
Unbiased Estimation of the Economic Value of Pricing Strategies 
Dimitri Semenovich, James Petterson 
 
 

September 2019 



Introduction I

Tactical pricing of insurance products can often be e↵ectively carried out adopting the so called
“semi-myopic” customer model. Under this model customers have private willingness-to-pay,
drawn from a distribution potentially dependent on their observed characteristics, and are taken
to arrive at random. If customers’ willingness-to-pay exceeds the proposed premium, they
purchase the policy.

A key assumption made in most real-world pricing systems is that the willingness-to-pay
distributions (or, equivalently, demand functions), as well as the cost of providing cover, are
known exactly for each customer. While this makes the problem more tractable it also
introduces substantial statistical di�culties as we will show in this talk.
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Introduction II

The prevalent approach (Murphy et al., 2000; Krikler et al., 2004) follows along these lines:

1. specify a demand model and a cost of cover model,

2. estimate their parameters using sales, exposure and claims cost data,

3. set up an optimal pricing problem using the above two models, with individual contract
prices as decision variables,

4. use the objective/constraints values corresponding to the solution as estimates of the
economic value of the resulting pricing strategy to the firm.

3



Introduction III

We demonstrate that this framework is only adequate if both demand and risk cost model
estimates are unbiased and have minimal prediction uncertainty. Once realistic assumptions are
adopted, however, the economic value is overstated to a considerable degree. Inflation factors
between 1.2 and 5 are consistent with our experience.

Traditional tests for goodness of fit, predictive accuracy and calibration used to validate risk
cost and demand models, are ultimately neither necessary nor su�cient to ensure correct
estimation of the economic value. We propose a new family of unbiased evaluation metrics for
pricing procedures, inspired by work in uplift modeling and reinforcement learning.

The sociological considerations that have allowed the current practice to become widely
adopted despite its obvious shortcomings are left without comment.
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Motivating Example I

Figure 1: Expected e↵ects on conversions (x-axis) and margin (y-axis) as a result to ±10% per quote premium change,
evaluated using a demand model. Black dot denotes the current portfolio position. Purple frontier represents operating points
achievable with a base rate change. Red frontier indicates the e↵ect of moving premiums towards a target loss ratio. Green
frontier is a biased estimate derived using the traditional optimisation procedure.
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Motivating Example II

Figure 2: Same premium changes as in the previous plot but evaluated using the proposed unbiased estimator. Note that the
order of the frontiers is reversed, the simpler profitability based adjustment is now expected to outperform the “optimisation”.
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Single period optimal pricing problem I

We begin by reviewing a simple single period optimal pricing model.

We seek to maximise the total expected profit objective for a cohort of n policies subject to a
constraint on the minimum retention level q, where for the i-th policy with risk characteristics
xi the proposed premium is denoted pi, the demand is a random variable Di(pi) indexed by
premium, Ci is a random variable corresponding to the cost of claims and
Ri(pi) = (pi � Ci)D(pi) a random variable corresponding to realised underwriting profit:

maximise
p1,...,pn

E
h nX

i=1

(pi � Ci)D(pi)
i
= E

h nX

i=1

Ri(pi)
i
= E[R(p)]

subject to E
h nX

i=1

Di(pi)
i
= q.

Here the decision variables are premiums pi � 0.
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Single period optimal pricing problem II

We can further assume a parametric form for the expectations with E[Di(pi)] = d(pi,xi),
E[Ci] = c(xi) and E[Ri(pi)] = r(pi,xi), all taken to be known exactly. If Ci and Di are
independent, this yields:

maximise
p1,...,pn

nX

i=1

�
pi � c(xi)

�
d(pi,xi) =

nX

i=1

r(pi,xi) = r(p)

subject to
nX

i=1

di(pi,xi) = q.

(1)

We will refer to the solution of this problem as p⇤, with optimal underwriting profit given by
r(p⇤).
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Single period optimal pricing problem III

In practice, we do not have access to the parametrised expectations of demand and cost random
variables and instead we are working with their estimates d̂(pi,xi) and ĉ(xi) respectively. It is
common practice to still use the optimisation problem of the same form as (1):

maximise
p1,...,pn

nX

i=1

�
pi � ĉ(xi)

�
d̂(pi,xi) =

nX

i=1

r̂(pi,xi) = r̂(p)

subject to
nX

i=1

d̂i(pi,xi) = q.

(2)

The solution to this surrogate problem is denoted p̂⇤ and the objective value, which is often
taken as the estimate of r(p⇤) is r̂(p̂⇤). We will later show that under realistic assumptions on
model error the following obtains:

r(p̂⇤) < r(p⇤) < r̂(p̂⇤). (3)
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Single period optimal pricing problem IV

Before examining the properties of the naive estimate of the objective value r̂(p̂⇤), we observe
that the problem (1) can be rewritten using policy demand as the decision variable, assuming
one-to-one correspondence between premium and demand p(di,xi) = d�1(di,xi):

maximise
d1,...,dn

nX

i=1

�
p(di,xi)� c(xi)

�
di = r(d)

subject to
nX

i=1

di = q.

(4)
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Single period optimal pricing problem V

Figure 3: Left: Logistic demand d(pi,xi) and revenue R(pi) =
�
pi � c(xi)

�
d(pi,xi) as functions of price p. Right:

Revenue R(di) =
�
p(di,xi) � c(xi)

�
di as a function of demand di is concave for di 2 [0, 1).
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Single period optimal pricing problem VI

We can then formulate the Lagrangian:

L(d1, . . . , dn,�) =
nX

i=1

�
p(di,xi)� c(xi)

�
di + �

⇣ nX

i=1

di � q
⌘

and write the optimality conditions as:

@L

@di
= 0, 1  i  n,

@L

@�
= 0.

Observe that @L
@di

= @r
@di

+ � and that therefore if the portfolio is priced optimally,marginal

profit with respect to demand for each policy is constant: @R
@di

= ��.

This condition is intuitive – should @R
@di

6= @R
@dj

for some i and j, we can reallocate demand
between contracts i and j in such a way as to increase total profit.
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E↵ects of model uncertainty I

We now demonstate that the surrogate optimisation problem (2) is subject to a facet of the
phenomenon that often causes overparametrised statistical models to “overfit” in sample.

The e↵ect of model uncertainty can be studied more easily if instead of (2) we consider a local
linearisation (i.e. first order Taylor expansion) of the demand parametrised problem (4) around
demand vector d (0) instead:

maximise
w1,...,wn

nX

i=1

⇣
r
�
d (0)
i ,xi

�
+

@r

@di
wi

⌘
= r

�
d(0)

�
+ r(w)

subject to
nX

i=1

�
d (0)
i + wi

�
= q,

� 1  wi  1.

(5)
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E↵ects of model uncertainty II

Omitting the constant term r(do) from the objective and observing that
Pn

i=1 d
(0)
i = q, we

can simplify the above as:

maximise
w1,...,wn

nX

i=1

@r

@di
wi = r(w)

subject to
nX

i=1

wi = 0,

� 1  wi  1.

(6)
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E↵ects of model uncertainty III

It is intuitive that the solution w⇤ is attained if we set w⇤
i = 1 for those policies i where @r

@di
is

larger than M , the median entry of
�
@r
@d1

, . . . , @r
@dn

�
, and w⇤

i = �1 where it is smaller.

The objective value corresponsing to w⇤ is then given by
Pn

i=1

�� @r
@di

�M
��. It represents

improvement to profit r attainable by perturbing demand by no more than one unit for each
contract relative to the initial demand vector d.

Notice that if we substitute a noisy estimate of marginal profit @̂r
@d = @r

@d + ✏, our view of
expected profit improvements can generally only go up. This means that any model uncertainty
will result in statistically biased estimates of expected profit.
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E↵ects of model uncertainty IV

Now we attempt to quantify this bias. This will require further assumptions:

✏ ⇠ N (0,�a),

@R

@d
⇠ N (0,�b).

Note the slight abuse of notation, profit function r has become a random variable R. What is
the degradation in true performance and how over-optimistic do we become as the noise
parameter �a is increased?
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E↵ects of model uncertainty V

Figure 4: A numerical example showing the bias inherent in the traditional “optimal” pricing procedures. The x axis
corresponds to the quantiles of the true marginal profit of a policy and the y axis to the profit either achieved or estimated. The
area under the blue line represents the total profit improvement realisable if the true marginal profit with respect to demand is
known. The area under the green line shows the profit attained if the noisy estimate of marginal profit is used to guide pricing
decisions. Finally the area under the red line is the biased estimate of profit that would be achieved. The gap between red and
green lines represents total bias in traditional optimal pricing.
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True Estimator, True Metric I

For conciseness we will refer to ✏ as a and @R
@d as b in this section.

Decision and performance estimate are based on the true marginal profit @R
@d . Note that w⇤

here is a step function taking values of {�1, 1}, as characterised in the previous section.

ER(w⇤) =

Z 1

�1
p(b) sign(b)b db

= �
Z 0

�1
p(b)b db+

Z 1

0
p(b)b db

=
2�bp
2⇡

.

(7)

18



Noisy Estimator, True Metric I

Decision is based on a noisy estimator @R
@d + ✏, but we measure the profit using the true metric

(@R@d ). Here ŵ⇤ is a step function taking values of �1, 1, but according to the noisy values of
marginal profit @R

@d + ✏.

ER(ŵ⇤) =

Z 1

�1

Z 1

�1
p(a)p(b) sign(a+ b)b db da

=

Z 1

�1
p(a)

✓Z 1

�1
p(b) sign(a+ b)b db

◆
da

= �A1 +A2,

where

19



Noisy Estimator, True Metric II

A1 =

Z 1

�1
p(a)

✓Z �a

�1
p(b)b db

◆
da

= � �bp
2⇡

Z 1

�1
p(a)e

� a2

2�b
2 da

= � 1p
2⇡

�b2p
�a2 + �b2

A2 =

Z 1

�1
p(a)

✓Z 1

�a
p(b)b db

◆
da

=
�bp
2⇡

Z 1

�1
p(a)e

� a
2�b

2 da

=
1p
2⇡

�b2p
�a2 + �b2

,
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Noisy Estimator, True Metric III

and so

ER(ŵ⇤) =
2p
2⇡

�b2p
�a2 + �b2

. (8)

21



Noisy Estimator, Noisy Metric I

Decision and profit estimates are both based on the noisy estimator @R
@d + ✏.

ER̂(ŵ⇤) =

Z 1

�1

Z 1

�1
p(a)p(b) sign(a+ b)(a+ b) db da

=

Z 1

�1
p(a)

✓Z 1

�1
p(b) sign(a+ b)(a+ b) db

◆
da

= �B1 +B2,

where
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Noisy Estimator, Noisy Metric II

B1 =

Z 1

�1
p(a)

✓Z �a

�1
p(b)(a+ b) db

◆
da

=
1

2

Z 1

�1
p(a)a erfc

✓
ap
2�b2

◆
da� �bp

2⇡

Z 1

�1
p(a)e

� a2

2�b
2 da

= �
p
�a2 + �a2p

2⇡

B2 =

Z 1

�1
p(a)

✓Z 1

�a
p(b)(a+ b) db

◆
da

=
1

2

Z 1

�1
p(a)a erf

✓
ap
2�b2

+ 1

◆
+

�bp
2⇡

Z 1

�1
p(a)e

� a
2�b

2 da

=

p
�a2 + �a2p

2⇡
,
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Noisy Estimator, Noisy Metric

and so

ER̂(ŵ⇤) =
2p
2⇡

p
�a2 + �b2. (9)

This provides the following decomposition:

ER̂(ŵ⇤) =
2p
2⇡

noise on metric estimationz}|{
�a

2 + �b2s
�a

2

|{z}
noise on decision

+ �b2
. (10)

We observe that when �a = 0 we recover (7), adding noise to the decision criterion reduces the
expected value of profit R and adding noise to the evaluation metric increases it, yielding:

ER(ŵ⇤)  ER(w⇤)  ER̂(ŵ⇤).
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Unbiased estimation I

We can construct an unbiased estimator of expected profit if we conduct validation “out of
sample”.

Assume we have history of sales and claims data in the form S = {(xi, pi, di, ci, i)}Ni=1, where
 i is the propensity estimate of charging premium pi for risk xi. In the ideal scenario these
propensities are based on active randomisation with known probabilities.

This history has not been used directly to parametrise either demand or claims cost models
(and so we can assume individual realisations to be independent of prediction error).
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Unbiased estimation II

We construct a vector p̂⇤ of proposed prices for each policy using a procedure such as (2). An
unbiased estimate of profit can be obtained by the so called inverse probability weighted
estimator (Horvitz and Thompson, 1952; Dudik et al., 2014):

r̂IPW(p̂⇤) =
1

N

NX

i=1

(pi � ci)di
I(pi = p̂⇤i )

 i
.

The IPW estimate can be somewhat noisy on small samples. The variance is magnified by the
ratio of at least 1

argmax
i

 i
:

Var[r̂IPW(p̂⇤)] =
1

N

NX

i=1

✓
(pi � ci)di

I(pi = p̂⇤i )

 i

◆2

� r̂IPW(p̂⇤)2.
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Unbiased estimation III

To be used successfully, it is essential that the randomisation of pi is carried out over the same
small set of values in relation to some reference price p0i as that used in the optimisation
procedure to derive p̂⇤i . In some cases it may also be necessary to substitute ci with model
based value ĉ(xi).

We note that replacing I(pi = p̂⇤i ) with a kernel (pi, p̂⇤i ) satisfying certain properties may
substantially reduce this variance while the resulting estimator remains unbiased under only
mild assumptions. This will be explored in future work.

Using IPWE for the evaluation of pricing decisions is conceptually equivalent to out of sample
testing of predictive models.
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Conclusion I

In this presentation we have:

I demonstrated that the traditional approach to optimal pricing can significantly overstate
benefits,

I derived correction terms in a simplified model, and

I proposed an unbiased validation procedure, equivalent to out-of-sample testing of
predictive models.
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