

Regression-Based Approaches in Solvency Capital Forecasting

Karthik Tumuluru MetLife Dubai, UAE karthik.tumuluru@metlife.ae Navarun Jain Lux Actuaries & Consultants Dubai, UAE navarun.jain@luxactuaries.com

Agenda

Introduction

Review of Existing Research

One-Year Reserve Risk

- Overview
- Using Tweedie GLM Modelling To Project Reserve Risk
- Interpreting Results

One-Year Premium Risk

- Overview
- State Space Models An Introduction
- Projecting Premium Risk Components

Other Risks

Takeaways and Conclusions

Q&A

Introduction

Introduction

- Accuracy in projection/risk capital estimation key for Solvency II
- More dynamic approaches
- Challenges to solve
- Capturing complexity of underlying projection
- Approximating judgment
- Results might offer additional useful insights
- Focus on non-life underwriting (premium + reserve) risk

Review of existing literature

- GLM-based reserve risk estimation tools available in R
- Markov chain and state space models discussed to understand purchase dynamics (e.g. Bozzetto)
- Machine Learning-based approaches tested to forecast yield curve (Sambasivan/Das)
- Counterparty default probability estimation through rate construction of credit default swaps using various techniques like neural networks, support vector machines (Brummelhuis/ Luo)

Overview

- Sufficiency of existing reserves to cover outstanding and incurred-but-not-paid claims
- Unfolding existing reserves into cash flows
- Assuming run-off
- Projections based on Chain-Ladder model
 - Mack CL
 - Bootstrap CL
- Extending method to GLMs
 - Tweedie Model

Development Factors

- Calculate cumulative % developed
- Assume development pattern will remain constant

Development Factors

Loss Origin	Ratio of Cumulative Paid/Ult at t	Ratio of Cumulative Paid/Ult at t+1	Incremental % Paid at t+1
1978	100.00%	100.00%	0.00%
1979	99.95%	100.00%	100.00%
1980	99.79%	99.95%	75.43%
1981	99.64%	99.79%	41.50%
1982	98.79%	99.64%	70.57%
1983	98.04%	98.79%	38.43%
1984	97.19%	98.04%	30.17%
1985	95.85%	97.19%	32.41%
1986	93.24%	95.85%	38.63%
1987	89.92%	93.24%	32.89%
1988	84.60%	89.92%	34.52%
1989	77.50%	84.60%	31.57%
1990	66.63%	77.50%	32.58%
1991	54.20%	66.63%	27.14%
1992	39.89%	54.20%	23.80%
1993	24.50%	39.89%	20.38%
1994	12.95%	24.50%	13.27%
1995	4.01%	12.95%	9.32%

19 September 2019

Mack CL

- Stochastic model that estimates standard error of reserve estimates using the chain ladder method
- Assumes constant conditional mean and variance of loss development factors, independent accident years
- Estimated age-to-age factors are unbiased and uncorrelated
- Linearly regressing on claims at development year t + 1 with claims at development year t

Bootstrap CL

- Two-stage approach
- CL fitted to cumulative claims triangle, Pearson residuals calculated using incremental claims (q) and their expected value:

$$\mathbf{r}_{w,d} = \frac{q_{w,d} - \mathbf{E}[q_{w,d}]}{\sqrt{q_{w,d}^{\mathbf{z}}}}$$

where *w* and *d* are the accident and development years, and *z* specifies the error distribution

- Bootstrap residuals and generate bootstrapped triangle
- Fit CL to each bootstrapped triangle
- Results provide full predictive distribution of reserves

Bootstrap CL

Histogram of Bootstrapped Total Reserves

19 September 2019

Tweedie GLMs - Overview

- Tweedie distribution: Exponential dispersion models ($\sim \mu$, σ^2) where:
 - Mean $= \mu$
 - Variance = $\mu^p \sigma^2$
 - p is called the <u>power parameter</u> of the distribution, σ^2 is the <u>dispersion parameter</u>
- Why is the Tweedie distribution useful for GLMs?
 - Wide variety of distribution families
 - Therefore extremely flexible

Tweedie GLMs - The Process

- Tweedie model fit to incremental claims
- Regression structure used: value ~ factor(AY) + factor(DY)
- Predictions generate reserve as at current valuation
- Input values bootstrapped, next diagonal extrapolated using this
- Tweedie model is refit on new values with same regression structure to generate expected reserve at the next valuation

Let's look at some results!!

19 September 2019

One-Year Premium Risk

Overview

- One-year premium risk view
 - Evolution of portfolio
- State-space models
- Testing
- Using the results

What Makes Up Premium Risk

- Unearned premium
- Renewals
- Future Premiums
- Resulting adequacy for future claims

State Space Models - Overview and Uses

Warning - Too many equations ahead!

State Space Models - Overview

A time series with state and observation equations

$$y_t = ax_t + e_t$$
 $x_t = bx_{t-1} + e'_{t-1}$

- Can be extended to multiple input variables
 - $\mathbf{X}_{t} = [\mathbf{x}_{1,t}, \mathbf{x}_{2,t}, \mathbf{x}_{3,t}, \dots \mathbf{x}_{m,t}]$
 - So $X_t = BX_{t-1} + \varepsilon_{t-1}$
 - Where B is a transition matrix, and ε is an error matrix

State Space Models - Overview

$$\begin{split} \dot{\boldsymbol{q}} &= \boldsymbol{A}\boldsymbol{q} + \boldsymbol{B}u & \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \\ \dot{q}_4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -a_4 & -a_3 & -a_2 & -a_1 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ b_0 \end{bmatrix} x \\ y &= \boldsymbol{C}\boldsymbol{q} + \boldsymbol{D}u & y = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} \end{split}$$

State Space Models - Overview

State Space Models - Overview and Uses

- Dynamic approach to longer-term problem
- Capturing underlying evolution
- Can predict multiple steps ahead

Using SSMs for Premium Projection

- Multivariate SSMs
- Factors involved (nature of portfolio)
- Change of demographic figures in the next year, and coming years
- Estimating possible future premium growth
 - Claim growth as well

Using SSMs for Premium Projection

Data

- Anonymous Australian insurer
- Quarterly data over 7 years
- Premiums, claims, reinsurance recoveries
- Demographic information
 - Age
 - Gender

And now for some results

Results

Premium Volume Increase by Age Band

Results - Interpretation and Other Uses

- Obtain projection at 99.5% (1 in 200)
- Find possible sources of future premium risk
- Alternatives?
 - LSTM neural networks
 - Deep Markov models
 - Stochastic RNNs

Other Risks Considered

- Counterparty default
 - Rate estimation from Credit Default Swaps
 - LDA to classify solvency/insolvency
 - LGD estimation
 - XGBoost proven effective tool
- Market risk
 - IR Risk: Fitting LSTMs to the yield curve

Takeaways and Conclusions

- Regression-based approaches:
 - Accurately capture patterns
 - Have potential for use in longer-term forecasts
 - Can offer valuable business insights

Questions

Comments

The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].

