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Abstract

The paper shows how to reform the platform of pension products so that pension savers, profes-

sional financial advisors, actuaries and investment experts intuitively understand the underlying

financial risk of the optimal investment profile. It is also pointed out that an excellent optimal

investment strategy can destroy the future expected utility of a pension saver if the financial

communication is wrong. It is shown that a simple system with an upper and a lower bound,

originally inspired by Merton [Harvard Business Review, 2014, 92 (7/8), 43–50], which can be

executed easily using fintech, can replace complicated power utility optimization for the pension

saver so that everyone can exactly understand the amount of financial risk taken. The paper

focuses on investing money as a lump sum because being able to communicate the associated

financial risk can serve as the first step towards communicating more complex pension saving

structures.

Keywords: investment analysis, finance, utility theory, risk management, OR in banking

1. Introduction

Communication and transparency have long been the insoluble challenge in the pension

market. The Transparency Task Force was, for example, set up by the British government in

connection with the recent Pension Schemes Act 2017. When the task force met in the House

of Commons in November 2016, Henry Tapper, actuary and founder of work place pension

broker Pension PlayPen, argued about the slow-pace development of transparency in products

as well as in communications. On the same note, in summer 2016, the financial journalist Joe

McGrath wrote an article in the online magazine Raconteur spelling out that “Pension fund

trustees are under increasing pressure from members, industry leaders and regulators to achieve

transparency, good returns and lower costs.” These are just two examples that clearly indicate

an ongoing daily effort to simplify and improve the pension system. The ultimate goal is that

pension savers know exactly what they buy and how much they have to pay for it.

According to Collins (2012), the majority of the population does not understand financial

risk well. It is important to ensure that the pension savers invest according to their risk

preferences. Furthermore, good communication is not sufficient. Pension products have to adapt
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to simple communication until a one-one relationship between communication and financial

construction is eventually reached. Simple, transparent and efficient pension platforms have to

be built and such fit well into current efforts for technological innovation in the financial sector.

Our starting point is the pension vision of the Nobel laureate Robert C. Merton (Merton, 2014),

who argues that a new pension system must be built so that more informed decisions are made

by all pension savers, including those lacking financial literacy. He suggests a pension system

containing a top and a bottom rate; the pension saver reveals his risk appetite indirectly by

choosing an individual combination of a top and a bottom rate according to his individual

circumstances. He also argues for a clever default for those pension savers who simply refuse to

take decisions. Merton did not publish technical details or communication details to his vision.

This paper does exactly that: we provide in an unprecedented way a communication platform

which is well-suited for an implementation by software and modern technology. We consider

here the lump-sum case. While interesting in itself, it serves as the building block for the

construction of a variety of pension annuity products which can have many different practical

features, as shown, for example, in Gerrard et al. (2018). After informally interviewing several

laymen and pension savers, we decided to simplify Merton’s approach by reducing the potential

choices to the pension saver down to picking the worst case (WC) investment result. The choice

is aided by a best case (BC) linked to every WC; the pension saver then receives BC half of

the time, and an investment result between WC and BC the rest of the time. Hence, a one-one

relationship between communication and financial construction is achieved. Section 2 presents

how this communication can look like, while Section 6 shows in a detailed simulation study

how that suffices to back-calculate an efficient investment strategy which incorporates the right

risk appetite for a specific customer. We highlight that the investment strategy is determined

without an abstract estimation of a risk-appetite parameter but via a simple one-one relationship

between communication and financial product.

Underlying to this communication is an original unhedged investment strategy based on an

exponential utility and a hedge based on the best and worst case boundaries leading to the final

strategy. While the pension savers do not need to know these technical details, we have also

simplified the technical communication of our investment universe. The reason for this is that,

if the financial and actuarial experts have a good grip of the technical details of their product

design, then such will lead to better products, communication, fewer internal errors, and lower

administration costs.

The main trick to obtain this technical simplification is to use exponential utility, rather

than, for example, power utility optimization. In Section 6, we show that, while the selection

of the BC and WC is important for the financial utility of the pension saver, the underlying

investment strategy, i.e., the choice of a concrete utility function, plays a secondary role. It just

has to be risky enough to accommodate the variety of risk preferences wished for by the pension

savers when they limit their risk via the BC and WC boundaries. Going one step further, we

propose that picking the WC – with an automatically calculated BC that is reached 50% of

the time – is enough. It is good news that the simple decision that can be taken by pension

savers is also the most important one. This is the primary reason for this paper’s argument that

pension savers can self-select their investment strategy by answering a simple question, e.g., via
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a fintech platform.

The remainder of the paper is organized as follows. In Section 2, we present an introduc-

tory example of the proposed strategy with a one-one relationship between communication and

financial product. Sections 3–5 are concerned with the technical details of formulating a finan-

cial market model and with finding the optimal investment strategy thereof. In Section 6, we

demonstrate in a simulation study that the simple communication of Section 2 is indeed good

enough to back-calculate an optimal investment strategy tailored to the individual’s risk ap-

petite. Section 7 discusses possible extension routes of our lump-sum development and Section

8 concludes the paper. Detailed derivations are deferred to the appendix.

2. Lisa, John, Susan and James self-select their risk profiles

Consider the risk taker Lisa, the moderate risk taker John, the moderately risk averse Susan

and the risk averse James. Each of them wants to invest £10,000 with an investment horizon

of 30 years. Table 1 summarizes their optimal strategies in a power utility world. These

correspond to the different risk appetites our four protagonists have, described via the power

utility parameter ρ; refer also to our parameterization of the power utility in Section 4 for more

details. The optimal strategy is derived in a two-fund investment universe within the Black–

Scholes model setting (see Section 3) based on an investment of a constant relative amount

of the current wealth in the risky stock and the remainder in a risk-free inflation bond. The

investment outcomes in this section are therefore measured in real terms, as recommended in

Merton (2014) – see also Section 3.

Investor Lisa John Susan James

Risk appetite ρ
(power utility parameter) −0.25 −1 −4 −10

Percentage in stocks 75% 46% 19% 8%

Table 1: Power utility parameters of four investors and corresponding optimal strategies. The optimal strategies
are derived in a Black–Scholes world where the risky asset has a yearly mean excess return of 3.4% with a standard
deviation of 16%. (See Section 3 for a detailed description of the financial universe.)

The story would end here if the protagonist’s risk appetite were known a priori – but it is

not. We will now show how a simple question to Lisa, John, Susan and James will tell us what

kind of risk they want; we will show how they can self-select their risk and thereby their entire

investment strategy via a short decision process. The explosive growth of financial technology

in personal finance following the internet and mobile phone revolutions (e.g., see de Reyck and

Degraeve, 2003) should be exploited to further simplify the decision process. In particular, each

of the protagonists could be told via a smartphone application that:

• Your investment has a BC and a WC

• You will never drop below your WC

• Half of the time you will be receiving the BC and in the other half an investment result

between WC and BC
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• Use a slider to see which WC suits you best. For every WC there is a link to a BC; BC

increases when WC decreases.

Investor Lisa John Susan James

WC
(guarantee) £3,650 £6,500 £9,100 £9,650

BC
(achieved half of the time) £16,500 £15,200 £12,300 £11,000

Table 2: Optimal picks of worst case and best case (the goal) for the four investors, given their corresponding
power utility parameters ρ = −0.25,−1,−4,−10. The initial wealth is £10,000 and the investment horizon is 30
years. The optimal strategy is derived in the Black–Scholes world (see also notes in Table 1).

Table 2 shows the optimal choices of Lisa, John, Susan and James. All numbers are in

current values, i.e., adjusted for inflation. Lisa’s median in the unhedged world, where her

optimal strategy is to hold 75% in risky assets like stocks, would have been £13,496; with the

new hedging strategy, Lisa’s median is £16,500, i.e., this has increased by £3,004. She also

has a guarantee with her WC of £3,900, as opposed to no guarantee before. The price for

the increased median and the guarantee is that Lisa will not receive above her BC amount of

£16,500. In an unhedged world, Lisa would have had only 31% chance to exceed £16,500. So

we take away the gamble that she can achieve super returns less than one third of the time to

improve her WC scenario and the return she will achieve most of the time, hence we maximize

her median return.

We note that Lisa, John, Susan and James self-selected their risk profile and defined their

optimal investment strategy through a simple exercise using a slider on a mobile phone ap-

plication or web interface. The question they receive is directly linked to their investment

without any further, possibly abstract and detached, communication of risk preferences being

needed. Table 3 compares our proposed strategy with an optimal strategy in terms of certainty

equivalence. The optimal strategy is infeasible as the exact utility function and its parameter

are unknown. Nevertheless, the loss in terms of optimal utility by taking our simple one-step

financial advice is not material, which is our key point.

Investor Optimal strategy Hedged strategy
CE CE WC BC

Lisa £12,756 £12,017 £3,650 £16,500
John £11,643 £11,264 £6,500 £15,200
Susan £10,627 £10,416 £9,100 £12,300
James £10,280 £10,171 £9,650 £11,000

Table 3: Comparison of different strategies. Investors are assumed to obey a power utility with parameters
ρ = −0.25,−1,−4,−10, respectively. Initial wealth is £10,000 and investment horizon is 30 years. We assume a
Black–Scholes world (see also notes in Table 1). Certainty Equivalent (CE) is the certain amount for which the
investor would exchange the uncertain terminal lump sum.

We note that the loss is less than 2% for John, Susan and James, with Lisa’s being slightly

higher. If we go hunting for more sophisticated strategies, the potential gain will most likely

be well below 2%. Even a very sophisticated in-depth financial interview can never lead to

a perfectly optimal investment strategy, hence some uncertainty about the assessment of the
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exact risk profile of Lisa, John, Susan and James will always exist.

Finally, we revisit the unhedged power utility world to assess the cost of misunderstandings.

Table 4 shows the value of the investment for Lisa, John, Susan and James if one of them

through financial assessment is mistaken for another. The worst possible misspecification is if

the risk averse James is mistaken to be a risk taker like Lisa. Then James loses almost 80% of

the value of his investment. Lisa would lose almost 20% of the value of her investment had she

been mistaken to be a risk averse investor like James. In 5 out of the 16 cases the protagonists

not only lose money compared to the optimal strategy, but would also have been better off by

investing everything in the safe asset. The financial decision suggested above should be easy to

include in an innovative technological learning environment; see, e.g., Levina et al. (2009) for

considerations on necessary adjustments when the consumer is being addressed online.

Lisa’s plan John’s plan Susan’s plan James’ plan

Lisa’s CE £12,756 £12,326 £11,124 £10,536
John’s CE £11,023 £11,643 £11,023 £10,516
Susan’s CE £6,156 £9,268 £10,627 £10,437
James’ CE £2,388 £5,958 £9,879 £10,280

Table 4: Impact of miscommunication. Investors are assumed to obey a power utility with parameters ρ =
−0.25,−1,−4,−10, respectively (see additional notes in Table 3). Boldface cases indicate plans that are less
valued than the initial wealth of £10,000.

3. The model

The underlying financial model in this paper has a two-fund structure comprising a risk-free

fund and a risky fund. Under the two-fund theorem, this financial structure is more general

than it appears at first sight as every efficient portfolio can be reconstructed out of those two

funds.

Merton (2014) argues that all calculations and financial forecasts must be in current prices.

We model the risk-free fund earning an interest rate r. If we assume that the risk-free fund

is constructed so that it exactly compensates price inflation without any risk, i.e., r equals

inflation, then it replicates exactly what Merton looked for. But a risk-free inflation fund is not

feasible in practice. It is, however, intuitively clear that if the risk-free fund approximates an

inflation hedge with a low volatility, then the proposed financial model where r equals inflation

approximates a real and feasible investment strategy. In the following sections all strategies are

to be understood in current prices.

By way of further detail of the financial model, consider a single investor living in a Black–

Scholes environment. In the period [0, T ], T > 0, he can invest in a risky fund, S1, and a

risk-free fund, S0:

dS1(t) = µS1(t)dt+ σS1(t)dWt, dS0(t) = rS0(t)dt,

where W is a standard Brownian motion defined on the complete probability space (Ω,F ,P),

µ, σ, r > 0 are constants and S0(0) = S1(0) = 1. The information available to the investor is

represented by the filtration Ft = σ{W (s), s ∈ [0, t]}∨N (P), t ∈ [0, T ], where N (P) denotes the
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collection of all P-null sets so that the filtration obeys the usual conditions. We will denote by

X(t) the current wealth at time t, of which π(t) is invested in the risky fund and the remainder

in the risk-free fund, so that

dX(t) = r (X(t)− π(t)) dt+ (µdt+ σ dW (t))π(t)

= rX(t) dt+ (θ dt+ dW (t))σπ(t),

where θ = (µ− r)/σ is the market price of risk. In addition, we define the transformed process

Y (t) = er(T−t)X(t),

so that current wealth is measured in terminal time value. We have

dY (t) = σer(T−t)π(t) (θ dt+ dW (t)) . (1)

By definition Y (T ) = X(T ). This will become important in the next sections where we aim

to find the optimal strategy when maximizing the terminal expected utility E[U(X(T ))] =

E[U(Y (T ))], given a utility function U .

4. Unconstrained optimal investment strategies

4.1. Two utility function families

For a given positive wealth x, the power utility function is given by

Up(x) =
1

ρ
xρ; ρ ∈ (−∞, 1) \ 0. (2)

This is also known as isoelastic utility function being invariant to scaling, meaning that counting

the investors’ money in pence, pounds, or any other currency does not alter the optimal strategy.

A customer obeying this utility function is risk averse as the second derivative in x is negative.

One can also calculate the absolute and relative risk aversion coefficients given, respectively, by

Ap(x) = −
U ′′p (x)

U ′p(x)
=

1− ρ
x

, Rp(x) = −x
U ′′p (x)

U ′p(x)
= 1− ρ,

which are standard risk measures for utility functions. Hence, the power utility has a constant

relative risk aversion (CRRA).

The exponential utility function is given by

Ue(x) = −1

γ
e−γx, (3)

where γ > 0, meaning that the customers are assumed to be risk averse as the second derivative

in x is negative. The absolute and relative risk aversion coefficients are given by

Ae(x) = −U
′′
e (x)

U ′e(x)
= γ, Re(x) = −xU

′′
e (x)

U ′e(x)
= γx,
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hence the exponential utility function results in constant absolute risk aversion (CARA) and

increasing relative risk aversion.

In various examples from the academic literature some complicated optimization algorithms

are used to find the best future investment strategy for pension savers (e.g., Yu et al., 2012),

where statistical simulation is part of the numerical weaponry. Another challenge for the pension

saver is when the underlying theoretical model is at such a high academic level that ordinary

people are unable to understand it (e.g., Josa-Fombellida and Rincón-Zapatero, 2008, Chai et al.,

2011, Sun et al., 2017). As a result, such approaches remain black boxes for the pension savers or

even the professional financial advisors. When the underlying argumentation and the substance

of the optimization is opaque to the those giving financial advice and those receiving it, there

is a risk that unfortunate financial decisions are made even if the underlying financial expert

systems are sophisticated. For example, Agnew et al. (2018), Buell et al. (2017), Lymer and

Richards (1995), and Pasiouras (2018) propose different arguments of the financial importance

of transparent processes between consumer and provider.

We propose to only maximize the expected utility of the terminal lump sum, X(T ). As we

will see in the next section, the power utility function optimization leads to a CRRA investment

strategy where a constant relative fraction A is invested in the risky asset; if, for example, A = 1,

then the whole investment is made in the risky asset at any time. Instead, the exponential utility

function optimization leads to a CARA strategy where a constant nominal amount C is invested

in the risky asset. The latter implies that any loss from investing in the risky asset is reinvested

by transferring exactly the lost amount from the safe fund to the risky fund; instead, any gain

from the risky asset is transferred to the risk-free fund. Intuitively, the CARA strategy is

attractive because, according to the law of large numbers, it seems clear that the investment

outcome will have a lower standard deviation than CRRA.

4.2. Optimal unconstrained investment strategy: CRRA versus CARA financial optimization

and transparency

In consistency with standard optimal control theory, we define the optimal value function

at time t

V (t, y) = sup
π

E[U(Y (T ))|Y (t) = y, strategy π is used].

The Hamilton–Jacobi–Bellman equation describing the dynamics of V is given by

sup
π

{
Vt + θσer(T−t)π(t)Vy +

1

2
σ2π(t)2e2r(T−t)Vyy

}
= 0,

where Vt, Vy and Vyy are the partial derivatives with respect to t and y (first and second order).

By utilizing the first-order condition in the optimization problem above, we find that the optimal

value of π is

π∗(t, y) = − θ
σ
e−r(T−t)

Vy
Vyy

,

and conclude that V satisfies

Vt −
θ2

2

V 2
y

Vyy
= 0.
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Subject to the boundary conditions

V (T, y) =

{
1
ρy

ρ (power utility – see Equation 2)

− 1
γ e
−γy (exponential utility – Equation 3)

,

it is straightforward to show that

V (t, y) =

 1
ρy

ρe
θ2

2(1−ρ) (T−t)
(power utility)

− 1
γ e
− θ

2

2
(T−t)−γy (exponential utility)

yielding the optimal strategies

π∗(t, y) =

{
Ae−r(T−t)y (power utility)

Ce−r(T−t) (exponential utility)
, (4)

where

A =
θ

σ − ρσ
(5)

and

C =
θ

σγ
. (6)

Not surprisingly, in the exponential utility function, the optimal amount invested in the risky

asset is independent of the size of the fund. Subject to optimal control, the evolution of the size

of the fund is given by

Y ∗(t) =

{
y0e

(θσA− 1
2
σ2A2)t+σAW (t) (power utility),

y0 +R (θt+W (t)) (exponential utility)
,

where

R = Cσ =
θ

γ
. (7)

Both optimal strategies are comprehensible. From (4), we see that in the power utility case

there is a constant relative amount of wealth A invested in the risky asset at different points

in time; exponential utility suggests that there is a constant nominal amount C invested in the

risky asset. Nevertheless, the choices of A and C are difficult for most pension savers.

In Section 5, we will see that the problem of choosing A and C can be avoided by applying

a lower and an upper bound; a choice that most pension savers – financially literate or not – are

able to make. We will show that combining CARA with financial hedging leads to an attractive

and transparent investment strategy that enables simple self-selection of risk.

4.3. Local approximation of power utility functions

When a pension saver has to pick between the two presented utility functions, it can be

argued that a world with investors maximizing a power utility is more realistic than the expo-

nential utility analogue. Financial economics research is concerned with the choice of utility

function for use in different economic scenarios (see, among others, Kallberg and Ziemba, 1983,

Levy, 1992, Abbas, 2012 and Pliskin et al., 1980). Here, we will be choosing between power and
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Figure 1: Comparison of the exponential utility (with parameter γ = 9.77 × 10−5 yielding C = 9,480) against
the power utility with varying parameter ρ = −0.25,−1,−4,−10.

exponential utility. In subsequent sections, we will argue that, in our application, exponential

utility is to be preferred due to its technical simplicity and intuitive investment strategy, in ad-

dition to the minimal effect of the utility choice when an upper and a lower bound restrict the

range of possible outcomes. This is important when it comes to easily understandable strategies

allowing for communicating the risk and being in control of the investment.

In Section 2, we introduced Lisa, John, Susan and James and assumed that they are power

utility maximizers with parameters ρ = −0.25,−1,−4,−10, willing to invest £10,000. Figure 1

indicates that the exponential utility can approximate any power utility function locally. The

more risk averse the investors, the more the area around one point must be restricted, here

£10,000. Given that risk averse investors dislike significant fluctuation of their wealth from the

origin, this approximation might be just good enough. This leads to the next section where

we constrain the optimal strategy with an upper and lower bound for the terminal wealth.

The idea is that a constrained exponential strategy can be used to approximate a power utility

maximizer.

We note that the above is based on the assumption that our client has financial preferences

according to an unrestricted power or exponential utility function. One might also argue that

many people saving for retirement feel strongly about having a minimum outcome of their

savings, knowing they can at least survive to retirement and, perhaps, keep their house and still

be able to give Christmas presents to their grandchildren. Therefore, our constrained strategy

can be a more natural choice. We will discuss this further in Section 6.
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5. Constrained optimum with upper and lower bounds

In what follows, we consider a financial hedge using an upper and a lower bound under

relative risk aversion and, for the first time through this communication, constant absolute

risk aversion. To this end, the optimization of Section 4 is modified to a strategy that maxi-

mizes the terminal utility subject to the constraint P (GL ≤ X(T ) ≤ GU ) = 1 or, equivalently,

P (GL ≤ Y (T ) ≤ GU ) = 1, meaning:

max E[U(X(T ))],

subject to dX(t) = rX(t) dt+ (θ dt+ dW (t))σπ(t), X(0) > 0,

GL ≤ X(T ) ≤ GU , almost sure.

Under the assumptions that the investor obeys a power utility function and that a floor and a

top apply1, we argue later in Section 6 that the exponential utility strategy is in practice just

as useful as the power utility strategy.

We define P (t) as Y ∗(t), but with a different starting value:

P (t) =

{
Y ∗(t)P (0)/Y (0) (power utility)

Y ∗(t)− Y (0) + P (0) (exponential utility)
.

We further define

Y ∗∗(T ) =


GL, if P (T ) < GL

P (T ), if GL ≤ P (T ) ≤ GU
GU , if P (T ) > GU

. (8)

Our task is to show whether it is possible to find an admissible strategy which produces (8) as

the final result. Indeed, the next propositions state that the portfolio is optimal and feasible in

both the exponential and power utility worlds.

Proposition 1 (Constrained strategy under power utility). Define

c(t, y,GU ) = yΦ(d1(t, y,GU ))−GUe−r(T−t)Φ(d2(t, y,GU )),

p(t, y,GL) = GLe
−r(T−t)Φ(−d2(t, y,GL))− yΦ(−d1(t, y,GL)),

where Φ is the standard normal cumulative distribution function,

d1,2(t, y,G) =
1

σA
√
T − t

[
ln
( y
G

)
± 1

2
σ2A2(T − t)

]
and A is given by (5).

Under the assumption that GL < Y (0) < GU , there exists P (0) satisfying the budget con-

1 It might be worth mentioning that, in earlier applications, authors have generally considered only downward
constraints. For example, Kraft and Steffensen (2013) formalize a problem where lump sum at discrete time
points is restricted by a value-at-risk or an expected shortfall constraint; Deelstra et al. (2003, 2004) consider
a possibly stochastic minimum guarantee and maximize the expected utility function of the terminal wealth;
Emmer et al. (2001) set up an optimization problem where they place a constraint on the capital at risk.
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straint

Y (0) = P (0)− c(0, P (0), GU ) + p(0, P (0), GL).

The solution P (0) and the process

Y ∗∗(t) = P (t)− c(t, P (t), GU ) + p(t, P (t), GL)

satisfy (8) and

GL ≤ Y ∗∗(t) ≤ GU , for all 0 ≤ t ≤ T.

The corresponding strategy

π∗∗(t) = A[1− Φ(d1(t, P (t), GU ))− Φ(−d1(t, P (t), GL))]P (t) (9)

is optimal for the constrained problem.

Proof. See Donnelly et al. (2018).

Proposition 2 (Constrained strategy under exponential utility). Define

c(t, y,GU ) = R
√
T − tH(d(t, y,GU )) + P (t)−GU ,

p(t, y,GL) = R
√
T − tH(d(t, y,GL)),

where R is given by (7),

H(x) = xΦ(x) + φ(x), (10)

d(t, y,G) =
G− y

R
√
T − t

,

and φ is the standard normal density function.

Under the assumption that GL < Y (0) < GU , there exists P (0) satisfying the budget con-

straint

Y (0) = P (0)− c(0, P (0), GU ) + p(0, P (0), GL).

The solution P (0) and the process defined by

dY ∗∗(t) = R(Φ(dU )− Φ(dL))(θdt+ dW (t)),

with

dL = d(t, P (t), GL), dU = d(t, P (t), GU ),

satisfy (8). The corresponding strategy

π∗∗(t) = Ce−r(T−t)(Φ(dU )− Φ(dL)), (11)

where C is given by (6), is optimal for the constrained problem.

Proof. See Appendix A.
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Contrary to (9), formula (11) suggests a simple financial hedging strategy of taking the

initial wealth, e.g., of £10,000, of the original investment strategy and multiplying it by the

probability, under the risk-neutral measure, of staying within the lower and upper bounds.

This is easy to understand and will minimize the operational risk of misunderstanding and,

perhaps, manually change the hedging formula in the machine room of the actuarial office of

any pension provider. Most actuaries want to have an intuitive and hands-on understanding

of any formula they use. They are also personally responsible if things do not work out well.

It is therefore important that we have mathematical transparency as well as transparency in

communication. If the product developers of the pension provider are in full control and have

no doubt about the methodology they use, then this improves the chain of communication all

the way through the end customer. From Propositions 1 and 2, it becomes obvious that the

hedging strategy based on the exponential utility is intuitively comprehensible, contrary to the

power utility, in the product development office of the pension provider. Finally, it is worth

noting that the strategy holds at any future point in time; the calculation of the hedging is

based on the probability of staying within the boundaries given the financial situation today.

The simplicity of the mathematical hedging of this paper makes our strategy less black-

box-like and more intuitive internally in the company than, for example, strategies based on

stochastic programming, which, nevertheless, can be extremely powerful and useful for pensions;

see Geyer and Ziemba (2008) for a good example of dynamic stochastic programming of defined

contribution schemes as considered in this paper, and also Mulvey et al. (2008) for an example

in defined benefit schemes. We refer to Kraft and Munk (2011) for an intelligent life-cycle

modelling of household needs that optimize consumer needs, which, nevertheless, seems to fail

the simple communication requirement. It is not the purpose of the current research to provide

intelligent portfolio optimization based, for example, on market timing, e.g., Luo (2017); we

do believe, though, that the communicability promoted here can incorporate market timing

and dynamics in the future by introducing dynamic parameters. That is beyond the scope

of this work; a challenge for us remains the generalization of the current approach without

compromising its transmissibility. Financial planning is of course a hot issue at the moment,

but it has been for long; see Lymer and Richards (1995) and Smith and Keeney (2005) for

an alternative view on financial considerations of future safety. We do have a strong belief

that simplified communication is a powerful stepping-stone to optimizing financial advice. It is

easier for people to match their financial planning to personal circumstances when they fully

understand the financial products (see also Finke et al., 2017).

6. The value of further details in financial communication

The ease of financial communication of Section 2 implies minimization of the chance of

misclassifying consumers’ financial risk appetite.

In this section, we explain how direct identification of the risk aversion parameter is circum-

vented in our proposed communication. We start with a complex communication where the

customer needs to pick the utility function parameter, the lower and the upper bound. Then,

we gradually reduce to a simple communication where only the lower bound is chosen, whilst

the utility parameter is given as a function of the initial wealth (C = Y (0), where C = θ/(σγ)
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from Equation 6) and the upper bound is consequently chosen so that it can be achieved with a

50% probability. This simple one-dimensional problem leads to the communication proposed in

Section 2. We will argue that the financial gains when considering, instead, the more complex

three-dimensional problem are minimal. In addition, it adds uncertainty in the communication

and finding of the right parameters. Hence, in all, more complexity can easily lead to a less

favourable outcome.

6.1. Three-dimensional optimization

Suppose that the financial advisor is given more freedom in selecting a detailed financial

plan for the consumer based on the approach in this paper. In the first case, we let our

financial advisor pick freely the lower and upper bounds as well as the underlying investment

principles determined by the constant amount C invested in the risky asset. Hence, the pension

saver needs to pick three parameters from a three-dimensional space of parameters. Obviously

the financial communication is more complicated here as now the probabilities of reaching

the upper and lower bounds must also be communicated, in addition to ensuring that the

client understands the implication of selecting the underlying investment strategy and how

this interacts with the hedging based on the double bounds. Extra detail in the financial

communication will undoubtedly increase the likelihood of misclassification, and we know from

Section 2 that this can cause significant financial losses for the client (see Table 4). In Table

5, we assume that Lisa, John, Susan and James are CRRA optimizers with utility function

parameters ρ = −0.25,−1,−4,−10, respectively. We denote by CEopt the optimal certainty

equivalents under the infeasible, as ρ is practically unknown, optimal individual CRRA strategy,

and by CEρ=−0.25 the certainty equivalents under the optimal CRRA strategy with ρ = −0.25,

i.e., Lisa’s optimal strategy. Finally, we compare those values with a constrained CARA optimal

strategy. The three parameters, GL, GU , C, are chosen so that the certainty equivalent of the

agent is maximized. We find that a constrained CARA strategy can approximate closely the

optimal infeasible strategy. In particular, Lisa suffers the biggest loss and this does not exceed

2%.

Investor Unconstrained CRRA optimization 3-D Constrained CARA optimization
ρ CEopt CEρ=−0.25 CE GL GU C Prob. % loss

Lisa –0.25 £12,756 £12,756 £12,556 £4,050 £60,000 £9,100 0 1.56
John –1.00 £11,643 £11,023 £11,576 £5,150 £36,300 £5,100 0 0.57
Susan –4.00 £10,627 £6,156 £10,621 £7,000 £19,800 £1,900 0 0.05
James –10.00 £10,280 £2,388 £10,278 £8,350 £14,600 £900 0 0.02

Table 5: Comparison of different strategies with constrained strategy derived via three-dimensional (3-D) max-
imization optimizing GL, GU and C. The four investors are assumed to obey a power utility with parameters
ρ = −0.25,−1,−4,−10, respectively. Initial wealth is y0 = £10, 000 and the investment horizon is of T = 30 years
(see additional notes in Table 3). Certainty Equivalent (CE) is the certain amount for which the investor would
exchange the uncertain terminal lump sum, CEopt the certainty equivalent of the infeasible optimal strategy,
and CEρ=−0.25 the certainty equivalent under the optimal strategy for a power utility with parameter ρ = −0.25
(i.e., the optimal strategy for Lisa). Prob. is the probability that the terminal wealth equals the best case, GU .
% loss is the relative loss compared to the optimal strategy.

It is hard to imagine a financial advisor that would come that close to understanding Lisa’s

preferences from talking to her and that could estimate her power utility parameter, ρ, with
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an accuracy leading to a lower financial loss under a CRRA optimal strategy. CEopt shows the

sensitivity of the optimal strategies with respect to the right risk parameter ρ. However, also in

the constrained CARA optimization, the parameters GL, GU , C are a priori unknown. In Table

5, it is assumed that those parameters are picked in an optimal way translating to the case

of agents that perfectly understand the parameters and choose them accordingly. Obviously,

this might be far-fetched as, for a true understanding, the probabilities of reaching the upper

and lower bounds must be communicated as well as the nontrivial interaction with the hedging

based on the double bounds. This leads us to the second case.

6.2. Two-dimensional optimization

If less communication is preferred, while still giving the financial client the opportunity to

freely choose the upper and lower bounds, then one could fix the underlying unconstrained

investment strategy C equal to Y (0), here £10,000, but leaving the upper bound and lower

bound to be decided by the client. This way the pension saver needs to pick two parameters

from a two-dimensional space of parameters. This is less complicated than the previous detailed

communication, but still more than the strategy of Section 2. The financial losses compared to

the infeasible power utility strategy are given in Table 6, with the highest financial loss being

just 2.7%.

Investor Unconstrained CRRA optimization 2-D Constrained CARA optimization
ρ CEopt CEρ=−0.25 CE GL GU C Prob. % loss

Lisa –0.25 £12,756 £12,756 £12,550 £4,300 £60,000 £10,000 0.00 1.61
John –1.00 £11643 £11,023 £11,324 £6,900 £20,200 £10,000 0.21 2.74
Susan –4.00 £10,627 £6,156 £10,430 £8,850 £11,800 £10,000 0.63 1.85
James –10.00 £10,280 £2,388 £10,184 £9,500 £10,700 £10,000 0.69 0.93

Table 6: Comparison of different strategies with constrained strategy derived via two-dimensional (2-D) maxi-
mization optimizing GL, GU . C is fixed at the initial wealth. The four investors are assumed to obey a power
utility with parameters ρ = −0.25,−1,−4,−10, respectively. Initial wealth is y0 = £10,000 and the investment
horizon is of T = 30 years (see additional notes in Table 5).

Again this loss is so small that it is hard to imagine a financial advisor that could estimate

the infeasible constrained power utility parameter better than that.

6.3. Easy communication: The one-dimensional case

In the final case, we simplify the communication further to the setting of Section 2: see

Table 7. The highest financial loss compared to the infeasible strategy is 5.8%, but even this is

so low that we cannot imagine a real-life financial advisor approaching Lisa’s unknown financial

preferences more than our proposed financial strategy.

6.4. Additional comments

We note that the previous discussion is based on the assumption that our client has financial

preferences according to an unrestricted power utility function. One could also argue that many

people saving for retirement feel strongly about having a minimum outcome of their savings

so that they can at least survive to retirement, i.e., for instance, be able to keep their house

and pay their rent. If that is the case, then a reversed comparison where an unconstrained

14



Investor Unconstrained CRRA optimization 1-D Constrained CARA optimization
ρ CEopt CEρ=−0.25 CE GL GU C Prob. % loss

Lisa –0.25 £12,756 £12,756 £12,017 £3,650 £16,500 £10,000 0.5 5.79
John –1.00 £11,643 £11,023 £11,264 £6,500 £15,200 £10,000 0.5 3.26
Susan –4.00 £10,627 £6,156 £10,416 £9,100 £12,300 £10,000 0.5 1.99
James –10.00 £10,280 £2,388 £10,171 £9,650 £11,000 £10,000 0.5 1.06

Table 7: Comparison of different strategies with constrained strategy derived via one-dimensional (1-D) maxi-
mization optimizing GL. The upper bound GU is uniquely defined as the value which can be reached with a
probability of 50% and C is fixed at the initial wealth. The four investors are assumed to obey a power utility
with parameters ρ = −0.25,−1,−4,−10, respectively. Initial wealth is y0 = £10,000 and the investment horizon
is of T = 30 years (see additional notes in Table 5).

CRRA strategy is wrongly followed – independent of the chosen risk aversion parameter –

would lead to a utility of minus infinity. This means that, not only is the power utility function

hard to communicate and estimate in praxis, but it might also at the same time not represent

many pension savers’ risk preferences. We further argue that the majority of pension savers

entrusting their money to a pension provider would oppose gambling. If we define gambling as

having a financially beneficial outcome in a minority of cases at the cost of a significantly worse

outcome in most cases, then that would lead us to exactly the risk preferences suggested in our

communication. If the risk preferences suggested by our financial strategy are exactly matching

the client’s, then our approach is both financially optimal in a mathematical sense and easy to

communicate. We believe this to be the case.

7. Extension to annuities

Useful as our development of the lump sum case is, it unblocks the road to universality. In

particular, we mention here annuities involving a random number of random future monthly

payments. When adapting to annuities, the product of Section 2 offered to the customer is

altered as follows: the worst case scenario is that the annuity will be reduced after a certain

number of years of guaranteed high payments; the best case scenario is that the annuity will

continue at the same high level life-long.

In a recent research event titled “Self-selection and Risk Sharing in a Modern World of

Life-Long Annuities” hosted by the Actuarial Research Centre of the Institute and Faculty of

Actuaries, practitioners and academics were invited to discuss a presentation based on these

ideas; we refer to Gerrard et al. (2018) for a detailed treatment of this extension. More specifi-

cally, building upon the current approach in this paper, the authors, first, introduce a mortality

pooling approach defined in Bräutigam et al. (2017) to ensure that a pool of individuals can

hedge mortality risk without involving intermediaries. Second, they explain how investment

risk pooling and hedging of an inflation fund can ensure that payments are communicated and

guaranteed in real terms. Finally, the worst and best cases are reformulated as aforesaid.

8. Conclusion

In this paper, we suggest a combination of constant absolute risk aversion with an upper

and a lower bound to meet Merton’s vision of creating a transparent platform for pension
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products. We focus on real returns and introduce an inflation fund without risk as well as a

risky fund based on stocks. A single investment strategy with a lump-sum payment is then

considered; this is part of most pension schemes, so it is important itself. This way we learn

how to communicate risk and allow the pension saver self-select his simple pension decision

case, before considering more complicated actuarial constructions like life annuity products.

We conclude that self-selection is possible via our intuitive and easy-to-understand combination

of constant absolute risk aversion and double bounds. Future research is targeted towards

generalizing the results in a situation with risk in the inflation fund as well as more complicated

actuarial pension constructions, including mortality-dependent annuity products, and financial

investment constructions including market timing.
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Appendix A. Proof of Proposition 2

We define the martingale measure Q such that WQ(t) = W (t) + θt is a standard Brownian

motion. With this in mind, we write

P (t) = P (0) +RWQ(t).

Conditional on the history of the process until time t > 0,

P (T ) = P (0) +R(WQ(t) +
√
T − t Z),

where Z is a standard normal random variable under Q. We note that

P (T ) > GU ⇐⇒ WQ(t) +
√
T − t Z > R−1 (GU − P (0)) ⇐⇒ Z > dU ,

where

dU =
1√
T − t

[
R−1 (GU − P (0))−WQ(t)

]
and, similarly, we have that P (T ) < GL is the same as the event Z < dL, where

dL =
1√
T − t

[
R−1 (GL − P (0))−WQ(t)

]
.
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Y (t) is given by the present value of the portfolio at time t under Q:

Y (t) = EQ

(
max (GL,min (GU , P (T )))| FQ

t

)
= EQ

(
P (T )| FQ

t

)
+ EQ

(
max(GL − P (T ), 0)| FQ

t

)
− EQ

(
max(P (T )−GU , 0)| FQ

t

)
=

∫ dL

−∞
GLφ(z) dz +

∫ ∞
dU

GUφ(z) dz +

∫ dU

dL

(
P (0) +R(WQ(t) +

√
T − tz)

)
φ(z) dz

= GLΦ(dL) +GU [1− Φ(dU )] +
(
P (0) +RWQ(t)

)
[Φ(dU )− Φ(dL)]

−R
√
T − t [φ(dU )− φ(dL)]

= GU −R
√
T − t [H(dU )−H(dL)] ,

where H is given by (10). As H ′(x) = Φ(x) ∈ (0, 1) and dL < dU , we deduce that

0 ≤ H(dU )−H(dL) ≤ dU − dL =
1√
T − t

R−1(GU −GL),

confirming that P (GL ≤ Y (t) ≤ GU ) = 1 for all t.

Returning to the standard measure P, we can write both dL and dU as functions of t and

w = W (t):

dL(t, w) =
1√
T − t

[
R−1 (GL − P (0))− w − θt

]
,

dU (t, w) =
1√
T − t

[
R−1 (GU − P (0))− w − θt

]
,

with
∂dL
∂t

= − θ√
T − t

+
dL

2(T − t)
,

∂dL
∂w

= − 1√
T − t

,

and similarly for dU . By exploiting the expressions for dL and dU , we rewrite Y (t) = η(t,W (t)),

where η satisfies

∂η

∂t
=

R

2
√
T − t

[H(dU )−H(dL)]−R
√
T − t

[
H ′(dU )

∂dU
∂t
−H ′(dL)

∂dL
∂t

]
=

R

2
√
T − t

[H(dU )−H(dL)]

+Rθ [Φ(dU )− Φ(dL)]− R

2
√
T − t

[dUΦ(dU )− dLΦ(dL)]

=
R

2
√
T − t

[φ(dU )− φ(dL)] +Rθ [Φ(dU )− Φ(dL)] ,

∂η

∂w
= −R

√
T − t

(
H ′(dU )

∂dU
∂w
−H ′(dL)

∂dL
∂w

)
= R [Φ(dU )− Φ(dL)] ,

∂2η

∂w2
= − R√

T − t
[φ(dU )− φ(dL)] ,

so that

dY (t) =

(
∂η

∂t
+

1

2

∂2η

∂w2

)
dt+

∂η

∂w
dW (t) = R (Φ(dU )− Φ(dL)) (θ dt+ dW (t)) .
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From (1),

dY (t) = σer(T−t)π(t) (θ dt+ dW (t)) ,

suggesting that the strategy is given by

π∗∗(t, y) = Ce−r(T−t) (Φ(dU )− Φ(dL)) ,

giving rise to the terminal expression (8) for Y ∗∗(T ).

Let V0(t, y) be the value function of the proposed solution:

V0(t, y) = E
(
−1

γ
e−γY (T )|Y (t) = y

)
.

We demonstrate the optimality of π∗∗ by showing that V0 satisfies the Hamilton–Jacobi–Bellman

equation and that π∗∗ is the strategy giving rise to Y (t). We are faced with the problem that

Y (t) is only defined as a function of W (t) and t. We therefore write

V0 (t, Y (t)) = V0 (t, η (t,W (t))) = V̄ (t,W (t)) ,

so that

∂V̄

∂t
=

∂V0

∂t
+
∂V0

∂y

∂η

∂t
, (A.1)

∂V̄

∂w
=

∂V0

∂y

∂η

∂w
,

∂2V̄

∂w2
=
∂2V0

∂y2

(
∂η

∂w

)2

+
∂V0

∂y

∂2η

∂w2
. (A.2)

Now

P (T ) = P (0) +R (θT +W (T ))
D
= P (0) +R

(
θT +W (t) +

√
T − tZ

)
,

where Z is a standard normal random variable under the original probability measure P. As a

result,

P (T ) > GU ⇐⇒ Z > DU (t, w)
def
= dU (t, w)− θ

√
T − t

(DL follows similarly from P (T ) < GL). Given the previous definition, we get

V̄ (t, w) = E
(
−1

γ
e−γY (T )|W (t) = w

)
= −1

γ

(∫ DL

−∞
e−γGLφ(z) dz +

∫ ∞
DU

e−γGUφ(z) dz +

∫ DU

DL

e−γ(P (0)+R(θT+w+
√
T−tz))φ(z) dz

)
= −1

γ

(
e−γGLΦ(DL) + e−γGU (1− Φ(DU ))

+e−γP (0)− 1
2
θ2(T+t)−θw

(
Φ(DU + θ

√
T − t)− Φ(DL + θ

√
T − t)

))
,

with

∂V̄

∂w
= −1

γ

(
e−γGU

φ(DU )√
T − t

− e−γGL φ(DL)√
T − t

− θe−γP (0)− 1
2
θ2(T+t)−θw (Φ(dU )− Φ(dL))

− e−γP (0)− 1
2
θ2(T+t)−θw

(
φ(dU )√
T − t

− φ(dL)√
T − t

))
.
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As

φ(DU ) =
e−

1
2
d2U+θdU

√
T−t− 1

2
θ2(T−t)

√
2π

= φ(dU )e−
1
2
θ2(T−t)+γGU−γP (0)−θw−θ2t

= φ(dU )eγGU−γP (0)− 1
2
θ2(T+t)−θw

(similarly for DL), we get that

∂V̄

∂w
= Re−γP (0)− 1

2
θ2(T+t)−θw (Φ(dU )− Φ(dL))

and, consequently,

∂2V̄

∂w2
= Re−γP (0)− 1

2
θ2(T+t)−θw

(
−θ (Φ(dU )− Φ(dL))− 1√

T − t
(φ(dU )− φ(dL))

)
.

Then, from (A.2),

∂V0

∂y
= e−γP (0)− 1

2
θ2(T+t)−θw,

∂2V0

∂y2
=

∂2V̄
∂w2 − ∂V0

∂y
∂2η
∂w2(

∂η
∂w

)2 = −γ e
−γP (0)− 1

2
θ2(T+t)−θw

Φ(dU )− Φ(dL)
,

and from (A.1),

∂V0

∂t
= e−γP (0)− 1

2
θ2(T+t)−θw

(
Rθ

2
(Φ(dU )− Φ(dL)) +

R

2
√
T − t

(φ(dU )− φ(dL))

)
−e−γP (0)− 1

2
θ2(T+t)−θw

(
Rθ (Φ(dU )− Φ(dL)) +

R

2
√
T − t

(φ(dU )− φ(dL))

)
= −Rθ

2
e−γP (0)− 1

2
θ2(T+t)−θw (Φ(dU )− Φ(dL)) ,

from which

∂V0

∂t
− θ2

2

(
∂V0
∂y

)2

∂2V0
∂y2

= 0

follows.

Finally, we prove that it is possible to choose P (0) in such a way that the budget constraint

X(0) = x0 is satisfied. The budget constraint is

erTx0 = Y (0) = η(0, 0)

= GU −R
√
T

[
H

(
R−1 GU − P (0)√

T

)
−H

(
R−1 GL − P (0)√

T

)]
with its derivative with respect to P (0) given by

Φ

(
R−1 GU − P (0)√

T

)
− Φ

(
R−1GL − P (0)√

T

)
> 0.
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The smallest and largest possible values are therefore the limits as P (0)→ ±∞: at the top end,

GU −R
√
T lim
q→∞

∫ R−1(GU−q)/
√
T

R−1(GL−q)/
√
T

Φ(z) dz = GU ,

and at the bottom end,

GU −R
√
T lim
q→−∞

∫ R−1(GU−q)/
√
T

R−1(GL−q)/
√
T

Φ(z) dz

= GU −R
√
T

(
R−1(GU − q)√

T
− R−1(GL − q)√

T

)
= GL,

as expected. We conclude that it is always possible to find a value of P (0) such that the budget

constraint is satisfied as long as

GL < erTx0 < GU .

Assuming that this inequality holds, we have a strategy which is feasible and has a value function

satisfying the Hamilton–Jacobi–Bellman equation: we conclude that this must be the optimal

strategy.
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