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Workshop Overview

• Empirical analysis of non-linear dependence in UK and Danish stock market returns

• Fitting copula functions

• Capital requirements and quadrant correlations

• Analysis of transformed and standardised data

• Classification of dependency models

• Multiple comparisons: stock market stylised facts

• Questions and answers



Empirical Evidence for non-linear 
dependency in UK and Danish Stock 
Markets



Linear Regression: Denmark vs UK
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relationship of the form 

y = mx + c + error

Errors independent of x.

How could this dependency be 
made non-linear?

Source: Datastream



Quadratic Regression: Denmark vs UK
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suggests a convexity effect. 
For large UK moves in either 
direction, the corresponding 
expected Danish return is a 
little lower than predicted by 
linear regression. 



Quadratic Regression: UK vs Denmark

Denmark monthly return factor
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Interchanging the X and Y 
axes does not turn concave 
dependency into convex 
dependency as would be the 
case for increasing 
deterministic functions. 
Instead, the dependency is 
concave for both orders. We 
call this “two-way  concave”.
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Heteroscedastic Regression: Denmark vs UK
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Regression of squared 
residuals as a quadratic 
polynomial in x suggests that 
large UK moves in either 
direction increase the 
conditional variability of Danish 
returns.



Fitting Copula Functions



Copula Function Definition
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Let 0<a,b<1. The copula 
function c(a,b) is the 
proportion of the data 
points for which
•x lies below its a’th
quantile
•and y below its b’th
quantile.

The chart shows the 
calculation of 
c(10%,10%). 

If x and y are independent 
then c(10%,10%)=1%.
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Definition  of c(10%, 90%)
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Let 0<a,b<1. The copula 
function c(a,b) is the 
proportion of the data 
points for which 
•x lies below its a’th
quantile
•and y below its b’th
quantile.

The chart shows the 
calculation of 
c(10%,90%). 

If x and y are independent 
then c(10%,90%)=9%.

10
%

-il
e

of
 x

90%-ile of y

Prob
=c(10%,90%)



Empirical Copula  Function
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Empirical Copula minus Independent Copula
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Copula Approaches: Strengths and Weaknesses

Strengths
• Invariant under increasing 

transforms of x and y (for 
example, taking logs)

• Captures all the information 
in the dependency structure 
without reference to marginal 
distributions

• Allows unconstrained choice 
of marginal distributions

• Suitable  for Monte Carlo 

Weaknesses
• May be difficult to find copula 

functions to capture specific 
data features

• For example, two-way 
concave or heteroscedastic

• Seldom amenable to 
analytical calculations



Capital Requirements and Quadrant 
Correlations



90%-ile lines
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data from 10% of the data.

0.8

0.9

1

1.1

1.2

0.8 0.9 1 1.1 1.2



Aggregation Formula

• Consider a confidence level α with ½< α <1

• Denote quantiles by q1-α and qα
• Let X and Y be risk factors

– With q1-α(X)= q1-α(Y) = -1

– And qα(X) = qα(Y) = 1

• Then, for elliptical distributions with correlation ρ:

– Sums: qα(X+Y) = -q1-α(X+Y) = √(2+2ρ)

– Differences: qα(X-Y) = -q1-α(X-Y) = √(2-2ρ)

• This gives four  ways (for any α) for estimating correlation ρ



Solved Values of Quadrant Correlations

These are the correlations 
which, when substituted into a 
“correlation and square root” 
aggregation formula, gives the 
correct capital requirement.

Note the higher correlation in 
the  South-West corner. Some 
would interpret this as 
correlations increasing in 
adverse situations, ie equity 
market falls.

For context, the Pearson 
correlation between UK and 
Denmark returns is 46%.
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Half Space Depth Approach
Strengths and Weaknesses

Strengths
• Measures regions  that likely 

correspond to insurers’ ruin 
regions (half-spaces rather 
than quadrants)

• Captures different correlation 
effects in four quadrants

• Formulas easy to calculate

• Visual representation assists 
communication

Weaknesses
• Relies on firm’s risks 

exposures being linear
– This is about a firm’s asset and liability 

valuation function, and is nothing to do 
with linear/nonlinear dependency in risk 
drivers

• Extension  to other linear 
combinations or multiple risks 
involves interpolation 

• Not easy to implement with 
Monte Carlo



Transformed and Standardised Data



Thought Experiment

• Suppose that lnX and lnY are bivariate normal, with common 
standard deviation σ, mean -½σ2 and correlation ρ.

• Then (properties of lognormal distribution) E(X)=E(Y)=1

• Also E(Y|X) = Xρexp{½ρ(1-ρ)σ2}

• For 0<ρ<1, the power Xρ is concave.

– Same also applies with X and Y interchanged

• Could the two-way concave effect simply be a consequence of 
a logarithmic  transformation?

• Check this by analysing log transformed data

19



Analysis of Logarithmic Data
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Taking logs does not 
remove the two way 
concave effect.

We could try many 
other monotone 
functions in an effort 
to get eliminate the 
effect.

Better still is to define 
dependency 
measures that are 
invariant under 
monotone axis 
transformations.



Analysis of Rank Data
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To calculate rank data, 
replace the smallest 
observation by 1, the next 
by 2, and so on.
The resulting analysis is 
invariant under increasing 
transformations of the axes, 
as was the case for copulas.

The linear regression slope 
is Spearman’s rank 
correlation.

UK monthly return rank
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Analysis of Normalised Data
Replace rank r by Normsinv(r/481) 
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Like the rank analysis (and 
the copula construction) the 
normalised analysis is 
invariant under increasing 
transformations of the axes.

If returns were related by a 
Gauss copula then the 
normalised data should 
show no signs of non-linear 
dependence.

Empirical data does not 
support this, as there is 
evidence of concave and 
heteroscedastic effects.

UK monthly normalised return
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Classification of Dependency Models



Methods of Analysis

Data

Regression Empirical CopulaTail correlation

Simple Log NormalisedUniform

Elliptical
Test

Normal Copula
Test



Elliptical Distributions vs Gauss Copula

Elliptical Distributions
• Test tail correlations all equal

• Or, test zero convexity in 
quadratic regression, and 
symmetry in heteroscedastic
regression

• Two-way concave effect not 
captured

• Models underlying the 
“correlation  and square root 
method” for risk aggregation.

Gauss Copula
• Test by transforming risks to 

normal marginals, then 
verifying that non-linearity 
(convexity, 
heteroscedasticity) are 
absent

• Two way concave-effect and 
observed heteroscedasticity
not captured

• Capital calculations by Monte 
Carlo



Multiple Comparisons and Stylised 
Equity Facts



Our Chosen Data Set

• MSCI equity indices

• 31/12/1969 – 31/12/2009

• Monthly total return indices, coverage for 480 months

• In US Dollars

• 18 series representing different countries 

• In this presentation we analyse only two-dimensional dependency. There are 153 pairs 
of countries for which this can be analysed. In the charts that follow, each country pair 
is represented by one point.

Countries represented: Australia, Austria, Belgium, Canada, Denmark, France, 
Germany, Hong Kong, Italy, Japan, Netherlands, Norway, Singapore, Spain, 
Sweden, Switzerland, UK, US



Equity Total Return Data 1970-2010

Source:
Datastream
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Two Way Concave Effect

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Quadratic coefficient
Y regression on X

Q
ua

dr
at

ic
 c

oe
ffi

ci
en

t
X

 r
eg

re
ss

io
n 

on
 Y

Each cross represents a country pair.
The two-way concave effect is almost 
universal, not restricted to UK/Denmark.

Rank data leads to the same conclusions.

These are consistent neither with Gauss/T  
copulas nor with elliptical distributions.



Heteroscedasticity
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This is consistent with 
elliptical distributions but not 
with bivariate normal 
distributions.



Axis Transformation Effect on Correlations
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We can debate relative merits 
of measuring correlations for 
natural returns, log returns, 
ranks or normalised returns, 
but  numerically this makes 
little difference.



Tail Correlations (at 90% confidence)
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outlier. In general this 
plot offers little 
evidence that 
correlations increase 
specifically in bad 
outcomes.

Are Pearson 
correlations a good 
enough guide to tail 
correlations for risk 
aggregation?
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Questions or comments?

Expressions of individual views by 
members of The Actuarial Profession 
and are encouraged.

The views expressed in this presentation 
are solely those of the presenters.
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