

Introduction to stochastic reserving

Richard Lewis Robert Scarth

26 April 2019

Reserve best estimate

-Best estimate

Reserve point estimates

-Best estimate -1 in 4 -1 in 10

Reserve variability

"If you don't have time to do it right, when will you have time to do it over?"

John Wooden

Process error

Parameter error

Time horizons

Pragmatic Stochastic Reserving Working Party

Papers

- "A Practitioner's Introduction to Stochastic Reserving" (2016)
- Sequel: "The One-Year View" (mid-2019)

Example models

- Ultimate and one-year
- Tyche
- Excel, R, Python

Current models

Model	Mean analogue	Analytic CoV?	Analytic distribution?
Mack	Incurred chain ladder	Yes	No
Over-dispersed Poisson	Paid chain ladder	Yes*	Yes*
Stochastic BF	Paid BF	No	No

Bootstrapping triangles

Two-step process

Applications: examples

Traditional models

Deterministic

- Chain Ladder 1960s
- Bornhuetter-Ferguson 1972

Stochastic

- Mack's model 1993
- ODP 1994

Challenges

- · Stochastic models are stochastic versions of deterministic models
- Highly aggregated
- Ignore important real features e.g. calendar year effects
- Not clear how robust they are when data departs from model assumptions

How can we meet the challenges?

What is a model for?

Help managers understand the business and make decisions in a changing environment

- Interpretable and reflecting real-world features
- Models the key features of the business
- · Copes robustly when reality departs from model assumptions or changes

Other important features

- More accurate predictions
- Automatable and runs quickly
- Can use the data that is available

Model choice is always a trade-off among the various advantages and disadvantages

Possible future directions

Machine learning

- Broad topic, many different methods: Neural Nets, Gradient Boosting Machine, Random Forests, LASSO
- · Could be used to identify important claims features
- · Question about how interpretable these models are
- Gaussian processes
 - new but promising idea in claims reserving

Individual claims reserving

• Parodi 2012 - Triangle-free reserving

Better understanding of model limits

· How do models behave when the assumptions don't hold?

The views expressed in this presentation are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this presentation and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this presentation.

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this presentation be reproduced without the written permission of the IFoA.

