur in practice especially in net of reinsurance incremental
payments and in classes of business subject to large subrogation or salvage
recoveries. Various aternative approaches are available to the modeller to deal with
negative valuesin practice. One approach, adopted in acommercial package
(ICRFS), isto add a sufficiently large constant to all the incremental values, so that
they all become positive, before the logarithmic transformation and an adjustment
made in the projected values.

An aternative approach, that may be acceptable in practice, is to shift payments from
one period to an adjacent one so as to eliminate a negative value. Thismay be
justified if it is known, or suspected, that the negative value is the result of some serial
correlation, for example when preceded by arelatively large value. Another
possibility, which may be tried where the negative value is small is to ignore the value
totally or to set it to some small positive value such as 1 (loge 1=0).

No particular approach is recommended here asideal for dealing with negative
values. In practice the reason for such negative values has to be investigated and this
process often helps identify an appropriate approach to deal with the problem.
Clearly one should not ignore a genuine feature of the data for the sake of
convenience.

C. Parsimony

The chain ladder model is sometimes considered overparameterised asit involves a
parameter for each accident year and each development period. Too many parameters
can lead to model instability. Increasing the number of explanatory variables
improves the quality of the fitted data but such slavish adherence to the data often
resultsin unstable projections. At the extreme one can always obtain a perfect fit by
including enough parametersin the model. Such amodel fails to achieve any
smoothing of the data and will be very poor for prediction purposes. Parsimonious
models, that is with fewer parameters are to be preferred for thisreason. Thisis
explained in more detail in thefirst article in this Volume of the Manual.

d. Serial Correlation and Heter oscedasticity
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The triangular shaped incremental payments data tend to decrease as the devel opment
years increase and there is usually some seria correlation present in these payments
for aparticular accident year. Such correlation may occur when alow payment
period, due to administrative problems for example, isfollowed by a catching up high
payment period or vice versa. On net paid claims data this may happen when a gross
payment is made in one period with the incoming associated reinsurance processed
during the following period.

The decline in values in the devel opment direction tends to result in the residuals
increasing with development period. This characteristic is an example of
heteroscedasticity. In effect the 11D assumption implies that the error termsin the
original space are subject to the same percentage variation irrespective of their
absolute values. Experience with payments triangles indicates that as payments
diminish in the tail the percentage variation of these payments tends to be much
higher than that seen in the first few devel opment periods when a greater volume of
payments is usually being made. This may be more pronounced in net rather than
gross payments.

Methods to overcome this are being developed. One approach followed by Zehnwirth
in the ICRFS package (Interactive Claims Reserving and Forecasting System) isto
use weights. Alternative error assumptions, which may well turn out to be more
appropriate, are being investigated by others. The main disadvantage of these
approaches is the difficulty of obtaining the parameter estimates compared to the
comparatively easy spreadsheet regression approach.

e The Hoer| run-off curves

A particularly useful family of curvesfor run-off patternsisthe Gamma family
defined by

Py = Kj (1 +])" exp(a)

Each curve has alevel parameter K; and two shape parameters b and athe latter being
an exponential. They have the immediate advantage of becoming linear in log-space
and can be fitted simply by multiple regression using the techniques of thisarticle.
These curves form the start point in the |CRFS package.

As the example above illustrated these curves do not always produce good fits for all
development periods. They can be particularly poor in fitting the first few
development periods which clearly have a significant influence on the reserves
projected for the most recent accident years where a substantial amount of the overall
reserve is generally to be found.

It is possible to use the simple techniques outlined in this article to fit “mixed” models
where some shape is fitted for later devel opment periods and independent parameters
fitted for the earlier periods. The example above fitted an independent first
development parameter and an exponential decay curve thereafter. Any shape that
can be expressed linearly (in log-space) can be tried even if in practice restrictionsin
“alowable” shapes will inevitably be necessary to keep any package to reasonable
size.
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f. Conclusion

Regression techniques are now beginning to dominate developmentsin claims
reserving methodology. The formal approach adopted, whether utilizing maximum
likelihood and 11D normal errors or any other error model, at |east enables the
modeller to test the reasonableness of the assumptions. The model testing phase itself
can often reveal interesting aspects of the data which may not be immediately obvious
from looking at the cumulative payments.

These models can be very useful for inter-company comparisons and for comparing
the stability of run-off triangles. Some results aong these lines are to be found in
Section E of the Claims Run-Off Patterns Working Party report presented to the 1989
GISG (General Insurance Study Group) Conference in Brighton.

This article isintended to give a practical introduction to these techniques and does
not claim any original theoretical developments. The writer is particularly grateful to
Arthur Renshaw and Richard Verrall of City University for their invaluable and
patient explanations on this subject. The hopeisthat other practitioners can now
begin to benefit by experimenting with these techniques.
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Appendix 1

Matrix calculations for the formal chain ladder example
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Inverse of X'X i.e. (X"X)*

58333 .25000 .16667 .00000 -.33333 -.41667 -.58333
25000 58333 .16667 .00000 33333 -.41667 -.25000
16667 .16667 .66667 .00000 _ 33333 -_.16667 -.16667
.00000 .00000 .00000 1.00000 (00000 .00000  .000QO
33333 33333 —-.33333 .00000 66667 .33333 .33333
41667 41667 -.16667 .00000 33333 91667 .41667
58333 25000 -.16667 00000 33333 41667 1.58333

Future design X

coocooo
coocoor
coorRrO
PR RPROOO
coroOoOO
oOroOoORrO
RPOOROR

Transpose of Future Design Matrix X"

POOOORFr O
OPrLPO0OO0OPFr OO0
POOOPFr OO
OCOPFrRPPFPOOO
OPrRrPOPFrPOO0OO0O
POOPFPOOO

Product of Future Design X; and Inverse of XX

ie  Xi(X™X)?!

33333 .33333 .00000 .00000 .00000 .00000 1.33333
25000 —.25000 50000 00000 00000 .75000 .25000
41667 _08333 50000 00000 00000 25000 1.41667
33333 _33333 —.33333 100000 66667 .33333 .33333
41667 _ a1667 —.16667 100000 33333 91667  .41667
58333 _o5ngp 16667 100000 33333 41667 1.58333
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Final product (X (X™X)™) and X;"

e X (XTX)XqT

1.66667 .00000 1.33333 .00000 .00000 1.33333
.00000 1.25000 .75000 .00000  .75000  .25000
133333 .75000 1.91667 .00000 .25000 1.41667
.00000 .00000 .00000 1.66667 1.33333 1.33333
.00000 .75000 .25000 1.33333 1.91667 1.41667
133333 .25000 1.41667 1.33333 1.41667 2.58333

And finally the data specific Var-Cov matrix is derived from the above values by
multiplying by o®.

So thefirst entry is 1.66667 x .0524% = 00457 etc.
The Variance-Covariance matrix in this case is then

i.e o? Xt (XTX) X"

.00457 .00000 .00366 .00000 .00000  .00366
.00000 .00343 .00206  .00000 .00206  .00069
00366 .00206 .00526 .00000 .00069  .00389
.00000 .00000 .00000 .00457 .00366 .00366
.00000 .00206 .00069 .00366 .00526 .00389
.00366 .00069 .00389 .00366 .00389 .00709

Appendix 2
Soreadsheet Regression Output tables

The raw spreadsheet regression output table for the first example (4x4 chain
ladder) was

Regression Output:

Constant 0

Std Err of Y Est .05238
R Squared(Ajd,Raw) .99758 .99919
No. of Observations 10
Degrees of Freedom 3

Coefficient(s) 0.2884 9.5911 9.6924 9.7358 -.4662 —1.801-2.647
Std Err of Coef. .0400 .0400 0428 .0524 .0428 .0502 .0660

Thisisvery typical of al the spreadsheet regression output.
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A brief description of this output is given below:
a) Constant (=0)

The spreadsheet regression command usually has an option of either fitting
through the origin or calculating a constant. In the case above the model was
fitted through the origin so the constant calculated is zero. In the models
described in the article a parameter is used in place of this constant asthis
makes the analysis more convenient. The calculated values will be the same
but in the latter case the regression shows the standard error associated with
this constant.

b) Std Err of Y Est (0.0524)

Thisisthe estimated standard error of the residuals. It isthe square root of the
estimated model variance 6%

It isin other words the estimate of the standard deviation of the assumed
underlying normal error term.

Thisvalue plays a very significant role in the estimates of future values and
their standard errors.

©) R Squared (Adj, Raw) (0.9976 0.9992)

Thisisastatistic ranging from 0 to 1 which indicates how much variation in
the datais explained by the model. The closer to 1, the more variation
explained by the model. The differencein the two valuesis from a correction
for the degrees of freedom.

In crude termsiit indicates that the model explains 99.76% of the values, in the
log-space.

d) No of Observations (10)

The 4 by 4 triangle contained ten values al of which were used in the fitting
process.

€) Degreesof Freedom (3)

The model assumed 7 independent parameters (including the constant) and
used 10 observationsto estimate these. The difference, ( 10-7 ), isthe number
of degrees of freedom.

Note that in this case there are alot of parametersin relation to the number of
datavaluesin thetriangle. Thistendsto produce ahigh quality of fit, i.e. a
high R? but forced adherence to the actual data by incorporating many
parameters in the model can lead to a model with poor predictive qualities.

f) Coefficient(s) (9.288 9.591 etc.)
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These values are the estimates of the model parameter values. They appear in
the order defined by the Design Matrix one for each independent variable.

Least squares are being used to calculate these values and the solution is given
by

(X"™X)tXTY where Y isthe vector of data values.
g) Std. Err of Coef. (0.0400 0.0400 etc...)
These are the estimated standard errors of the coefficient estimates. They are
the square roots of the diagonal elements of the variance-covariance matrix of
the coefficients

o’ (X™X)™

Changing values in the data triangle does not affect the design matrix X and
only changes the scalar element or ¢°.

So different data sets result in standard errors of the model coefficients which
differ only by a constant factor which isequal to the ratio of the data specific
model standard errors or ¢’s.

<>
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[D6]
MEASURING THE VARIABILITY OF CHAIN LADDER RESERVE
ESTIMATES
Contributed by T Mack

Abstract

The variability of chain ladder reserve estimates is quantified without assuming any
specific claims amount distribution function. This is done by establishing a formula for
the so-called standard error which is an estimate for the standard deviation of the
outstanding claims reserve. The information necessary for this purpose is extracted
only from the usual chain ladder formulae. With the standard error as a tool it is shown
how a confidence interval for the outstanding claims reserve and for the ultimate claims
amount can be constructed. Moreover, the analysis of the information extracted and of
its implications shows when it may be appropriate to apply the chain ladder method
and when it may not be.

Note

The original version of this paper was submitted to the prize paper competition
"Variability of Loss Reserves" held by the Casualty Actuarial Society and was awarded
a joint second prize. The present text differs from that paper in a few changes to the
text and a changed and more thorough test procedure in Appendix H. This paper is
included in the Claims Reserving Manual with the specific permission of the Casualty
Actuarial Society, which otherwise retains ownership and all rights to continue to
publish and disseminate this paper anywhere.
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1. Introduction and Overview

The chain ladder method is probably the most popular method for estimating
outstanding claims reserves. The main reason for this is its simplicity and the fact that it
is distribution-free, that is, it seems to be based on almost no assumptions. In this
paper, it will be seen that this impression is wrong and that the chain ladder algorithm
has far-reaching implications. These implications also allow it to measure the variability
of chain ladder reserve estimates. With the help of this measure it is possible to
construct a confidence interval for the estimated ultimate claims amount and for the
estimated reserves.

Such a confidence interval is of great interest for the practitioner because the estimated
ultimate claims amount can never be an exact forecast of the true ultimate claims
amount and therefore a confidence interval is of much greater information value. A
confidence interval also allows one to consider business strategy in conjunction with
the claims reserving process, using specific confidence probabilities. Moreover, there
are many other claims reserving procedures and the results of all these procedures can
vary widely. With the help of a confidence interval it can be seen whether the
difference between the results of the chain ladder method and any other method is
significant or not.

The structure of the paper is as follows. In section 2 a first basic assumption underlying
the chain ladder method is derived from the formula used to estimate the ultimate
claims amount. In section 3, the comparison of the age-to-age factor formula used by
the chain ladder method with other possibilities leads to a second underlying
assumption regarding the variance of the claims amounts. Using both of these derived
assumptions and a third assumption on the independence of the accident years, it is
possible to calculate the so-called standard error of the estimated ultimate claims
amount. This is done in section 4, where it is also shown that this standard error is the
appropriate measure of variability for the construction of a confidence interval. Section
5 illustrates how any given run-off triangle can be checked using some plots to
ascertain whether the assumptions mentioned can be considered to be met. If these
plots show that the assumptions do not seem to be met, the chain ladder method
should not be applied without adaptation. In section 6 the formulae and two statistical
tests (set out in Appendices G and H) are applied to a numerical example. For the sake
of comparison, the reserves and standard errors according to a well-known claims
reserving software package are also quoted. Complete and detailed proofs of all results
and formulae are given in the Appendices A—F.

The proofs are quite long and take up about one fifth of the paper. However, the
resulting formula for the standard error is very simple and can be applied directly after
reading the basic notations in the first two paragraphs of section 2. In the numerical
example, too, the formula for the standard error could be applied immediately to the
run-off triangle. Instead, an analysis of whether the chain ladder assumptions are met in
this particular case is made first. Because this analysis comprises many tables and plots,
the example takes up another two fifths of the paper (including the tests in Appendices
G and H).
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2. Notation and First Analysis of the Chain Ladder Method

Let C,, denote the accumulated total claims amount of accident year i, 1 <1<, either
paid or incurred up to development year k, 1 <k < 1. The values of C, for

i+k <I+1 are known to us (run-off triangle) and we want to estimate the values of
C,, fori+k>1I+ 1, in particular the ultimate claims amount C,;; of each accident year

1=2, ..., 1. Then

R, =C; - Ci7I+1—i

1

is the outstanding claims reserve of accident year ias C; |, ; has already been paid or

incurred up to now.

The chain ladder method consists of estimating the ultimate claims amounts C;; by
D Gy =Cipifr Ay, 2<i<lI

where

I-k I-k

2) f = JZ:lcjka/Ecjk, 1<k<I-1

are the so-called age-to-age factors.

This manner of projecting the known claims amount C;,, ; to the ultimate claims

amount C;; uses for all accident years i > 1+ 1 — k the same factor f, for the increase
of the claims amount from development year k to development year k+1, although the
observed individual development factors C, ,, / C;, of the accident years i < —k are
usually different from one another and from f, . This means that each increase from
Cy to C,;y,, is considered a random disturbance of an expected increase from C;, to
C, f, where f, is an unknown 'true' factor of increase which is the same for all
accident years and which is estimated from the available data by f, .

Consequently, if we imagine to be at the end of development year k we have to
consider C;,,..., C;; as random variables whereas the realizations of C,, ..., C; are

known to us and are therefore no longer random variables but scalars. This means that
for the purposes of analysis every C, can be a random variable or a scalar, depending
on the development year at the end of which we imagine to be but independently of
whether C, belongs to the known part i + k <1+ 1 of the run-off triangle or not.

When taking expected values or variances we therefore must always also state the
development year at the end of which we imagine to be. This will be done by explicitly
indicating those variables C,, whose values are assumed to be known. If nothing is

indicated all C,, are assumed to be unknown.
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What we said above regarding the increase from C; to C;,,, can now be formulated
in stochastic terms as follows. The chain ladder method assumes the existence of
accident-year-independent factors f|, ..., f,_; such that, given the development

Ci, ..., Gy, the realization of C,, ,, is 'close' to C; f,, the latter being the expected

value of C;,, in its mathematical meaning, that is
(3)  EB(Cijxn|Ciyns Cy) = Cfy, 1<i<I 1<k<I-1

Here to the right of the ' | those C,, are listed which are assumed to be known.

Mathematically speaking, (3) is a conditional expected value which is just the exact
mathematical formulation of the fact that we already know C,, ..., C, , but do not

know C,, .. The same notation is also used for variances since they are specific
expectations. The reader who is not familiar with conditional expectations should not
refrain from further reading because this terminology is easily understandable and the

usual rules for the calculation with expected values also apply to conditional expected
values. Any special rule will be indicated wherever it is used.

We want to point out again that the equations (3) constitute an assumption which is
not imposed by us but rather implicitly underlies the chain ladder method. This is based
on two aspects of the basic chain ladder equation (1). One is the fact that (1) uses the
same age-to-age factor f, for different accident yearsi=1+1 -k, ..., I. Therefore
equations (3) also postulate age-to-age parameters f, which are the same for all
accident years. The other is the fact that (1) uses only the most recent observed value
C;1,1_; as basis for the projection to ultimate ignoring on the one hand all amounts
Ci,...,C;; observed earlier and on the other hand the fact that C;,; ; could

substantially deviate from its expected value.

Note that it would easily be possible to also project to ultimate the amounts
Ci, ..., C;; ofthe earlier development years with the help of the age-to-age factors

f,,....f,_, and to combine all these projected amounts together with
Ci1y1ifi+ri--fi_; into a common estimator for C;;. Moreover, it would also easily be

i

possible to use the values C of the earlier accident years j <1 as additional

3o I+1-i
estimators for E(C;,, ;) by translating them into accident year i with the help of a

measure of volume for each accident year.

These possibilities are all ignored by the chain ladder method which uses C; |, ; as the

only basis for the projection to ultimate. This means that the chain ladder method
implicitly must use an assumption which states that the information contained in
C;1,1_; cannot be augmented by additionally using C;,...,C; ; or

Cirsis--» Cip41-i - This is very well reflected by the equations (3) which state that,

given C;, ..., Cy , the expected value of C;,, only depends on C;, .
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Having now formulated this first assumption underlying the chain ladder method we
want to emphasize that this is a rather strong assumption which has important
consequences and which cannot be taken as met for every run-off triangle. Thus the
widespread impression that the chain ladder method would work with almost no
assumptions is not justified. In section 5 we will elaborate on the linearity constraint
contained in assumption (3). But here we want to point out another consequence of
formula (3). We can rewrite (3) in the form

E(Ci,k+1 ! Cy ‘Cna - Ci) = £y

because C,, is a scalar under the condition that we know C,,, ..., C;, . This form of (3)
shows that the expected value of the individual development factor C,, ,, /C;, equals

f, irrespective of the prior development C,,, ..., C,, and especially of the foregoing
development factor C; /C;, .

As is shown in Appendix G, this implies that subsequent development factors
Ci /Cixy and C;,,, /Cy are uncorrelated. This means that after a rather high value

of Cy /C;_, the expected size of the next development factor C;,,/C; is the same

as after a rather low value of C; /C;, .

We therefore should not apply the chain ladder method to a business where we usually
observe a rather small increase C,,,,/Cy if Cy /C,,_,is higher than in most other

accident years, and vice versa. Appendix G also contains a test procedure to check this
for a given run-off triangle.
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3. Analysis of the Age-to-Age Factor Formula: the Key to Measuring the
Variability

Because of the randomness of all realizations C,, we can not infer the true values of
the increase factors fi, ..., f;_; from the data. They only can be estimated and the chain
ladder method calculates estimators f,, ..., f;; according to formula (2). Among the

properties which a good estimator should have, one prominent property is that the
estimator should be unbiased, that is its expected value E(f, ) (under the assumption

that the whole run-off triangle is not yet known) is equal to the true value fi, in other
words E(f, ) = f, . Indeed, this is the case here as is shown in Appendix A under the
additional assumption that

(4) the variables {C,,...,C;}and {Cy,...,C;} of different accident years i+ j are
independent

Because the chain ladder method neither in (1) nor in (2) takes into account any
dependency between the accident years we can conclude that the independence of the
accident years is also an implicit assumption of the chain ladder method. We will
therefore assume (4) for all further calculations. Assumption (4), too, cannot be taken
as being met for every run-off triangle because certain calendar year effects (such as a
major change in claims handling or in case reserving or greater changes in the inflation
rate) can affect several accident years in the same way and can thus distort the
independence. How such a situation can be recognized is shown in Appendix H.

A closer look at formula (2) reveals that
-k
j2:1 Cixa 1k
=1 .

=T T2 C.
J

I-k
J
2Cy, 2 Cy

Cjk Cj,k+1

is a weighted average of the observed individual development factors C; .,/ C;, for
1 <j<T-k, where the weights are proportional to C;, . Like f, every individual

development factor C;,,/Cy, 1 <j<I -k, is also an unbiased estimator of f,

because
E(Cj,k+1 /Cjk) = E(E(Cj,k+1 /Cjk ‘lev"'vcjk ) (a)
= E(E(Cjpn [ Cisrrs €)1 Cy) (b)
= E(Cyf, / Cy) ()
= E(f,)
= £, (d)

Here equality (a) holds due to the iterative rule E(X) = E(E(X|Y)) for expectations, (b)
holds because, given C;; to Cy,, Cy, is a scalar, (¢) holds due to assumption (3) and
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(d) holds because f, is a scalar. (When applying expectations iteratively, e.g.

E(E(X]Y)), one first takes the conditional expectation E(X|Y) assuming Y being
known and then averages over all possible realizations of Y.)

Therefore the question arises as to why the chain ladder method uses just f, as
estimator for f, and not the simple average

=
— 2 Cixer/ Ci

I-k j=t

of the observed development factors which also would be an unbiased estimator as is
the case with any weighted average

I-k I-k
g, = JZ:lekcjka/cjk with 2w =1

=

of the observed development factors. (Here, w ;, must be a scalar if C;;, ..., C;, are
known.)

Here we recall one of the principles of the theory of point estimation which states that
among several unbiased estimators preference should be given to the one with the

smallest variance, a principle which is easy to understand. We therefore should choose
the weights w;, in such a way that the variance of g, is minimal. In Appendix B it is

shown that this is the case if and only if (for fixed k and all j)

w ;i Is inversely proportional to Var(C;y ., /Cy | Cii»-- Cy)

The fact that the chain ladder estimator f, uses weights which are proportional to C;,

therefore means that C,, is assumed to be inversely proportional to

Var(Ciy,, /Cy | Cii»---»Cj) , or stated the other way around, that
Var(Cy /Cy | Cypyer Cy) = 0/ Cy

with a proportionality constant ockz which may depend on k but not on j and which
must be non-negative because variances are always non-negative.

Since here C;, is a scalar and because generally Var(X/c) = Var(X)/ ¢? for any scalar

¢, we can state the above proportionality condition also in the form
(5) Var(Ciy, 1Cyp,e, Cy) = Cyo >, 1<j<L1<k<I-1

with unknown proportionality constants ockz ,1<k<I-1.
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As with assumptions (3) and (4), assumption (5) also has to be considered a basic
condition implicitly underlying the chain ladder method. Again, condition (5) cannot a
priori be assumed to be met for every run-off triangle. In section 5 we will show how
to check a given triangle to see whether (5) can be considered met or not. But before
doing so we turn to the most important consequence of (5): together with (3) and (4)
it enables us to quantify the uncertainty in the estimation of C; by C,;.
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4.  Quantifying the Variability of the Ultimate Claims Amount

The aim of the chain ladder method and of every claims reserving method is the
estimation of the ultimate claims amount C; for the accident years i=2, ..., I. The

chain ladder method does this by formula (1), that is

Ci= Ci7I+1—i 2 FTRIN

This formula yields only a point estimate for C,; which will normally turn out to be
more or less wrong, that is there is only a very small probability for C,; being equal to
C,; - This probability is even zero if C;; is considered to be a continuous variable. We
therefore want to know in addition if the estimator C,; is at least on average equal to
the mean of C;; and how large on average the error is. Precisely speaking we first
would like to have the expected values E(C;;) and E(C;)), 2 <1<, being equal. In

Appendix C it is shown that this is indeed the case as a consequence of assumptions
(3) and (4).

The second thing we want to know is the average distance between the forecast C;;
and the future realization C;. In Mathematical Statistics it is common to measure such

distances by the square of the ordinary Euclidean distance (‘quadratic loss function').
This means that one is interested in the size of the so-called mean squared error

mse(C;) = E((C; - Cyp)? |D)
where D = {C;, li+k <1+ 1} is the set of all data observed so far. It is important to

realize that we have to calculate the mean squared error on the condition of knowing
all data observed so far because we want to know the error due to future randomness

only. If we calculated the unconditional error E(C;, — C;;)*, which due to the iterative

rule for expectations is equal to the mean value E(E((C; — C;;)” | D)) of'the

conditional mse over all possible data sets D, we also would include all deviations from
the data observed so far which obviously makes no sense if we want to establish a
confidence interval for C;; on the basis of the given particular run-off triangle D.

The mean squared error is exactly the same concept which also underlies the notion of
the variance

Var(X) = E(X — E(X))?

of any random variable X. Var(X) measures the average distance of X from its mean
value E(X).
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Due to the general rule E(X — ¢)? = Var(X) + (E(X) — ¢)? for any scalar ¢ we have
mse(C;;) = Var(Cy | D) + (E(C; | D) - Cy)?

because C,; is a scalar under the condition that all data D are known. This equation

shows that the mse is the sum of the pure future random error Var(C; | D) and of the
estimation error which is measured by the squared deviation of the estimate C;; from

its target E(C, | D). On the other hand, the mse does not take into account any future

changes in the underlying model, that is future deviations from the assumptions (3), (4)
and (5), an extreme example of which was the emergence of asbestos. Modelling such
deviations is beyond the scope of this paper.

As is to be expected and can be seen in Appendix D, mse(C,;) depends on the

unknown model parameters f, and o, . We therefore must develop an estimator for
mse(C,;) which can be calculated from the known data D only. The square root of

such an estimator is usually called 'standard error' because it is an estimate of the
standard deviation of C;; in cases in which we have to estimate the mean value, too.

The standard error s.e.(C;;) of C,; is at the same time the standard error s.e.(R;) of
the reserve estimate

R; =C;-Cis

1
of the outstanding claims reserve

R, =C; - Ci7I+1—i

1

because
mse(R;) = E((R; - R,)*| D) = E((C;; — C;))* | D) = mse(Cy)

and because the equality of the mean squared errors also implies the equality of the
standard errors. This means that

(6) s.e.(R;)) =se(Cy)

The derivation of a formula for the standard error s.e.(C;;) of C;; turns out to be the

most difficult part of this paper; it is done in Appendix D. Fortunately, the resulting
formula is simple

~ 2
(1)  (s.e.(Cy))> = Cy 12 "f‘_ L
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where

1 I-k |2
8) o l=—""2C. l:%;k”—fli,lskg—z
() k I—k—ljzl jk B k

is an unbiased estimator of ockz (the unbiasedness being shown in Appendix E) and
Ciac= Ciroi - fronin Mg, k>I+1-1

are the amounts which are automatically obtained if the run-off triangle is completed
step by step according to the chain ladder method. In (7), for notational convenience
we have also set

Ci,I+1—i = Ci7I+1—i

Formula (8) does not yield an estimator for a,_, because it is not possible to estimate
the two parameters f;_jand a,_, from the single observation C,; /C,; ;| between

development years I — 1 and L. If f; | =1 and if the claims development is believed to
be finished after I — 1 years we can put a;_; = 0. If not, we extrapolate the usually
decreasing series o, Q,, ..., Oy_3, 0 _, by one additional member, for instance by

means of loglinear regression (see the example in section 6) or more simply by
requiring that

Oy 3/ 0 =0 /00
holds at least as long asat; ; >, .
This last possibility leads to

2 . 4 2 : 2 2
) L min(aty_, /oty_3, min(oy 3,0y ,))

We now want to establish a confidence interval for our target variables C; and R;.
Because of the equation

Ci=Cin Ry

the ultimate claims amount C;; consists of a known part C;},; ;and an unknown part

R, . This means that the probability distribution function of C;; (given the observations
D which include C;;,, ;) is completely determined by that of R;. We therefore need to

establish a confidence interval for R; only and can then simply shift it to a confidence
interval for C;;.
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For this purpose we need to know the distribution function of R;. Up to now we only
have estimates R, and s.e.(R;) for the mean and the standard deviation of this

distribution. If the volume of the outstanding claims is large enough we can, due to the
central limit theorem, assume that this distribution function is a Normal distribution
with an expected value equal to the point estimate given by R; and a standard

deviation equal to the standard error s.e.(R;). A symmetric 95%-confidence interval
for R, is then given by

(R, -2-s.e.(R;), R, +2-se.(R,))

But the symmetric Normal distribution may not be a good approximation to the true
distribution of R, if this latter distribution is rather skewed. This will especially be the

case if s.e.(R;) is greater than 50 % of R,. This can also be seen at the above Normal

distribution confidence interval whose lower limit then becomes negative even if a
negative reserve is not possible.

In this case it is recommended to use an approach based on the Lognormal
distribution. For this purpose we approximate the unknown distribution of R; by a

Lognormal distribution with parameters p, and o,> such that mean values as well as
variances of both distributions are equal, so that

exp(u; + Giz /2) = R,

exp(2p; + 6, )(exp(c;’) — 1) = (s.e.(R))’
This leads to
(10) o> = In(1+(s.e.(R,))*/R,%)

u,=In(R,) - o, /2

Now, if we want to estimate the 90th percentile of R, for example, we proceed as
follows. First we take the 90th percentile of the Standard Normal distribution which is
1.28. Then exp(u; + 1.28c,) with p, and ciz according to (10) is the 90th percentile
of the Lognormal distribution and therefore also approximately of the distribution of
R..

1

For instance, if s.e.(R;)/R; = 1 then 6,° = In(2) and the 90th percentile is

exp(p; +1280,) = R, exp(128c, —5,° /2) = R, exp(.719) =2.05-R,. If we had
assumed that R, has approximately a Normal distribution, we would have obtained in
this case R, +128-s.e.(R;)= 2.28-R; as 90th percentile.

This may come as a surprise since we might have expected that the 90th percentile of a
Lognormal distribution always must be higher than that of a Normal distribution with
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same mean and variance. But there is no general rule, it depends on the percentile
chosen and on the size of the ratio s.e.(R;)/R;. The Lognormal approximation only

prevents a negative lower confidence limit. In order to set a specific lower confidence
limit we choose a suitable percentile, for instance 10%, and proceed analogously as
with the 90% before. The question of which confidence probability to choose has to be
decided from a business policy point of view. The value of 80% = 90% — 10% taken
here must be regarded merely as an example.

We have now shown how to establish confidence limits for every R; and therefore
also for every C; = C,,; ; + R;. We may also be interested in having confidence

limits for the overall reserve
R=R, +.+R;

and the question is whether, in order to estimate the variance of R, we can simply add
the squares (s.e.(R;))* of the individual standard errors as would be the case with
standard deviations of independent variables. But unfortunately, whereas the R, ’s
themselves are independent, the estimators R; are not because they are all influenced
by the same age-to-age factors f, , that is the R, ’s are positively correlated. In

Appendix F it is shown that the square of the standard error of the overall reserve
estimator

R=R, +..+R;

is given by

1
(1) (se(R)’ = L{D.e(R)’ +C; & P!(IZI lzak

Formula (11) can be used to establish a confidence interval for the overall reserve
amount R in quite the same way as it was done before for R;. Before giving a full
example of the calculation of the standard error, we will deal in the next section with
the problem of how to decide for a given run-off triangle whether the chain ladder
assumptions (3) and (5) are met or not.
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5.  Checking the Chain Ladder Assumptions Against the Data

As has been pointed out, the three basic implicit chain ladder assumptions

(3) E(Ci,k+1 ‘Cilv"'vcik) = Cyfy
(4) Independence of accident years
(5)  Var(C, ‘ Cips oo, Cy) = Cikakz

are not met in every case. In this section we will indicate how these assumptions can be
checked for a given run-off triangle. We have already mentioned in section 3 that
Appendix H develops a test for calendar year influences which may violate (4). We can
therefore concentrate in the following on assumptions (3) and (5).

First, we look at the equations (3) for an arbitrary but fixed k and fori=1, ..., L.
There, the values of C;,, 1 <i<1, are to be considered as given non-random values
and equations (3) can be interpreted as an ordinary regression model of the type

Y =c+xb+g, 1=2i<I
where ¢ and b are the regression coefficients and ¢; the error term with E(g;) =0,
that is E(Y,) = ¢+ x;b. In our special case, we have ¢ =0, b= f, and we have
observations of the dependent variable Y; = C;,,, at the points x; = C; for

i=1, ..., I — k. Therefore, we can estimate the regression coefficient b = f, by the
usual least squares method

Ik
Z(Ci w1 — Cyfi)? = minimum
=1 "

If the derivative of the left hand side with respect to f, is set to 0 we obtain for the
minimizing parameter f, the solution

-k -k
(12) fi, = 2 CicCign/ 2 Cik2

i=1 ’ i=1
This is not the same estimator for f, as according to the chain ladder formula (2). We
therefore have used an additional index '0' at this new estimator for f, . We can rewrite

fio as
I-k 2
f = Cik _Ci7k+1
kO =1 1-k C.
2 2 ik
Cik

i=1
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which shows that f,, is the C,*-weighted average of the individual development
factors C, ., /C;, , whereas the chain ladder estimator f, is the C; -weighted

average. In section 3 we saw that these weights are inversely proportional to the

underlying variances Var(C,,,,/C; | Cits-n Cy) .
Correspondingly, the estimator f, , assumes

Var(C, .,/ Cy | Ciy5 ..., Cy ) being proportional to l/Cik2
or equivalently

Var(C, | Ci, ..., Cy ) being proportional to 1
which means that Var(C, ., | Cii, ..., Cy) is the same for all observations
i=1, ..., I —k. This is not in agreement with the chain ladder assumption (5).

Here we remember that indeed the least squares method implicitly assumes equal
variances Var(Y;) = Var(g;) = o for all i. If this assumption is not met, that is if the
variances Var(Y;) = Var(g;) depend on i, one should use a weighted least squares
approach which consists of minimizing the weighted sum of squares

1
2w, (Y, —c—x;b)>
i=1

where the weights w, are in inverse proportion to Var(Y,).

Therefore, in order to be in agreement with the chain ladder variance assumption (5),
we should use regression weights w, which are proportional to 1/C, (more precisely

to 1/(Cyo, ), but o, > can be amalgamated with the proportionality constant
because k is fixed).

Then minimizing

-k

2 (Cipr ~ Cicfi)* 1y
with respect to f, yields indeed

-k 1=k
fir = 2Cik+1/zlcik
i=1 " i=

which is identical to the usual chain ladder age-to-age factor f, .
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It is tempting to try another set of weights, namely 1/ Cik2 because then the weighted
sum of squares becomes

-k e |2
2 (Cijn — Cikfk)2 /Cik2 = z{ el fkR
= i=

ik
Here the minimizing procedure yields
-k
1 3 Cixn

(13) fy, =

which is the ordinary unweighted average of the development factors. The variance
assumption corresponding to the weights used is

Var(C, ., | Ciy5 ..., Cy ) being proportional to Cik2
or equivalently
Var(C, .,/ Cy | C,, ..., Cy ) being proportional to 1

The benefit of transforming the estimation of the age-to-age factors into the regression
framework is the fact that the usual regression analysis instruments are now available
to check the underlying assumptions, especially the linearity and the variance
assumption. This check is usually done by carefully inspecting plots of the data and of
the residuals, as described below.

First, we plot C;,, against C ,i=1, ..., I =k, in order to see if we really have an

approximately linear relationship around a straight line through the origin with slope
f, = f,,. Second, if linearity seems acceptable, we plot the weighted residuals

(Ci7k+1 _Cikfk)/\lci s 1<i1<1 —k,

(whose squares have been minimized) against C,, in order to see if the employed
variance assumption really leads to a plot in which the residuals do not show any

specific trend but appear purely random. It is recommended to compare all three
residual plots (fori=1, ..., I — k)
Plot 0: C; ., — C; fy, against C;

Plot 1: (C;y,; — Cyfyy)/4/Cy against C,
Plot 2: (C; ., — Cy fy,)/ Cy against Cy
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and to find out which one shows the most random behaviour. All this should be done
for every development year k for which we have sufficient data points, say at least 6,
that is for k <1 - 6.

Some experience with least squares residual plots is useful, especially because in our
case we have only very few data points. Consequently, it is not always easy to decide
whether a pattern in the residuals is systematic or random. However, if Plot 1 exhibits
a non-random pattern, and either Plot 0 or Plot 2 does not, and if this holds true for
several values of k, we should seriously consider replacing the chain ladder age-to-age
factors f, = f, with f,, or f,, respectively.

The following numerical example will clarify the situation a bit more.
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6. Numerical Example

The data for the following example are taken from the Historical Loss Development
Study', 1991 Edition, published by the Reinsurance Association of America (RAA).
There, we find on page 96 the following run-off triangle of Automatic Facultative
business in General Liability (excluding Asbestos & Environmental):

Cil Ci2 Ci3 Ci4 CiS Ci6 Ci7 Ci8 Ci9 CilO

i=1 5012 8269 10907 11805 13539 16181 18009 18608 18662 18834
=2 106 4285 5396 10666 13782 15599 15496 16169 16704

i=3 | 3410 8992 13873 16141 18735 22214 22863 23466

i=4 | 5655 11555 15766 21266 23425 26083 27067

=5 1092 9565 15836 22169 25955 26180

=6 1513 6445 11702 12935 15852

=7 557 4020 10946 12314

=8 1351 6947 13112

=9 | 3133 5395

i=10| 2063

The above figures are cumulative incurred case losses in $1000. We have taken the
accident years from 1981 (i=1) to 1990 (i=10) which is enough for the sake of example
but does not mean that we believe to have reached the ultimate claims amount after 10
years of development.

We first calculate the age-to-age factors f, = f,, according to formula (2). The result
is shown in the following table together with the alternative factors f, ,according to
(12) and f,, according to (13)

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

fro 2217 1569 1.261 1.162 1.100 1.041 1.032 1.016 1.009
i 2999 1.624 1271 1.172 1.113 1.042 1.033 1.017 1.009
i, 8206 1.696 1.315 1.183 1.127 1.043 1.034 1.018 1.009

If one has the run-off triangle on a personal computer it is very easy to produce the
plots recommended in section 5 because most spreadsheet programs have the facility
of plotting X-Y graphs. For every k = 1, ..., 8 we make a plot of the amounts C;

(y-axis) of development year k+1 against the amounts C,, (x-axis) of development
year k fori=1, ..., 10 — k, and draw a straight line through the origin with slope f,,.

The plots for k = 1 to 8 are shown in the upper graphs of Figures 1 to 8, respectively.
(All figures are to be found at the end of the paper after the appendices.) The number
above each point mark indicates the corresponding accident year. (Note that the point
mark at the upper or right hand border line of each graph does not belong to the
plotted points (C;, C; ,;), it has only been used to draw the regression line.) In the
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lower graph of each of the Figures 1 to 8 the corresponding weighted residuals
(Cixs1 — Cy)/JCy are plotted against C; fori=1,...,10 - k.

The two plots for k = 1 (Figure 1) clearly show that the regression line does not
capture the direction of the data points very well. The line should preferably have a
positive intercept on the y-axis and a flatter slope. However, even then we would have
a high dispersion. Using the line through the origin we will probably underestimate any
future C,, if C;; is less than 2000 and will overestimate it if C;; is more than 4000.

Fortunately, in the one relevant case i= 10 we have C,; =2063 which means that the
resulting forecast C,, = Cy,,f, =2063-2.999 = 6187 is within the bulk of the data

points plotted. In any case, Figure 1 shows that any forecast of C,, is associated with

a high uncertainty of about £3000 or almost £50% of an average-sized C;, which is

subsequently even larger when extrapolating to ultimate. If in a future accident year we
have a value C;; outside the interval (2000, 4000) it is reasonable to introduce an

additional parameter by fitting a regression line with positive intercept to the data and
using it for the projection to C,,. Such a procedure of employing an additional

parameter is acceptable between the first two development years in which we have the
highest number of data points of all years.

The two plots for k =2 (Figure 2) are more satisfactory. The data show a clear trend
along the regression line and quite random residuals. The same holds for the two plots
for k = 4 (Figure 4). In addition, for both k = 2 and k = 4 a weighted linear regression
including a parameter for intercept would yield a value of the intercept which is not
significantly different from zero. The plots for k = 3 (Figure 3) seem to show a
curvature to the left but because of the few data points we can hope that this is
incidental. Moreover, the plots for k = 5 have a certain curvature to the right such that
we can hope that the two curvatures offset each other. The plots for k = 6, 7 and 8 are
quite satisfactory. The trends in the residuals for k = 7 and 8 have no significance in
view of the very few data points.

We need not look at the regression lines with slopes f,, or f,, as these slopes are
very close to f, (except for k=1). But we should look at the corresponding plots of

weighted residuals in order to see whether they appear more satisfactory than the
previous ones. (Note that due to the different weights the residuals will be different
even if the slopes are equal.) The residual plots for f,, and k =1 to 4 are shown in
Figures 9 and 10. Those for f,, and k =1 to 4 are shown in Figures 11 and 12. In the

residual plot for f,, (Figure 9, upper graph) the point furthest to the left is not an
outlier as it is in the plots for f} ;= f; (Figure 1, lower graph) and f,, (Figure 11,

upper graph).

But with all three residual plots for k=1 the main problem is the missing intercept of
the regression line which leads to a decreasing trend in the residuals. Therefore the
improvement of the outlier is of secondary importance. For k = 2 the three residuals
plots do not show any major differences between each other. The same holds for k =3
and 4. The residual plots for k = 5 to 8 are not important because of the small number
of data points. Altogether, we decide to keep the usual chain ladder method, that is the
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age-to-age factors f, = f} |, because the alternatives f, , or f| , do not lead to a clear

improvement.

Next, we can carry through the tests for calendar year influences (see Appendix H) and
for correlations between subsequent development factors (see Appendix G). For our
example neither test leads to a rejection of the underlying assumption as is shown in
the appendices mentioned.

Having now finished all preliminary analyses we calculate the estimated ultimate claims
amounts C;; according to formula (1), the reserves R; = C;; — C; |, ; and its standard

errors (7). For the standard errors we need the estimated values of a, > which
according to formula (8) are given by

k ‘ 1 2 3 4 5 6 7 8 9

(xk2 ‘27883 1109 691 61.2 119 40.8 1.34  7.88

A plot of ln(akz) against k is given in Figure 13 and shows that there indeed seems to
be a linear relationship which can be used to extrapolate ln(a92) . This yields a92 =
exp(—.44) = .64. But we use formula (9) which is more easily programmable and in the
present case is a bit more on the safe side: it leads to a92 = 1.34. Using formula (11)

for s.e.(R) as well we finally obtain

Cio R, s.e.(Cipg) = s.e.(R)) s.e.(R,)/R;
=2 16858 154 206 134%
=3 24083 617 623 101%
=4 28703 1636 747 46%
=5 28927 2747 1469 53%
=6 19501 3649 2002 55%
=7 17749 5435 2209 41%
=8 24019 10907 5358 49%
=9 16045 10650 6333 59%
=10 18402 16339 24566 150%
Overall 52135 26909 52%

(The numbers in the 'Overall'-row are R, s.e.(R) and s.e.(R)/R.) Fori=2, 3 and 10 the
percentage standard error (last column) is more than 100% of the estimated reserve
R, . For i=2 and 3 this is due to the small amount of the corresponding reserve and is

not important because the absolute amounts of the standard errors are rather small.
But the standard error of 150% for the most recent accident year i = 10 might lead to
some concern in practice. The main reason for this high standard error is the high
uncertainty of forecasting next year's value C,,, as was seen when examining the plot

of C,, against C,,. Thus, one year later we will very likely be able to give a much
more precise forecast of Cy .
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Because all standard errors are close to or above 50% we use the Lognormal
distribution in all years for the calculation of confidence intervals. We first calculate the
upper 90%-confidence limit (or with any other chosen percentage) for the overall
outstanding claims reserve R. Denoting by p and o the parameters of the Lognormal
distribution approximating the distribution of R and using s.e.(R)/R = .52 we have

o’ =.236 (cf. (10)) and, in the same way as in section 4, the 90th percentile is

exp(i + 1.280) = Rexp(1.280 — 5> /2) = 1.655-R = 86298.

Now we allocate this overall amount to the accident years i = 2,..., 10 in such a way
that we reach the same level of confidence for every accident year. Each level of

confidence corresponds to a certain percentile t of the Standard Normal distribution
and — according to section 4 — the corresponding percentile of the distribution of R.

is R, exp(to; —o,>/2) with 6,”= In(1+ (s.e.(R,))* /R,”) . We therefore only have
to choose t in such a way that

1
%Ri.exp(tci ~5,2/2) = 86298

This can easily be solved with the help of spreadsheet software (for example. by trial
and error, or by using a “Solver”) and yields t = 1.13208 which corresponds to the
87th percentile per accident year and leads to the following distribution of the overall
amount 86298:

upper confidence limit

R, se.(R,)/R, o’ R; exp(to; — o /2)
=) 154 134 1.028 290
=3 617 1.01 703 1122
=4 1636 46 189 2436
=5 2747 53 252 4274
=6 3649 55 263 5718
=7 5435 41 153 7839
=8 10907 49 216 16571
=9 10650 59 303 17066
=10 16339 1.50 1.182 30981
Total 52135 86298

In order to arrive at the lower confidence limits we proceed completely analogously.
The 10th percentile, for instance, of the total outstanding claims amount is

R-exp(—-128c — 62 /2)=.477-R = 24871. The distribution of this amount over the
individual accident years is made as before and leads to a value of't = —.8211 which
corresponds to the 21st percentile. This means that a 87% — 21% = 66% confidence

interval for each accident year leads to a 90% — 10% = 80% confidence interval for the
overall reserve amount. In the following table, the confidence intervals thus obtained
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for R; are already shifted (by adding C,;,, ;) to confidence intervals for the ultimate

claims amounts C; (for instance, the upper limit 16994 for i=2 has been obtained by
adding C, 4 = 16704 and 290 from the preceding table):

confidence intervals

Cito for 80% prob. overall empirical limits
=2 16858 (16744, 16994) (16858, 16858)
i=3 24083 (23684, 24588) (23751, 24466)
i=4 28703 (28108, 29503) (28118, 29446)
=5 28927 (27784, 30454) (27017, 31699)
=6 19501 (17952, 21570) (16501, 22939)
i=7 17749 (15966, 20153) (14119, 23025)
i=8 24019 (19795, 29683) (16272, 48462)
=9 16045 (11221, 22461) (8431, 54294)
=10 18402 (5769, 33044) (5319, 839271)

The column "empirical limits" contains the minimum and maximum size of the ultimate
claims amount resulting if, in formula (1), each age-to-age factor f, is replaced with

the minimum (or maximum) individual development factor observed so far. These
factors are defined by

fimax = Max{C; ., /Ciy [1<i<T—k}

and can be taken from the table of all development factors which can be found in
Appendices G and H. They are

‘ k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

fomn | 1.650 1259 1.082 1.102 1.009 0993 1.026 1.003 1.009
fom | 40425 2723 1977 1292 1.195 1.113 1.043 1.033 1.009

In comparison with the confidence intervals, these empirical limits are narrower in the
earlier accident years i < 4 and wider in the more recent accident years i > 5. This was
to be expected because the small number of development factors observed between the
late development years only leads to a rather small variation between the minimum and
maximum factors. Therefore these empirical limits correspond to a confidence
probability which is rather small in the early accident years and becomes larger and
larger towards the recent accident years. Thus, this empirical approach to establishing
confidence limits does not seem to be reasonable.

If we used the Normal distribution instead of the Lognormal we would obtain a 90th

percentile of R + 1.28-R-(s.e.(R)/R) = 1.661-R (which is almost the same as the
1.655-R with the Lognormal) and a 10th percentile of R — 1.28-R-(s.e.(R)/R) = .34-R
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(which is lower than the .477-R with the Lognormal). Also, the allocation to the
accident years would be different.

Finally, we compare the standard errors obtained to the output of the claims reserving
software package ICRFS by Ben Zehnwirth.

This package is a modelling framework in which the user can specify his own model
within a large class of models. But it also contains some predefined models, inter alia
also a 'chain ladder model'. But this is not the usual chain ladder method, instead, it is a
log-linearized approximation of it. This is very similar to the model described in the
paper, Regression Model Based on Log-Incremental Payments by S.Christofides, see
Section D5, Volume 2 of the Claims Reserving Manual.

The slight difference in the results is due to a different estimator for the variance, o”.
Therefore, the estimates of the outstanding claims amounts differ from those obtained
here with the usual chain ladder method. Moreover, it works with the logarithms of the
incremental amounts C; ;. ,; — C; and one must therefore eliminate the negative

increment C, ; —C, 4. In addition, C, ; was identified as an outlier and was eliminated.

Then the ICRFS results were quite similar to the chain ladder results as can be seen in
the following table

est. outst. claims amount R, standard error

chain ladder ICRFS chain ladder ICRFS
i=2 154 387 206 528
=3 617 674 623 624
i=4 1636 1993 747 1435
=5 2747 2602 1469 1688
=6 3649 4097 2002 2476
=7 5435 5188 2209 3156
i=8 10907 12174 5358 7685
=9 10650 15343 6333 11158
=10 16339 27575 24566 28333
Overall 52135 70032 26909 33637

Even though the reserves R; for i=9 and i=10 as well as the overall reserve R differ
considerably they are all within one standard error and therefore not significantly
different. But it should be remarked that this manner of using ICRFS is not intended by
Zehnwirth because any initial model should be further adjusted according to the
indications and plots given by the program. In this particular case there were strong
indications for developing the model further but then one would have to give up the
'chain ladder model'.
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7. Final Remarks

This paper develops a complete methodology of how to attack the claims reserving
task in a statistically sound manner on the basis of the well-known and simple chain
ladder method. However, the well-known weak points of the chain ladder method
should not be concealed. These are the fact that the estimators of the last two or three
factors f|, f,_,, f;_, rely on very few observations and the fact that the known claims

amount C;, of the last accident year (sometimes C,_; ,, too) forms a very uncertain

basis for the projection to ultimate.

This is most clearly seen if C;, happens to be 0: Then we have C;;=0, R;=0 and
s.e.(R;) = 0 which obviously makes no sense. (Note that this weakness can often be
overcome by translating and mixing the amounts C,, of earlier accident years i <I into
accident year I with the help of a measure of volume for each accident year.)

Thus, even if the statistical instruments developed do not reject the applicability of the
chain ladder method, the result must be judged by an actuary and/or underwriter who
knows the business under consideration. Even then, unexpected future changes can
make all estimations obsolete. But for the many normal cases it is good to have a
sound and simple method. Simple methods have the disadvantage of not capturing all
aspects of reality but have the advantage that the user is in a position to know exactly
how the method works and where its weaknesses are. Moreover, a simple method can
be explained to non-actuaries in more detail. These are important advantages of simple
models over more sophisticated ones.

09/97 D6.25



PAPERS OF MORE ADVANCED METHODS

Appendix A: Unbiasedness of Age-to-Age Factors

Proposition: Under the assumptions

(3) There are unknown constants f,, ..., f,_, with
E(Ciy1 | Cips s Ci) = Cyfy,  1<i<L1<k<I-1

(4) The variables {C,;,...,C;}and {Cy,..., C;} of different accident years i # j are

independent
the age-to-age factors f,, ..., f;_; defined by

I-k I-k

2) f = j2:1(jJ.JHl/J,Z:l(jJ.k, 1<k<I-1

are unbiased, that is we have E(f, )= f,, 1<k<I-1

Proof: Because of the iterative rule for expectations we have

(A1) E(f,) = E(E(f, | B,)

for any set B of variables C;; assumed to be known. We take
B, = {Cyli+j<I+1,j<k}, 1<k<I1

According to the definition (2) of f) and because C; , 1 <j<T-k, is contained in

B, and therefore has to be treated as scalar, we have

I-k I-k

(A2) E(fy|By) = X E(Cjya [BY/ X €

Because of the independence assumption (4) conditions relating to accident years other
than that of C;,, can be omitted, that is we get

(A3) E(Cj,k+1‘Bk): E(Cj,k+1 ‘lev"'vcjk) = Cjkfk

using assumption (3) as well.
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Inserting (A3) into (A2) yields
-k -k

(A4) E(fk‘Bk) - Z‘i Cjkfk/.zl Ci = fi
= =

Finally, (A1) and (A4) yield E(f,) = E(f,) = f, because f, is a scalar.
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Appendix B: Minimizing the Variance of Independent Estimators

Proposition: Let T, ..., T; be independent unbiased estimators of a parameter t, that is
with

E(T) =t, 1<i<I

then the variance of a linear combination

under the constraint

1
(B1) gwi =1

(which guarantees E(T) = t) is minimal iff the coefficients w, are inversely
proportional to Var(T;), that is iff

w; =c/Var(T)), 1<i<I
Proof: We have to minimize
1
Var(T) = 2 w,*Var(T,)
i=1
(due to the independence of T, ..., T; ) with respect to w; under the constraint (B1).

A necessary condition for an extremum is that the derivatives of the Lagrangian are
zero, that is

o
(B2)i§wi2Var(Ti)+k§2wi*0, 1<i<I

with a constant multiplier A whose value can be determined by additionally using (B1).
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(B2) yields

2w, Var(T,) - A =0
or

w,= A/(2-Var(T)))

These weights w; indeed lead to a minimum as can be seen by calculating the extremal
value of Var(T) and applying Schwarz's inequality.

Corollary: In the chain ladder case we have estimators T, = C;,,,/Cy, 1 <i<I-Kk,

for f, where the variables of the set
Ik
A= .L_Jl{cna s Cir

of the corresponding accident years i=1, ..., I — k up to development year k are
considered to be given. We therefore want to minimize the conditional variance

E« I
VarQ w,T; ‘Akk

From the above proofit is clear that the minimizing weights should be inversely
proportional to Var(T; | A ) - Because of the independence (4) of the accident years,
conditions relating to accident years other than that of T, = C, ,, /C;, can be omitted.

We therefore have
Var(T,|A,) = Var(C;y,, / Cy | Cips .oy Cy)
and arrive at the result that the minimizing weights should be inversely proportional to

Var(C, ! Cy ‘ Cits oo Cig)
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Appendix C: Unbiasedness of the Estimated Ultimate Claims Amount
Proposition: Under the assumptions

(3) There are unknown constants f,, ..., f;_; with
E(Ci 1 | Cits s Ci) = Cyefy,  1<i<L 1<k <

(4) The variables {C,,...,C;}and {Cy,...,C;} of different accident years i # j are

independent
the expected values of the estimator

(D Cy = Gt

for the ultimate claims amount and of the true ultimate claims amount C;; are equal,
that is we have E(C,;;)= E(C,;),2<i<L

Proof: We first show that the age-to-age factors f, are uncorrelated. With the same
set

B, ={C;li+j<I+1,j<k}, 1<k<I-1

of variables assumed to be known as in Appendix A we have for j <k

E(ff,) = E(E(fif, | B,)) (a)
= E(f;E(f, | B,)) (b)
= E(f;f,) (©)
= E(f)f; (d)
= fjfk (e)

Here (a) holds because of the iterative rule for expectations, (b) holds because f; is a

scalar for B, given and for j <k, (c) holds due to (A4), (d) holds because f, isa
scalar and (e) was shown in Appendix A.

This result can easily be extended to arbitrary products of different f, 's, that is we
have

(CL) E(fpy o fy) = fimofr
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This yields
E(Cy) = E(E(Cy ‘ Cipseens Ci,m-i)) (a)
= E(E(Ci po-ifrosin-fig ‘ Cits - Cipyini)) (b)
= E(Ci i E(frs iy ‘ Cits > Cipyini)) ()
= E(Ci71+1—iE(f1+1—i ~. 1)) (d)
= E(Ci7l+1—i)'E(f1+l—i""'f1—1) (e)
= E(Ci,1+1—i)'f1+1—i wof (H

Here (a) holds because of the iterative rule for expectations, (b) holds because of the
definition (1) of C;;, (¢) holds because C, ., ; is a scalar under the stated condition,

(d) holds because conditions which are independent from the conditioned variable
f,.,;-.-f;_; can be omitted (observe assumption (4) and the fact that f .

only depend on variables of accident years < 1), (e) holds because E(f,,,_;,....f_;) 1is
a scalar and (f) holds because of (C1).

I+1-i> -

Finally, repeated application of the iterative rule for expectations and of assumption (3)
yields for the expected value of the true reserve C;

E(Cy) = E(E(Cy ‘ Cits s Cii))
= E(Ci,l—lfl—l)
= E(Ci,l—l)fl—l
= E(E(Ci,l—l ‘Cilv SN CEY)) =
= E(Ci,l—zfl—z)fl—l
= E(Ci,l—z)fl—zfl—l

= and so on
= B(C, jo-i) i

= E(Cil)
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Appendix D: Calculation of the Standard Error of C;,

Proposition: Under the assumptions

(3) There are unknown constants f,, ..., f,_, with
E(Ci i1 | Cips s Ci) = Cyfy,  1<i<L1<k<I-1

(4) The variables {C,,...,C;}and {Cy,...,C;} of different accident years i # j are

independent

(5) There are unknown constants o, ..., o;_; With
Var(C, 1 |Cypyey Cy) = Cpo 2, 1<i<L1<k<I-1

the standard error s.e. (C;;) of the estimated ultimate claims amount

Cy)’ = G > & l
(s.e.(Cyp))” = Cy k=I+1-i Y k T

where Cy = C; 1, if,1...fx 1, k>1+1 -1 are the estimated values of the future
Cix and C‘,I+1—i: Citrrni-

Proof: As stated in section 4, the standard error is the square root of an estimator of
mse(C;;) and we have also seen that

(D1) mse(Cy)= Var(C, | D) + (E(C; | D) - Cy)?
In the following, we use the abbreviations

Ei(X) = E(X‘ Ci1a---aCi,I+1—i)
Var(X) = Var(X|Cyy, ..., G 115)

Because of the independence of the accident years we can omit in (D1) that part of the
condition D = {C;, i+ k<I+ 1} which is independent from C,, that is we can write

(D2) mse(Cy) = Var (Cy)) + (E(Cy) — Cil)2
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We first consider Var,(C;,). Because of the general rule Var(X) = E(X?) — (E(X))
we have

(D3) Var(Cy) = Ei(Cy) = (B;(Cy)’
For the calculation of E (C,;) we use the fact that fork>1+1 -1

(D4) Ei(Ciy) = Ef(E(Cipn ‘Cilv"'vcik))
= E;(Cyfy)
= E;(Cy)fy
Here, we have used the iterative rule for expectations in its general form
E(X|Z) = (E(X]Y)|Z) for {Y} D {Z} (mostly {Z} is the empty set). By successively
applying (D4) we obtain fork >1+ 1 —1i

(D5) Ei(Cixi1) = Bi(Cipp iyt
= Cipasifii Ty

because C,,,_; is a scalar under the condition '1'.

For the calculation of the first term E,(C,”) of (D3) we use the fact that for
k>T+1-i

(D6) Ei(ci,k+12) = Ei(E(Ci,k+12)‘Cna---acik) (a)
= E;(Var(Ciyy | Cipyoees Cy) + (B(Ciy | Cips ooy C))?) (b)
= Ei(Cikakz + (Cikfk)z) (©)

= Ei(cik)akz + Ei(Cikz)sz

Here, (a) holds due to the iterative rule for expectations, (b) due to the rule
E(X?) = Var(X) + (E(X))? and (c) holds due to (3) and (5). Now, we apply (D6)
and (D5) successively to get

(D7) Ei(cilz) = Ei(Ci,I—l)aI—lz + Ei(Ci,I—lz)fI—lz (D6)
= Cipasifios "'f1—20‘1—12 + (D5)
+ Ei(CiJ—z)aI—zsz—lz + (D6)

+ Ei(CiJ—zz)fI—zsz—lz
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= Cir-ifias B0 0+

+ G pifiosi o fi o, f 7 + (D5)

+ Ei(Ci71—3)a1—32fl—22fl—12 + (D6)

+ Ei(Ci71—32)fl—32fl—22fl—12

= and so on
-l 2 2 2
= Ci7I+1—i DI VIRIFELED (NRTe ias FHAFRIELD (00
k=I+1-1
2 2 2
+ G s o

where in the last step we have used E;(C;,, ;) = C;;,;; and

E;(Ci; i) = Cii ._i_ because under the condition 1 Ci1y1; 18 a scalar. Due to (D5)

we have
(D8) (Ei(cil))2 = Ci,1+1—i2f1+1—12'---'f1—12

Inserting (D7) and (D8) into (D3) yields

I-1

(D9) Var (Cyy) = Cj 1,1 k=121—i £ "'fk—laszkﬂz "'fl—l2
We estimate this first summand of mse(C;;) by replacing the unknown parameters

f,, o, > with their unbiased estimators f, and a,”, that is by

-1
(D10) Gy k=12+:1—' WRIRE PRT- Tl PRELE Py

1

1-1 2 2
=C 2f 2 f 2 oy /fk
BEGT FR ) ) [ S} (8 |

k=t G fey

where we have used the notation C,, introduced in the proposition for the estimated
amounts of the future C;,,k >I+1—-1, including C;;,, ;= C; 1,y ;-
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We now turn to the second summand of the expression (D2) for mse(C,;) . Because of
(DS5) we have

E/(Cy) = Cisifini iy

and therefore
(D11) (E{(Cy) = Cy)? = Cipori” (B = frag i)’

This expression cannot simply be estimated by replacing f, with f, because this
would yield 0 which is not a good estimator because f,,_;-..f;_; generally will be
different from f},, ;-..-f;_, and therefore the squared difference will be positive. We
therefore must take a different approach. We use the algebraic identity

F=f i = fre i

1=l

=S, +--+S,

with

Sk = fI+1—i ."'.fk—lfkfk_;_] ."'.fl—l —
—f it b T

= A (B = FOf oty
This yields

F2

(S +--+S.)?

I-1

DI +2j<2k S8y

k=I+1-i

where in the last summation j and k run from I+ 1 —ito I — 1. Now we replace S’
with E(Sk2 | B,) and S;S, , j <k, with E(S;S, | B, ). This means that we approximate
S k2 and S;S, by varying and averaging as little data as possible so that as many values
C,. as possible from data observed are kept fixed. Due to (A4) we have

E(f, —f, | B,) =0 and therefore E(S;S, | B,) =0 for j <k because all f.,r <k, are

scalars under B, .

09/97 D6.35



PAPERS OF MORE ADVANCED METHODS

Because of

(D12) E((f, - f,)*|By) = Var(f, | B,)

T—k = I2
_ jz,:lVar(CLkH 1B,)/ cij

T—k = I2
= T Var(Cpp €y )/ cij

we obtain

I-k

E(S,’ | B) = fin - feoifey, -/ J2=1 Ci

Taken together, we have replaced F* = (ESk)2 with EkE(Sk2 | B, ) and because all
terms of this sum are positive we can replace all unknown parameters f, , o, > with
their unbiased estimators f, , o, . Altogether, we estimate

F? = (Frosi ot = fra '---'f1-1)2 by

1

X

-1
k=I+1-i

I-k I 1-1 o 2/f 2
RN R T PRI Y J2=1 CjkPJ = i 2 Ilfk—k

k=I+1-i
C.
R
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Using (D11), this means that we estimate (E;(C,) — C;)* by

1-1
(D13) C2if2y Al 2 o/
LI+1=1  I+1—=i =+ *1-1 Keltl—i 1-k

=

1-1
_ CZI 2 (x,kz /fk2

k=l+1-i L=k

=1

From (D2), (D10) and (D13) we finally obtain the estimator (s.e.(C;;))* for mse(C,)
as stated in the proposition.

09/97 D6.37



PAPERS OF MORE ADVANCED METHODS

Appendix E: Unbiasedness of the Estimator (xk2

Proposition: Under the assumptions

(3) There are unknown constants f,,..., f,_, with
E(Ciy1 | Citsos Ci) = Cyefy,  1<i<L1<k<I-1

(4) The variables {C,,...,C;}and {Cy,...,C;} of different accident years i+ j are

independent.

(5) There are unknown constants o, ..., o;_; With
Var(Cp 1 |Cypyey Cy) = Cpo?,  1<i<L1<k<I-1

the estimators

I-k 2
0= —1 ZCjkl:%L”_fkR, 1<k<I-2
I—k—1j=1 jk

2 . .
of a,” are unbiased, that is we have

E(a,’) =a,”, 1<k<I-2

Proof: In this proof all summations are over the index j fromj=1to j=1-k. The
definition of o, > can be rewritten as

(ED) (I-k- 1)‘11(2 = Z(Cj,knz [Cy = 2-Cpfy + Cjksz)
= Z(Cj,knz /Cjk) - z(cjksz)

using 2C ik = B ZCy according to the definition of f, . Using again the set
B, ={C;|i+j<I+1,j<k}

of variables C;; assumed to be known, (E1) yields

(E2) E(I-k— 1)‘11(2 ‘Bk) - ZE(CJ'J(HZ ‘Bk)/cjk - zcjkE(sz ‘Bk)

because C, is a scalar under the condition of B, being known.
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Due to the independence (4) of the accident years, conditions which are independent

from the conditioned variable can be omitted in E(C; o | B, ), that is

(E3) E(Ci|By) = E(Cip1Cypsns Cy)

J
= Var(Cy 1| Cipyeres Cy) + (B(Cpr | C s ey €1))°
= Cjk(xkz +(Cjkfk)2

where the rule E(X?) = Var(X) + (E(X))? and the assumptions (5) and (3) have also
been used.

From (D12) and (A4) we gather
(E4) E(f’IB,) = Var(f,’|By) + (E(f, | B))
= o, /2Cy + £

Inserting (E3) and (E4) into (E2) we obtain

-k I
E(I-k-Da,’ | By = jzzl((lkz + Cjksz) -

.
Il

k -k |
2 2
] kOLk /JZZICJk +Cjkfk F

={- k)akz - (xkz

=(I-k-Da,’
From this we immediately obtain E(a, | B, )=a,’
Finally, the iterative rule for expectations yields

E(a,”) = E(E(a,” | BY) = E(a,”) = o,

09/97 D6.39



PAPERS OF MORE ADVANCED METHODS

Appendix F: The Standard Error of the Overall Reserve Estimate
Proposition: Under the assumptions

(3) There are unknown constants f,, ..., f,_; with
E(Ciy1 | Cips s Ci) = Cyfy,  1<i<L1<k<I-1

(4) The variables {C;,, ..., C;; } and {C;, ..., C;;} of different accident years i # j are

independent.

(5) There are unknown constants o, ..., o;_; with
Var(C, 1 |Cypyey Cy) = Cpo 2, 1<i<L1<k<I-1

the standard error s.e.(R) of the overall reserve estimate
R=R, +...+R;

is given by

! 2
(se.(R)? = ZfDe.(R,)’ +c§ kg‘_zak fi

Proof: This proof is analogous to that in Appendix D. The comments will therefore be
brief. We first must determine the mean squared error mse(R) of R. Using again
D={C,, | i+k <I+ 1} we have

;|

(F1) mse%Rip =E R, —éRik Dﬁ

;|

I

= E Ca _ECiIkDﬁ
| R

- Var(3 cﬂ\Dk % C, D écilli
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The independence of the accident years yields
1
(F2) VarfyC, |Dy= 2 Var(C,|C,,....,Cipupl)
= i=2 :

whose summands have been calculated in Appendix D, see (D9). Furthermore

| . L |:
(F3) = Ci ‘ D gécil ﬂ: (E(Cy ‘ D) - CiI)R

2 (E(Cy ID)-Cy)-(E(C; ID) - €)

2<i,j<I

2 C...C.. FF

240 i<l LI+l-1~ L I+1-717 )

1
;_2‘5( F.)? +22c FF.

LI+1-i"1 i,I+1-i JI+1J it

with (as for (D11))
Fo=1f . —fsfiy

which is identical to F of Appendix D but here we have to carry the index i, too. In
Appendix D we have shown (cf. (D2) and (D11)) that

mse(R;) = Var(Cy | Cyj, .., Ci i) + (CipuriF)

Comparing this with (F1), (F2) and (F3) we see that

(F4) mseﬁ Pl ste(R)+ Y 2:CpiCo FF

2<i<j<I

We therefore need only develop an estimator for EF;. A procedure completely

analogous to that for F* in the proof of Appendix D yields for EF;,1<], the

estimator
-1 I-k
2 2 2g2 2
k—12+:1—i fI+1—j S P FYRTRTS IniTo 1od FuR PO ol /nz_lcnk

which immediately leads to the result stated in the proposition.
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Appendix G: Testing for Correlations between Subsequent Development Factors

In this appendix we first prove that the basic assumption (3) of the chain ladder
method implies that subsequent development factors C, /C;, and C;,,,/C; are not

correlated. Then we show how we can test if this uncorrelatedness is met for a given
run-off triangle. Finally, we apply this test procedure to the numerical example of
section 6.

Proposition: Under the assumption

(3) There are unknown constants f|, ..., f,_, with
E(Ci 1 | Cityors Cy) = Cyefy, 1<i<T, 1<k<T-1

subsequent development factors C, /C,, , and C;,,,/C; are uncorrelated, that is
we have (for 1 <i<[,2<k<I-1)

EI%CL -—Civk“l = EEik IW kH
i,k—1 Cik F i,k—1 ik P

Proof: For j <k we have

(G1) E(Ciy/Cy) = E(E(Ciy /C;1Cih s Ci)) (@)

= E(E(Ciyy |Cypotn C)/Cp - ()
= E(Cikfk /CU) (C)
= E(Cy /Cij)fk (d)

Here equation (a) holds due to the iterative rule E(X) = E(E(X]Y)) for expectations,
(b) holds because, given C;j, ..., Cy, C; is a scalar for j <k, (c) holds due to (3) and
(d) holds because f, is a scalar.

From (G1) we obtain through the special case j = k

(G2) E(Ci,k+1 /Cy) = E(Cy /C)fy = £,

and through j =

(G3) Eﬁi 1k+1 -FE k41 |I‘ (Gl)
i,k—1
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Inserting (G2) into (G3) completes the proof.
Designing the test procedure

The usual test for uncorrelatedness requires that we have identically distributed pairs of
observations which come from a Normal distribution. Both conditions are usually not
fulfilled for adjacent columns of development factors. (Note that due to (G2) the
development factors C;,,,/Cy, 1 <i<I -k, have the same expectation but

assumption (5) implies that they have different variances.) We therefore use the test
with Spearman's rank correlation coefficient because this test is distribution-free and
because by using ranks the differences in the variances of C;,,,/Cy, 1 <i<I-Kk,

become less important. Even if these differences are negligible the test will only be of
an approximate nature because, strictly speaking, it is a test for independence rather
than for uncorrelatedness. But we will take this into account when fixing the critical
value of the test statistic.

For the application of Spearman's test we consider a fixed development year k and
rank the development factors C; .,/ C; observed so far according to their size

starting with the smallest one on rank one and so on. Let r; , 1 <i<1-k, denote the
rank of C;,,,/C; obtained in this way, 1 < r; <I—k. Then we do the same with the
preceding development factors C /C;, ;, 1 <i<I -k, leaving out

Criikk / Cryi_y 1 for which the subsequent development factor has not yet been

observed. Let s;, , | <i<1—k, be the ranks obtained in this way, 1 < s;, <1 —k. Now,
Spearman's rank correlation coefficient T, is defined to be

I-k

(G4 T = 1-6 2 (5~ 5,07 /(1= %) ~T+K)

It can be seen that
1< T, <+l

and, under the null-hypothesis,

E(T,) =0
Var(T,)=1/I-k-1)

A value of T, close to 0 indicates that the development factors between development

years k — 1 and k and those between years k and k + 1 are not correlated. Any other
value of T, indicates that the factors are (positively or negatively) correlated.

For a formal test we do not want to consider every pair of columns of adjacent
development years separately in order to avoid an accumulation of the error
probabilities. We therefore consider the triangle as a whole. This also is preferable
from a practical point of view because it is more important to know whether
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correlations globally prevail than to find a small part of the triangle with correlations.
We therefore combine all values T,, T;, ..., T,_, obtained in the same way like T, .

(There is no T, because there are no development factors before development year
k=1 and similarly there is also no T, ; even T_, is not included because there is only
one rank and therefore no randomness.)

According to Appendix B we should not form an unweighted average of
T,, ..., T,_, but rather use weights which are inversely proportional to

Var(T,) = 1/(I -k — 1). This leads to weights which are just equal to one less than the
number of pairs (r;,s, ) taken into account by T, which seems very reasonable.

We thus calculate

1-2 1-2
(G5) T =2X(I-k-DT,/X(I-k-1)
k=2 k=2

1-2

I-k-1
k2 (1-2)1-3)/2 *

1-2

E(T) = k%E(Tk) =0
-2 ) I2
(G6) Var(T) = X (1-k-1)" Var(T,)/ {F 1~k - 1)}‘&

-2 ) I2
= Y d-k-1)/ (I—k—l)R
k=2 2

~ 1
C(1-2)1-3)/2

where for the calculation of Var(T) we used the fact that under the null-hypothesis
subsequent development factors and therefore also different T, 's are uncorrelated.

Because the distribution of a single T, with I —k > 10 is Normal in good
approximation and because T is the aggregation of several uncorrelated T, 's (which all

are symmetrically distributed around their mean 0) we can assume that T has
approximately a Normal distribution and use this to design a significance test. Usually,
when applying a significance test one rejects the null-hypothesis if it is very unlikely to
hold, e.g. if the value of the test statistic is outside its 95% confidence interval. But in
our case we propose to use only a 50% confidence interval because the test is only of
an approximate nature and because we want to detect correlations already in a
substantial part of the run-off triangle. Therefore, as the probability for a
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Standard Normal variate lying in the interval (—.67, .67) is 50% we do not reject the

null-hypothesis of having uncorrelated development factors if

~ 0.67 Tey 0.67
J(@-2)1-3)/2) J(@-2)1-3)/2)

If T is outside this interval we should be reluctant with the application of the chain
ladder method and analyze the correlations in more detail. In such a case, an
autoregressive model of an order > 1 is probably more appropriate, for example by
replacing the fundamental chain ladder assumption (3) with

E(Cixa ‘Cilv s Ci) = Cyefy + G iy8k
Application to the example of section 6:

We start with the table of all development factors:

F F F F F F E F F

-
Il

1 1.6 132 1.08 1.15 120 1.11 1.033 1.00 1.01
2 404 126 198 129 1.13 099 1.043 1.03

i=3 26 154 116 1.16 1.19 1.03 1.026
4
5

—
[l

I 20 136 1.35 1.10 1.11 1.04
88 1.66 140 1.17 1.01

-
[I

-
I

6 43 182 1.11 1.23
7 72 272 1.12
8
9

5.1 1.89
1.7

v e B B |

As described above we first rank column F, according to the size of the factors, then

leave out the last element and rank the column again. Then we do the same with
columns F, to F;. This yields the following table:

Ly S Iy 83 Iy Sy Ly S5 Ls S Lig Sz Lz Sy Iig
1 1 2 2 1 1 2 2 5 4 4 3 2 1 1
9 8 1 1 7 6 6 5 3 2 1 1 2

4 3 4 4 4 3 3 3 4 3 2 2 1

3 2 3 3 5 4 1 1 2 1 3

8 7 5 5 6 5 4 4 1

5 4 6 6 2 2 5

7 6 8 7 3

6 5 7

2
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We now add the squared differences between adjacent rank columns of equal length,
that is we add (s, — rik)2 over i for every k, 2 <k < 8. This yields 68, 74, 20, 24, 6, 6
and 0. (Remember that we have to leave out k = 1 because there isno s,;, and k =9

because there is only one pair of ranks and therefore no randomness.) From these
figures we obtain Spearman's rank correlation coefficients T, according to formula

(G4):

k 2 3 4 5 6 7 8
T, 4/21 -9/28  3/7 -1/5 2/5 -1/2 1
I-k-1 7 6 5 4 3 2 1

The (I -k — 1)-weighted average of the T, 'sis T =.070 (see formula (GS5)). Because

of Var(T) = 1/28 (see (G6)) the 50% confidence limits for T are + .67/728 = +.127.
Thus, T is within its 50%-interval and the hypothesis of having uncorrelated
development factors is not rejected.
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Appendix H: Testing for Calendar Year Effects

One of the three basic assumptions underlying the chain ladder method was seen to be
assumption (4) of the independence of the accident years. The main reason why this
independence can be violated in practice is the fact that we can have certain calendar
year effects such as major changes in claims handling or in case reserving or external
influences such as substantial changes in court decisions or inflation. Note that a
constant rate of inflation which has not been removed from the data is extrapolated
into the future by the chain ladder method. In the following, we first generally describe
a procedure to test for such calendar year influences and then apply it to our example.

Designing the test procedure:
A calendar year influence affects one of the diagonals

D; =1{C;y,Ci15,-,Cy 1, Cyt . 151

and therefore also influences the adjacent development factors
A;=1{C;,/Cy,Ci 153/ Ciyn50, Criny /Gy

and

Al =G0 /C 1 Cias/Cinny s G /Gy )

where the elements of D; form either the denominator or the numerator. Thus, if due
to a calendar year influence the elements of D; are larger (smaller) than usual, then the
elements of A, are also larger (smaller) than usual and the elements of A ; are

smaller (larger) than usual.

Therefore, in order to check for such calendar year influences we only have to
subdivide all development factors into 'smaller' and 'larger' ones and then to examine
whether there are diagonals where the small development factors or the large ones
clearly prevail. For this purpose, we order for every k, 1 <k <1 -1, the elements of
the set

F, = {Cii/Cul 1<i<I-1}

that is of the column of all development factors observed between development years k
and k + 1, according to their size and subdivide them into one part LF, of larger

factors being greater than the median of F, and into a second part SFy of smaller
factors below the median of F, . (The median of a set of real numbers is defined to be a

number which divides the set into two parts with the same number of elements.) If the
number I — k of elements of F, is odd there is one element of F, which is equal to the

median and therefore assigned to neither of the sets LF, and SF,_; this element is
eliminated from all further considerations.
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Having done this procedure for each set F, , 1 <k <1-1, every development factor
observed is

- either eliminated (like e.g. the only element of F,_,)
- or assigned to the set L = LF, + ... + LF,_, oflarger factors
- or assigned to the set S = SF, + ... + SF,_, of smaller factors

In this way, every development factor which is not eliminated has a 50% chance of
belonging to either L or S.

Now we count for every diagonal A, 1 <j<I-1, of development factors the number
L, of large factors, that is elements of L, and the number S i of small factors, that is

elements of S. Intuitively, if there is no specific change from calendar year j to calendar
year j+ 1, A; should have about the same number of small factors as of large factors,

that is L; and S; should be of approximately the same size apart from pure random

fluctuations. But if L; is significantly larger or smaller than S; or, equivalently, if
Z; = min(L;,S;)

that is the smaller of the two figures, is significantly smaller than (L; +S;)/2, then

there is some reason for a specific calendar year influence.

In order to design a formal test we need the probability distribution of Z; under the

null-hypothesis that each development factor has a 50 % probability of belonging to
either L or S. This distribution can easily be established. We give an example for the
case where L; +S; =5, that is where the set A; contains 5 development factors

without counting any eliminated factor. Then the number L; has a Binomial

distribution with n =5 and p = .5, that is

prob(Lj =m) = EI% = El%,mZO, 1,...,5

Therefore

prob(S; =5) =prob(L; =0)=1/32
prob(S; =4) =prob(L; =1)=5/32
prob(S; = 3) =prob(L; =2)=10/32
prob(S; =2) =prob(L; =3)=10/32
prob(S; = 1) =prob(L; =4)=5/32
prob(S; =0) =prob(L; =5)=1/32

This yields
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prob(Z; =0) = prob(L; = 0) + prob(S; = 0) = 2/32
prob(Z; = 1) =prob(L; = 1) + prob(S; = 1) = 10/32
prob(Z; =2) =prob(L; =2) + prob(S; = 2) =20/32

In this way we obtain very easily the following table for the cumulative probability
distribution function of Z; :

n prob(Z;<0) prob(Z;<1) prob(Z;<2)...
<4 >10% >10% >10%
5 6.25% >10% >10%
6 3.1% >10% >10%
7 1.6% >10% >10%
8 0.8% 7.0% >10%
9 0.4% 3.9% >10%
10 0.2% 2.1% >10%
11 0.1% 1.2% 6.5%

Now, we use this table in the following way: Any realization Z; = z; witha
cumulative probability prob(Z; <z;) <10 % indicates that the corresponding set
A;=1{C,/Cy,Ci15/Cyy,,...} contains either significantly many "larger" or
significantly many "smaller" development factors. Then, the factors of the predominant
type (either the larger or the smaller factors of A ;) are assumed to be influenced by a

specific calendar year effect and are viewed to be outliers. Therefore, it seems to be
advisable to reduce their weight when calculating the age-to-age factors f, .

Specifically, it is proposed to reduce the weight of each of these outlying development
factors to 50 % of its original weight, that is to calculate

I-k I-k

f, = Ewikci,kn /Ewikcik

with wy =.51f C;,,, /C; belongs to the factors of the predominant type (either
larger or smaller) of'its corresponding set A, , and if A, , , shows a significant
calendar year effect, that is if prob(Z,,, <z, ) <10 %. In all other cases we put

w, = 1 as usual. Strictly speaking, the formulae for a,,> and for the standard error
must be changed analogously, if somew,;, <1 are used.
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As with every test procedure which is applied several times there is an accumulation of
the error probabilities, that is the danger increases that we find a significant case which
in reality is not extraordinary. But here, this will not cause any essential disadvantage
as we only change weights and do not discard anything entirely.

Application to the example of section 6:

We start with the triangle of all development factors observed:

F F F F F F E F F

i=1 1.6 132 108 1.15 120 1.11 1.033 1.00 1.01
=2 404 126 198 129 1.13 099 1.043 1.03

i=3 26 154 1.16 1.16 1.19 1.03 1.026

i=4 20 136 1.35 1.10 1.11 1.04

=5 88 1.66 140 1.17 1.01

=6 43 182 1.11 1.23

=7 72 272 1.12

=8 5.1 1.89

=9 1.7

We have to subdivide each column F, into the subset SF, of 'smaller' factors below
the median of F, and into the subset LF, of 'larger' factors above the median. This can
be done very easily with the help of the rank columns r, established in Appendix G:
The half of factors with small ranks belongs to SE, , those with large ranks to LF, and

if the total number is odd we have to eliminate the mean rank. Replacing a small rank
with 'S', a large rank with 'L' and a mean rank with "*' we obtain the following picture:
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We now count for every diagonal A, 2 <j<9, the number L; of L's and the number
S; of S's. We have left out A, because it contains at most one element which is not

eliminated, and therefore Z, is not a random variable but always = 0. With the
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notations s;, 1;, z; for the realizations of the random variables S, L;, Z; and with

n=s; +1; as above, we obtain the following table:

—

hm
—
N
=]

prob(Z;<z;)

—
—

>10%
>10%
>10%
>10%
>10%
>10%
>10%
>10%

O 0 N L & W IN
AR NN~ = WW—
A B PO WO —
AR = =_=_=0 =
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According to the probabilities prob(Z; <z;) there does not seem to be any calendar

year effect. Therefore, there is no reason to change any weight in the calculation of the
age-to-age factors.

As a final check for calendar year effects we can plot all standardized residuals
(Cixs1 /Cy —fCi /0y, 2<i+k<I

against the calendar years j =1+ k. For the data of our example, the resulting plot is
shown in Figure 14. There does not seem to be any specific trend or irregularity in the
pattern of these residuals. The fact that only positive residuals are absolutely larger
than 1.6 hints at a positive skewness of the distribution of the development factors.

<>
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Figure 1: Regression and Residuals
Ci2 against Cit
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Figure 2: Regression and Residuals
Ci3 against Ci2
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Figure 3: Regression and Residuals
Ci4 against Ci3
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Figure 4: Regression and Residuals
Ci5> against Ci4
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Figure 5: Regression and Residuals

Ci6 against Ci5
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Figure 6: Regression and Residuals
Ci7 against Ci6
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Figure 7: Regression and Residuals
Ci8 against Ci7
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Figure 8: Regression and Residuals
Ci9 against Ci8
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Figure 9: Residual Plots for kO
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Figure 10: Residual Plots for fkQ
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Figure 11: Residual Plots for fk2
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Figure 12: Residual Plots for fk2
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Figure 13: Plot of |n(ork2) against k
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Figure 14: Std.Residuals vs. Calendar Year
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Section E
PRECIS OF OTHER ACTUARIAL PAPERS

This section provides a series of précis of several other papers published since the first
edition of the Claims Reserving Manual was produced. The intention is to give the
reader an overview of the paper, together with a description of the reserving model on
which the paper is based. A few observations are also made about the applicability of
the model, what data are required, what level of statistical and computational ability is
needed, plus some thoughts on the strengths and weaknesses of the model.

The first three of these papers provide variations on the theme of regression models
based on log-incremental payments. The paper by R J Verrall and Z Li gives a
suggestion to overcome the problem of negative incremental payments. The paper by
R J Verrall uses the log-incremental regression model as a basis for allowing the
practitioner to enter prior information, or to estimate the parameters dynamically. A
Bayesian method is used and the data are analysed recursively, using the Kalman filter.
Finally, the paper by B Zehnwirth sets out a framework based on the log-incremental
payments. His models include systematic components by development year, accident
year and calendar year, as well as a random component.

The next two papers make use of more detailed claims information than just aggregate
claims payments. The paper by T S Wright sets out a comprehensive approach using
Generalised Linear Models to fit Operational Time models. These allow estimates of
reserves and different components of reserve variability to be produced. The paper by
D H Reid extends the basic Operational Time concept to allow for sudden changes in
the nature and mix of business.

The paper by D M Murphy examines the standard link-ratio methods from the point of
view of classical regression theory, and considers the circumstances under which the
standard link-ratio methods may be considered optimal.

The final, brief, paper by D Gogol describes an approach to estimating loss reserves,
using recent loss experience and two probability distributions. The distributions are of
the ultimate losses, based on prior experience and rate adequacy changes, and the ratio
of the estimator based on recent experience to the true ultimate loss.
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NEGATIVE INCREMENTAL CLAIMS:
CHAIN LADDER AND LINEAR MODELS
By R J Verrall and Z Li
(13 pages)
Journal of the Institute of Actuaries, Vol. 120, p. 171 (1993)

Summary

One of the problems of many models based on log-incremental payments is the inability
to deal with negative incremental payments. One approach to this problem is to add a
suitably large arbitrary constant to all the payments, and then subtract the constant
after the forecasts are made.

The paper shows that the addition of such a constant (a threshold parameter) is
equivalent to modelling the incremental payments by a three parameter log-normal
distribution, for which the choice of constant can be performed by maximum likelihood
estimation rather than arbitrarily.

Description of the model

The basic model, based on log-incremental payments (see for example the Christofides
paper in Section D5 of Volume 2), is adjusted as follows:

Log(Pj+c) =Y;=a; + bj+ e (e;are independent identically distributed normal
random errors)

where Pj; are the incremental payments for accident year i, development period j, and ¢
is the threshold parameter.

Standard procedures for producing maximum likelihood estimates yield a set of
equations that can be solved iteratively for a;, bj and c. The technique could also be
applied to other models for Yj. The implications for the standard errors of the
estimated future payments are not discussed.

General comments

As for most models based on log-incremental payments, the technique is not restricted
to any particular class of business, and the only data required are incremental

payments.

The technique gives a theoretically sound solution to the problem of negative
incremental payments, rather than relying on arbitrary adjustments to the data. The
user should, however, examine the sensitivity of the results to the level of threshold
parameter used.
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The paper requires a basic level of statistical knowledge. The authors include a
worked example, but the steps in the iterative process to calculate the parameters are
not spelt out. Familiarity with matrix manipulation and regression in a spreadsheet is
therefore essential.

<>
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A STATE SPACE REPRESENTATION OF THE CHAIN LADDER MODEL
By R J Verrall
(21 pages)
Journal of the Institute of Actuaries, Vol. 116, p. 589 (1989)

Summary

The model treats the development triangle as a dynamic system, with development
taking place over time, t, in the direction of the diagonal (calendar year). A recursive
relationship between the parameters at time t and t+1 is developed, with the ability to
enter prior information. The recursive estimation of the parameters is based on a
process known as the Kalman Filter.

Description of the model

The basic model begins with the familiar:

Log(Xij) =Y;j=pn+ai+b+e; (ejareindependent identically distributed Normal
random errors)

where Xjj are the incremental payments for accident year i, development period j.
The model then becomes quite unfamiliar as it defines:

The Observation equation, Yi=F .0+ e
The System equation, 01 =Gi. 0+ H. ¢ +w

The bold symbols denote vectors. For example, Y, is a vector of the Yj; at time t, and
e is a vector of the e; at time t. 0 is known as the State vector, which is a vector of
the parameter estimates (that is estimates of a; and b;) at time t. u is a stochastic input
vector assumed to be independent of 6, and wy is a disturbance vector. F,, G;and H;
are matrices. The Observation and System equations together comprise the "State
Space representation" of this particular chain ladder model.

When u, = w; = 0, the System equation reduces to 0 «+1 = G..0, and G; can be defined
such that the parameters at times t and t+1 are equal. This equates to least squares
estimation when the parameters are identical for each row and each column.

When w¢ = 0, and u, has the prior distribution of the new parameters, Bayesian
estimates are obtained with distinct parameters.

When w,# 0, the parameters at times t and t+1 are related but not necessarily the

same. This is known as dynamic parameter estimation, which in a sense lies in between
the two previous cases of identical and distinct parameter estimation.

The paper considers a specific case of the State Space system, where e, u,, weand
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B¢e1 are independent and normally distributed with defined means and variances, for
which the State vector, 0, can be calculated recursively by a series of matrix
manipulations.

General comments

The paper illustrates by way of examples how prior information and dynamic
estimation of parameters can enhance traditional chain ladder methods, and squeeze
the maximum amount of information from the available data. The use of a Bayesian
approach should lead to greater parameter and predictor stability than ordinary chain
ladder models.

The standard of mathematics and computational ability is very high and may be beyond
the scope of most people. Whilst numerical examples are given, the intermediate steps
in arriving at the results are not, so it may be tricky to replicate the examples.
Realistically, anyone wanting to use these methods may be best advised to do so using
commercially available software packages, although it is important to understand the
theory underlying the model when doing so.

One possible problem when using this type of model is that the assumptions and inputs
can become somewhat divorced from reality, including as they do estimates of the
variances of parameters of a model of the logs of incremental payments. These are not
concepts that are readily translatable to ones knowledge of the payment of claims, and
it is not always easy to understand the implications for the future payments of changes
in these inputs to the model.

<>
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PROBABILISTIC DEVELOPMENT FACTOR MODELS
WITH APPLICATION TO LOSS RESERVE VARIABILITY,
PREDICTION INTERVALS AND RISK BASED CAPITAL
By B Zehnwirth
(159 pages)

Casualty Actuarial Society Spring Forum, Vol. 2, p. 447 (1994)

Summary

The paper describes a statistical modelling framework. Each model contained in the
framework has four components. The first three components are the trends in the
development year, accident year and calendar year, and the fourth component is
random fluctuation (or distribution of the deviations) about the trends. The emphasis
of the paper is to focus on the calendar year direction.

The modelling framework is relatively simple, allowing the testing of assumptions (for
example, looking at the stability of models) and the quantification of reserve variability.

Description of the model

The family of models includes:

Log(P;j) = Yij = a; + bj+ ¢+ ¢; (e are independent identically distributed
Normal random errors)

where Pj; are the incremental payments for accident year i, development period j, and k
=1i+].

Models are fitted by using weighted least squares regression. As a result of multi-
collinearity, principally due to the non-orthogonality of the calendar year direction with
the other two directions, varying parameter models are necessary and are also included
in the framework. Other Bayesian approaches are included, which are of particular use
if estimates of certain parameters in a parsimonious model are subject to large
uncertainties.

General comments

This family of models is an extension of the type of model described by S Christofides
in Section D5 of Volume 2, and can be used for a variety of types of business or types
of incremental data. Whilst the basic model can be easily programmed in a
spreadsheet, the more complex variations are probably beyond the means of most
programmers.

As for other models based on the logs of incremental payments, the models do not

work for negative incremental payments, and there is a limit in a spreadsheet to the
number of future payments that can be predicted.
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Most of the paper requires a basic level of statistical knowledge, whilst some of the
variations on the basic model require a more advanced level. Familiarity with matrix
manipulation and regression in a spreadsheet is required to implement the models.

<>

09/97 E3.2



[E4]
STOCHASTIC CLAIMS RESERVING WHEN
PAST CLAIM NUMBERS ARE KNOWN
By T S Wright
(93 pages)
Proceedings of the Casualty Actuarial Society, Vol. 79, p. 255 (1992)

Summary

The model attempts to represent the underlying claims settlement process.

The starting premise is that the cost of settling claims and the order in which they are
settled are related — that is, typically, the longer the period to settlement, the greater
the final settlement cost is likely to be. The method therefore develops a model of the
claim settlement cost as a function of the relative proportion of claims settled (this
time-frame is known as Operational Time).

The model is fitted using the theory of Generalised Linear Modelling (“GLMs”).
Because it is a statistical model, standard errors (as a measure of the variability of the
estimate) for the future incremental payments can be calculated, and statistical
techniques used to test the fit of the model.

Description of the model

Operational Time (1) is the number of claims closed to date, expressed as a proportion
of the ultimate number of claims. The mean claim size, m(t), can be modelled by a
wide variety of different types of function of t. For example:

m(t) = exp(By + Byt +....,T")

Alternatives include polynomial functions of 1, or functions such as fpt-1, or some

combination of these functions. The parameters of the model are fitted using GLMs,
for example using the software package GLIM.

The modelling technique involves fitting a basic model that adheres closely to the data,
then examining alternative models. The nature of the model means that familiar
measures of goodness of fit, such as “sums of squares”, are not appropriate. An
alternative measure, deviance, is therefore considered, as well as other indications as to
the goodness of fit of the model.

Certain restrictive assumptions are made at the initial fitting stage, which are then
examined and may subsequently be relaxed.
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General comments

The method is likely to be of most use where the greatest cause of uncertainty in
predicting ultimate claims is due to individual claim costs — for example, classes
involving bodily injury claims. It should also be of particular use when it is believed
that settlement rates are changing, as the model may be able to capture these changes
more effectively than traditional techniques.

It requires data on both the amount and number of claims settled.

The model is sensitive to the estimated future number of settled claims, and these
estimates need careful scrutiny. Inflation is a parameter that may be modelled, and this
is also an area where close scrutiny is required. The approach to comparing different
functions for m(t) is open to some criticism, as the comparison of non-nested models
using deviances is not strictly valid — though the author recognises that this is a
pragmatic approach.

A high degree of statistical knowledge is required to implement and understand the
model, as well as considerable computer literacy. Knowledge of a GLM software
package such as GLIM is essential.

<>
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[ES]
OPERATIONAL TIME AND A FUNDAMENTAL PROBLEM OF
INSURANCE IN A DATA-RICH ENVIRONMENT
By D H Reid
(13 pages)
Applied Stochastic Models and Data Analysis, Vol. 11, No. 3, Wiley (1995)

Summary

This paper is the latest in a series developing a particular approach to claims reserving
where relatively complete information on individual claims is available, and where past
years' claims patterns are relevant — albeit with modifications — to the development
of more recent years' experience.

Specifically, this paper addresses a problem which has arisen in recent years, where
relatively rapid changes in size and factor mix of the claims portfolio are taking place.
Most, if not all, previous claim reserving methodologies have implicitly assumed that
factors change relatively slowly, to such an extent that the effect of this trend on claim
development is not significant.

The present paper, by contrast, models the effect of factor trends explicitly, both on
the level of claim cost itself and on the development patterns. By doing so, it proposes
an approach which may then be applied directly to the development of premium rates,
as well as reserves.

Description of the model

The model proposed is based upon that described in Section D4 of Volume 2, but
develops that model to allow for the incorporation of a rating factor or set of
classificatory factors into the analysis. This is done by first elaborating the structure of
claim cost development for recent years as represented by the original model, and then
introducing an approach which makes the resulting complex picture more readily
comprehensible and, at the same time, statistically estimable.

General comments

Given that this methodology is intended for situations where significant resources are
available for claims modelling, and where it is important to achieve as close an
understanding of the claims development process as possible, the proposed
methodology is relatively flexible and can be adapted to a wide range of situations.

<>
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[E6]
UNBIASED LOSS DEVELOPMENT FACTORS
By D M Murphy

(60 pages)
Casualty Actuarial Society Spring Forum, Vol. 1, p. 183 (1994)

Summary

Standard link ratio methods are examined from the viewpoint of classical regression
theory. The circumstances under which the standard link ratio methods could be
considered optimal are discussed. Formulae for variances of, and confidence intervals
around, point estimates of ultimate loss and loss reserves are derived. A triangle of
incurred losses is used to demonstrate the techniques.

A summary of a simulation study is presented which suggests that the performance of
the link ratio method, using least squares linear estimates, may approach that of the
Bornhuetter-Ferguson and Stanard-Biihlmann techniques in some situations.

Description of the model

The estimates of ultimate loss for n accident years are derived using recursion:

,0

M, =32, +bx,
a +bn(Mn—l + Xn—l,n—l)

M, =n

Xi,j denotes the cumulative incurred loss from accident year i, development year j, and

n—1
M, = E(zxi,n|xi,i)
i=0

The variance is given by the sum of the parameter risk and the process risk. Each are
defined for n=1, and then recursively for n>1, as follows:

parameter risk

2
A G _ A
Var(M,) = I_l + & — X h/ar(bl)
!

2 L ]
Var(M,) =n’ % + dlnfl + Xy 0y — DX, I Var(b,)+b>Var(M__,)+ Var(b, )Var(M,__,)

n

where:
l N
n-1 :_zxi,n—l
In i=n
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is the average "x value" and I, = N — n + 1 (assuming a full column in the triangle) is
the number of data points in the regression estimate of the nth link ratio.

process risk

varlD, g c;
VarlD, g nc’ +b’Var @n,lg

where E; is an error term.

General comments

A modest level of mathematics is required to follow the paper. Proofs of the theory
are relegated to a bulky appendix. The example provided helps the reader to follow
the theory by showing practical application of the formulae. The calculation of the
least squares estimates and their variances can readily be done in most spreadsheet
packages.

The use of the confidence intervals depends on whether the assumptions made
regarding the probability distribution of the error terms are appropriate. The paper
does not address how these should be tested.

The Benjamin-Eagles paper in Section D3 of the Manual describes a method which is
the same as the least squares linear method described in this paper, but without the
mathematical rigour.

The Stanard-Biihlmann technique (also known as the "Cape Cod Method") is not
explained. Reference would need to be made to the paper by J Stanard in the 1985
Proceedings of the CAS (Casualty Actuarial Society) for explanantion.

<>
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[E7]
USING EXPECTED LOSS RATIOS IN RESERVING
By D F Gogol
(3 pages)
Casualty Actuarial Society Fall Forum, p. 241 (1995)

Summary

The paper describes an approach to estimating loss reserves using the recent loss
experience and two probability distributions. The first distribution is that of the
ultimate losses for the recent period, based on prior experience and rate adequacy
changes. The second distribution is that of the ratio of the estimator based on recent
experience to the true ultimate loss.

Description of the model

The model is:
0y G o/ yods
0
where, for losses in respect of an exposure period E:

f(x) is the probability density function of the distribution of ultimate losses for
exposure period E, prior to considering the losses for exposure period E.

g(y|x) is the probability density function of the distribution of'y, the developed
losses at the point of time under consideration, for exposure period E, given that
the ultimate losses are x.

h(x|y) is the probability density function of the distribution of the ultimate losses,
given that the developed losses are y.

The functions f(x) and g(y|x) are estimated, and the mean of the distribution given by
h(x|y) is the estimate of ultimate losses. For certain choices of f(x) and g(y|x), an
explicit formula for the mean of h(x|y) is known, for example when f(x) and g(y|x) are
both log-normal.

The paper compares the Bayesian estimate of the ultimate loss ratio with the actual
developed loss ratio and the Bornhuetter-Ferguson estimate of the ultimate loss ratio.

General comments

The model is particularly useful for recent accident years and for lines of business with
slow development. The model should be capable of fairly easy implementation in most
spreadsheet packages.

A modest level of statistical knowledge is required. One approach to estimating the
distributions given by f(x) and g(y|x) is to assume f(x) and g(y|x) are of a known type,
such as log-normal, and estimate their means and variances to obtain the parameters of
the distributions. To do this, a certain amount of judgment may be needed, as the
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estimates will usually have to be based on somewhat limited information. Thus,
although the model provides a rigorous way of incorporating prior information, some
of the information used in applying the model may be rather unreliable.

<>
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Section F
COMPUTERISED ILLUSTRATION OF VOLUME 2 PAPERS

Accompanying this revision of the Claims Reserving Manual is a disk illustrating the
application of two of the methods described in Volume 2. The methods included are
those described in Sections ES and E6 of Volume 2, by S Christofides and T Mack
respectively.

Both spreadsheet programs on this disk are solely for illustration, and are intended to
help the user understand better the mechanics of performing the methods described in
the papers. They are designed to replicate exactly the calculations shown in those
papers. This will allow the user to follow the intermediate steps, and assist in
understanding how the methods can be applied in practice.

Note that the spreadsheets are simply a mechanical reproduction of the particular
calculations illustrated in the two papers. As such, they have not been designed to be

used as a generalised reserving tool on other data. Readers should not, therefore,
attempt to substitute their own data into this software for practical reserving purposes.

<>
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[F1]
COMPUTERISED ILLUSTRATION (1) —
REGRESSION MODEL BASED ON LOG-INCREMENTAL PAYMENTS
by S Christofides

The first file on the disk distributed with the Claims Reserving Manual demonstrates
the model described in the paper by S Christofides in Section D5 of Volume 2. The
filename is ermsc.xls, and is written in Excel version 5.

The file illustrates step-by-step the “full parameter” example given in pages D5.16 to
D5.33 of the paper. The paper sets out clearly all the steps involved. Further brief
instructions are included on the disk as to the operation of the spreadsheet regression
analysis and matrix manipulation, so no further instructions are felt necessary here.

The spreadsheet also includes graphs of the various Residual analyses.

<>
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COMPUTERISED ILLUSTRATION (2) —
MEASURING THE VARIABILITY OF CHAIN LADDER
RESERVE ESTIMATES
by T Mack

The Lotus version 3 file, crmmack.wk3, on the disk distributed with the Claims
Reserving Manual, demonstrates the model described in the paper by T Mack in
Section D6 of Volume 2.

The file illustrates the calculation of the standard errors of the reserve estimates, and
the use of a variety of diagnostics to test the assumptions made when using the model.

To make the calculation of the standard errors easier to follow, the calculations from
the example in Section D6, on pages D6.19 to D6.24, have been broken down into
small sections, for ease of reference. This should assist the user in seeing how the
techniques can be applied in practice, as the formulae for calculating the standard
errors, whilst being quite simple, do look a bit daunting at first sight.

The examples of some of the diagnostic tests are also based on the examples included
in section 5 and Appendix H of Mack’s paper. The diagnostics involve checking the
three assumptions made when using the model. For a summary of the assumptions
made, see the précis of this paper given in Section C of Volume 2.

The checks of the three assumptions are briefly described and illustrated below.

Checking Assumption 1

One way of checking assumption 1 is simply to conduct a visual examination of the
data, to see if there is a consistent linear relationship between cumulative claims from
one period to the next. A further way of checking the assumption is to use regression
diagnostics, as explained in the section on checking assumption 3.

The attached tables and graphs are reproduced from the spreadsheet, and illustrate a
visual examination of the data and the standardised residuals used to check assumption
1. When checking the residuals, if the model holds good, one expects to see the
residuals randomly scattered, without any systematic patterns or distortions.

The diagnostic checks shown here correspond to those in Figure 1 of the paper. They
differ slightly in that they plot incremental payments on the Y-axis, and examine the
standardised residuals. Both types of diagnostic check are equally valid, and are just
two ways of looking at the same thing.
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INSERT PAGE 20 OF THE PAPER
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COMPUTERISED ILLUSTRATION (2) — MEASURING THE VARIABILITY OF CHAIN
LADDER RESERVE ESTIMATES

Checking Assumption 2

One possible distortion that may invalidate assumption 2 is the presence of calendar
year influences in the data. Ifthere are such calendar year influences (for example,
increasing payments in just one calendar year due to a new type of tax), then
consecutive sets of development factors will be larger/smaller than expected. It is
possible, however, to construct a statistical test to see whether there are diagonals with
a preponderance of "Large" or "Small" development factors.

For each development period, k, the development factors are ordered and described as
"L" or "S", depending on whether they are larger or smaller than the median. Then,
for each of the j different diagonals, the numbers of L or S factors are counted. The
actual median development factor, if we are looking at an odd-numbered set of factors,
is described as "M", and is excluded from the subsequent construction of the test
statistics.

In the absence of any calendar year effects, the number of L’s and S’s should be about
the same. Similarly, the minimum of the number of L's and S's, described as Z;,

should not be significantly different from the average number of L's plus S's. The
paper shows how the distribution of Z; can be calculated and used for a significance
test. Where this test indicates the presence of a calendar year effect, it is suggested
that the weights of the relevant outlying development factors are reduced.

Alternatively, one can construct a formula for the first two moments of Z;, which are:
1on 1|y n
EQl==-
dJ | 2 ﬁ Ik2“
. nx -1 1y nx@-1 : o)
Vardj I = nXTg knng, EdJ I_ edj IJ

Looking at individual diagonals may be misleading, so one considers

Z =75+ ..+ Zy. The expected value and variance of Z are just the sums of the
individual expectations and variances of the Zj's respectively (under the initial
assumptions, the Z;'s are uncorrelated). Assuming Z is Normal, it can be concluded
that there is no significant calendar year affect, at a 95% confidence level, if the actual
Z is within two standard errors of the expected Z.

Assumption 2 can also be checked by the use of Residual diagnostics, as described in
the section on checking assumption 3. The following examples of some of these tests
are from the crmmack.wk3 spreadsheet.

The statistical test illustrates the alternative approach, based on the first two moments
of Z;. Whilst the examples illustrate the application of these tests, they also show the
difficulties in applying statistical tests to the quite small volumes of data one is
invariably considering with such reserving exercises.

09/97 F2.3



COMPUTERISED ILLUSTRATION OF VOLUME 2 PAPERS

In the diagnostics shown below, the triangle of “S” and “L” factors does not exhibit
any statistically significant calendar year effect, although some columns do show a
sharp change from “S” to “L”, and vice versa, as one runs down the accident years.

INSERT PAGE 22 OF THE PAPER
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INSERT PAGE 23 OF THE PAPER
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Checking Assumption 3

The underlying assumptions described so far have been based on using the volume-
weighted chain-ladder. The chosen estimate of the development factor is, as the name
implies, a weighted average of the actual development factors, where the weights are
the measures of claims volume — namely the cumulative claims to date at the relevant
points. Other weights of the actual development factors could be used — indeed, any
set of weights that sums to one is applicable. In each case, it can be shown that they
produce an unbiased estimator of the development factor.

Assumption 3 is derived by T Mack by noting that, out of a collection of unbiased
estimators, one prefers the estimator with the smallest variance. Hence the weights are
chosen so that the variance is minimised — this can be shown to be the case if and only
if the weights are inversely proportional to Var(C;x+1/Cix|Ciy, ..., Cik). So, as the
volume-weighted chain-ladder uses weights that are proportional to Ci, this
corresponds to assuming that C; is inversely proportional to

Var(Ci+1/Cik|Ciy, ..., Cik). Put the other way round, and noting that

Var(X/a) = Var(X)/a’, gives us our assumption 3, namely

Var(Ciy|Ci, .., Ci) = Ciroi’.

Other weights could just as easily be used to arrive at the development factors. For
example, the simple average of the development factors could have been used.
Another alternative is the C;*-weighted average. To distinguish the alternative
versions of the estimator of the development factors, the volume-weighted estimator is
denoted as f(k,1), the simple average as f(k,2) and the C;;*-weighted average as f(k,0).
The results for the estimates of the variance of the reserves can be extended to
encompass these different ways of arriving at the development factors.

If the assumption about the variance is reasonable, one can look at the residuals for
different types of estimator of fi, and see which, if any, shows the most random
behaviour. A check of this assumption involves plotting the residuals for the three
possible types of weight used for the different fi, for all k. Examples of these plots are
given for k=1 on the spreadsheet, and are reproduced below.

With the small number of data points typically present when making chain-ladder
reserve estimates, it is hard to form any meaningful conclusions. Nevertheless, if the
plots for f(k,1), corresponding to the volume-weighted chain-ladder used as the basis
for assumption 3, look non-random, and one of the plots for the alternative weights
does not, then one might question whether the variance assumption 3 is reasonable.
One might then consider using alternative weights when making our estimates of the
chain-ladder factors.

These diagnostic checks are illustrated on the attached extract from the crmmack.wk3
spreadsheet. They correspond to the diagnostic checks described in section D5 of the

paper, and set out the intermediate steps necessary to calculate the Residual
diagnostics used to check assumption 3.

INSERT PAGE 25 OF THE PAPER
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APPENDIX — ACTUAL & MODELLED NUMBERS OF CLAIMS BY SIZE (ACTUAL DATA)

YEAR OF ORIGIN
1983 1984 1985 1986 1987
YEAR OF
CLAIM YEAR OF DEVELOP-
SIZE YEAR OF DEVELOPMENT YEAR OF DEVELOPMENT YEAR OF DEVELOPMENT | DEVELOPMENT MENT
0 1 2 3 4 0 1 2 3 0 1 2 0 0

£0 39 052 14 006 064 192 76 43 971 | 16 561 1299 2R0 51167 | 1R 919 1712 SR 257 21 21K 67 5729
£25 37.285 | 13.407 920 181 69 42.140 | 15.859 1.236 270 49.496 | 18.284 1.632 | 56.728 | 20.627 61.101
£100 20.991 | 10.066 792 168 62 24.616 | 12.086 1.071 245 30.599 | 14.356 1.437 | 36973 16.883 42.290
£200 12.506 7.201 658 141 54 14593 | 8.841 909 217 18.295 | 10.732 1.193 | 21.837 12.710 25.081
£500 5.097 3.735 442 113 46 6.114 | 4.625 600 170 7.696 | 5.730 828 8.878 6.714 9.772
£1.000 2.138 1.948 326 96 42 28 211 326 119 64 | 3.039 581 3.891 3.660 4312
£1.500 1.235 1.248 261 &3 38 1.456 | 1.546 334 120 1.916 1.966 457 2.298 2.422 2.520
£2.000 802 840 212 74 36 920 | 1.286 273 105 1.264 1.373 371 1.544 1.697 1.655
£3.000 340 414 138 62 32 417 541 187 &3 613 760 247 867 949 908
£4.000 177 236 96 42 28 211 326 119 64 316 388 164 527 577 522
£5.000 88 140 67 34 24 123 204 84 48 206 231 122 336 356 344
£6.500 41 79 42 26 20 68 97 56 41 122 118 70 188 192 183
£8.000 29 43 31 22 16 37 60 42 31 61 69 49 109 106 95
£10.000 14 19 22 18 13 21 34 22 17 33 35 34 57 61 42
£15.000 5 6 11 9 9 4 9 7 8 9 12 10 20 14 15
£20.000 2 1 7 3 5 0 5 6 3 3 3 7 8 4 4
£25.000 1 0 5 3 3 0 3 4 2 2 1 3 4 2 3
£30.000 1 0 5 2 3 0 2 3 0 1 1 3 3 2 2
£40.000 0 0 2 0 2 0 1 2 0 0 1 2 1 1 0
£50.000 0 0 1 0 2 0 1 1 0 0 0 1 1 1 0
£65.000 0 0 0 0 2 0 0 1 0 0 0 1 1 1 0
£80.000 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0
£100.000 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
£150.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
£200,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




APPENDIX — ACTUAL & MODELLED NUMBERS OF CLAIMS BY SIZE (MODELLED DATA)

YEAR OF ORIGIN
1983 1984 1985 1986 1987
YEAR OF
CLAIM YEAR OF DEVELOP-
SIZE YEAR OF DEVELOPMENT YEAR OF DEVELOPMENT YEAR OF DEVELOPMENT | DEVELOPMENT MENT
0 1 2 3 4 0 1 2 3 0 1 2 0 1 0

£0 39 052 14006 964 192 76 43 971 16 561 1299 2R0 51 167 1R 919 1712 SR 257 21 21K 67 579
£25 37.239 | 13.336| 910 181 73 41972 | 15.793 | 1.228 265 48.906 18.080 1.625 55.712 | 20.304 59.823
£100 21.106 9913 | 786 162 66 24369 | 11.857 | 1.045 240 29.505 13918 1.399 | 34.067 | 15.844 36.915
£200 13.014 7.228 | 666 138 59 15.260 8.786 871 212 18.962 10.642 1.195 | 22.088 | 12.336 24.071
£500 5.158 3.723 | 465 109 49 6.142 4.572 590 164 7.832 5.699 814 9.202 6.710 10.068
£1.000 2.103 1.948 | 329 91 42 2.540 2.408 405 133 3.321 3.067 558 3.934 3.653 4316
£1.500 1.159 1.244 | 264 80 39 1.408 1.549 317 116 1.863 2009 433 2.214 2.417 2.427
£2.000 723 846 | 222 71 35 888 1.071 260 104 1.196 1.427 357 1.423 1.717 1.558
£3.000 306 425 155 58 29 391 550 175 84 555 766 250 675 962 753
£4.000 144 241 115 50 25 189 315 126 70 279 448 179 342 566 384
£5.000 72 140 88 42 22 96 192 95 61 146 283 135 183 361 208
£6.500 34 77 64 32 20 43 99 66 48 63 144 93 80 194 92
£8.000 20 47 51 24 17 25 63 51 39 36 91 69 45 115 50
£10.000 12 26 30 18 13 15 35 30 29 21 53 49 26 70 28
£15.000 5 8 12 11 9 7 12 11 16 9 18 19 11 24 12
£20.000 2 3 5 6 6 3 5 5 10 5 8 8 6 11 7
£25.000 1 2 3 4 5 1 2 3 6 2 3 5 3 5 3
£30.000 0 1 1 4 4 0 2 1 4 1 2 3 1 2 1
£40.000 0 0 1 3 2 0 1 1 4 0 1 1 0 2 0
£50.000 0 0 1 1 2 0 0 1 3 0 0 1 0 1 0
£65.000 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0
£80.000 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
£100.000 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
£150.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
£200.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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