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ABSTRACT 

Dynamic financial analysis (DFA) is a technique which uses Monte Carlo simulation to investigate the 
evolution over time of financial models of funds, complex liabilities and entire firms.  Although of increasing 
popularity, the drawback of DFA is the dearth of systematic methods for optimising model parameters for 
strategic financial planning.  This paper introduces strategic DFA which employs the only recently mature 
technology of dynamic stochastic optimisation to fill this gap.  The new approach is described in terms of an 
illustrative case study of a joint university/industry project to create a decision support system for strategic asset 
liability management involving global asset classes and defined contribution pension plans.  Although the 
application of the system described in the paper is to fund design and risk management, the approach and 
techniques described here are much more broadly applicable to strategic financial planning problems;  for 
example, to insurance and reinsurance firms, to risk capital allocation in financial institutions and trading firms 
and to corporate investment and business development involving real options.  As well as describing the 
mathematical and statistical models used in the case study, the paper treats econometric estimation, asset return 
and liability scenario generation, model specification and optimisation, system evaluation and historical 
backtesting.  Throughout the system visualisation plays an important rôle. 
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Dynamic optimization is perceived to be too difficult …  It would be nice to 
have a generic ‘sledge hammer’ approach for attacking this sort of problem. 

A. D. Smith (1996), p. 1085 
 

1. INTRODUCTION 

1.1. Aims 
1.1.1. Recent years have witnessed the introduction of new investment products aimed 

at attracting investors who are worried about the volatility of financial markets.  The main 
feature of these products is a minimum return guarantee together with exposure to the upside 
movements of the markets.   While such a return guarantee could be achieved simply by 
investing in a zero-coupon Treasury bond or similar instrument with expiration equal to the 
maturity date of the product, this would not allow any expectation of higher returns.  Thus 
there is a need to offer pension products that protect the investor from the downside while 
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maintaining a reasonable expectation of better returns than the guaranteed one. 
1.1.2. However, most such current products do not offer a high degree of flexibility;  

usually, they accept only lump sum investments and have a predetermined maturity of only a 
few years.  This is probably a consequence of the difficulty of reliable long-term forecasting 
and subsequent determination of the proper asset allocation(s) over the distant time horizon 
of the investment. 

1.1.3. At the same time it is well known that state, and many company, run defined 
benefit pension plans are becoming inadequate to cover the gap between the contributions of 
people while working and their pensions once retired.  The solution to this problem requires 
some form of instrument which can fill the gap to allow investors a reasonable income after 
retirement.  A long-term minimum guarantee plan with a variable time-horizon, and in 
addition to the initial contribution the possibility of making variable contributions during the 
lifetime of the product, is such an instrument. 

1.1.4. Although societally beneficial and potentially highly profitable for the provider 
the design of such instruments is not a trivial task, as it encompasses the need to do long-term 
forecasting for investment classes, handling a stochastic number of contributors, 
contributions and investment horizons, together with providing a guarantee.  Stochastic 
optimisation methodology in the form of dynamic stochastic programming has recently made 
long strides and is positioned to be the technique of choice to solve these kinds of problems. 

1.1.5. This paper describes the approach and outcomes of a joint project between a 
university financial research centre and a leading firm operating in the European fund 
management industry to develop a state-of-the-art dynamic asset liability management 
(ALM) system for pension fund management.  The development of this system has been part 
of an effort undertaken by the firm for the global improvement of its ALM-related 
technologies and systems.   

1.2. The Pension Fund Problem 
1.2.1. Asset liability management concerns optimal strategic planning for 

management of financial resources and liabilities in stochastic environments, with market, 
economic and actuarial risks all playing an important role.  The task of a pension fund, in 
particular, is to guarantee benefit payments to retiring clients by investing part of their current 
wealth in the financial markets.  The responsibility of the pension fund is to hedge the client’s 
risks, while meeting the solvency standards in force, in such a way that all benefit payments 
are met. 

1.2.2. Below we list some of the most important issues a pension fund manager has to 
face in the determination of the optimal asset allocations over time to the product maturity:- 
a) Stochastic nature of asset returns and liabilities 

Both the future asset return and the liability streams are unknown.  Liabilities, in 
particular, are determined by actuarial events and have to be matched by the assets.  Thus 
each allocation decision will have to take into account the liabilities level which, in turn, 
is directly linked to the contribution policy requested by the fund. 

b) Long investment horizons 
The typical investment horizon is very long (30 years).  This means that the fund 
portfolio will have to be rebalanced many times, making “buy&hold” Markowitz-style 
portfolio optimisation inefficient.  Various dynamic stochastic optimisation techniques 
are needed to take explicitly into account the on-going rebalancing of the asset-mix. 
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c) Risk of under-funding 
There is a very important requirement to monitor and manage the probability of under-
funding for both individual clients and the fund, that is the confidence level with which 
the pension fund will be able to meet its targets without resort to its parent guarantor. 

d) Management constraints 
The management of a pension fund is also dictated by a number of solvency 
requirements which are put in place by the appropriate regulating authorities.  These 
constraints greatly affect the suggested allocation and must always be considered.  
Moreover, since the fund’s portfolio must be actively managed, the markets’ bid-ask 
spreads, taxes and other frictions must also be modelled. 

1.2.3. The theory of dynamic stochastic optimisation provides the most natural 
framework for the effective solution of the pension fund ALM problem that will guarantee its 
users a competitive advantage in the market.   

1.2.4. Most firms use static portfolio optimisation models, such as Markowitz mean-
variance allocation, which are short-sighted and when rolled forward lead to radical portfolio 
rebalancing unless severely constrained by the portfolio manager’s intuition.  Although such 
models have been extended to take account of liabilities in terms of expected solvency 
(surplus) levels (see e.g. Mulvey, 1989) these difficulties with static models remain.  In 
practice fund allocations are (thus) wealth dependent and face time-varying investment 
opportunities, path-dependent returns – due to cash inflows and outflows, transactions costs 
and time or state dependent volatilities – and conditional mean return parameter uncertainties 
– due to estimation or calibration errors.  Hence all conditions necessary for a sequence of 
myopic static model allocations to be dynamically optimal are violated (see e.g. Scherer, 
2002, §1.2). 

1.2.5. By contrast, the dynamic stochastic programming models incorporated in the 
system described below automatically hedge current portfolio allocations against future 
uncertainties in asset returns and liabilities over a longer horizon, leading to more robust 
decisions and previews of possible future problems and benefits. 

1.3. Paper Outline 

1.3.1. The next section of the paper sets out the background and basic approach of 
practical strategic DFA systems for financial planning utilising modern dynamic stochastic 
optimisation techniques.  The remaining sections illustrate these in the context of this case 
study.  Section 3 treats the modelling and econometric estimation of a monthly global asset 
return model for four major currency areas and the emerging markets which includes 
macroeconomic variables.  In §4, the calibration and stochastic simulation of various versions 
of this statistical model for use in financial scenario generation for strategic DFA models is 
discussed.  The basic CALM dynamic stochastic optimisation model is treated in §5, 
including a discussion of risk management objectives, basic constraints, practical constraints 
and variants of the CALM model for the determination of optimal benchmark portfolios and 
risk managed return guarantees.  Section 6 describes the generation of dynamic stochastic 
optimisation models for their numerical solution, together with a brief description of solution 
algorithms and software.  Historical out-of-sample backtests of system portfolio 
recommendations are described in §7 for risk management criteria applied to both terminal 
fund wealth and the trajectories of the wealth accumulation process.  Finally, §8 draws 
conclusions and indicates directions for future work. 
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2. STRATEGIC DFA 

2.1. System Design 

2.1.1. Figure 1.1 depicts the processes, models, data and other inputs required to 
construct a strategic DFA system for dynamic asset liability management with periodic 
portfolio rebalancing.  It should be noted that knowledge of several independent highly 
technical disciplines is required for strategic DFA in addition to professional domain 
knowledge.  Corresponding to Figure 1.1, Figure 1.2 shows the system design which 
describes the separate – largely automated and software instantiated – tasks which must be 
undertaken to obtain recommended strategic decisions once statistical and optimisation 
models have been specified.  Each of the blocks of the latter figure will be treated in detail in 
a subsequent section of the paper.  The outer solid feedback loop recognizes the iterative 
nature of developing any implementable strategic plan in which process visualisation of data 
and solutions is key.  The inner solid loop will be described in §4.  The dotted feedback loops 
represent possible future developments which will be mentioned in the conclusion. 
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Figure 1.1  Strategic financial planning 
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Figure 1.2  System design for strategic financial planning 

2.2. Dynamic Stochastic Optimisation 
2.2.1. As noted above, strategic ALM requires the dynamic formulation of portfolio 

rebalancing decisions together with appropriate risk management in terms of a dynamic 
stochastic optimisation problem.  Decisions under uncertainty require a complex process of 
future prediction or projection and the simultaneous consideration of a number of 
alternatives, some of which must be optimal with respect to a given objective.  The problem 
is that these decisions are only known to be optimal or otherwise after the realisation of all 
random factors involved in the decision process.  In dynamic stochastic optimisation (often 
termed dynamic stochastic programming, as in mathematical programming) the unfolding 
uncertain future is represented by a large number of future scenarios from the DFA 
simulation process (see e.g. Kaufmann, et al. (2001) and the references therein) and 
contingent decisions are made in stages according to tree representations of future data and 
decision processes.  The initial – implementable stage – decisions are made with respect to all 
possible variations of the future (in so far as it is possible to predict and generate this future) 
and are thus hedged within the constraints against all undesirable outcomes.  This technique 
also allows detailed ‘what-if’ analysis of particular extreme future scenarios – forewarned is 
forearmed! 

2.2.2. The methods used are computationally intensive and have only recently become 
practical for real applications.  Each particular optimisation problem is formulated for a 
specific application combining the goals and the constraints reflecting risk/return 
relationships.  The dynamic nature of stochastic optimisation: decisions – observed output – 
next decisions – etc … allows a choice of strategy which is the best suited for the stated 
objectives.  For example, for pension funds the objective may be a guaranteed return with a 
low unexpected risk and decisions reviewed every year.  For a trading desk, the objective 
may be the maximisation of risk adjusted cumulative trading profit with decisions revised 
every minute, hour or day. 

2.2.3. The basic dynamic stochastic optimisation problem treated in this paper is the 
following.  Given a fixed planning horizon and a set of portfolio rebalance dates, find the 
dynamic investment strategy that maximises the expected utility of the fund’s (net) wealth 
process subject to constraints, such as on borrowing, position limits, portfolio change and risk 
management tolerances, viz. 
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maximise         �[U(w(x))] 

subject to        A x � b. 

Here U is a specified utility function which is used to express the attitude to risk adopted for 
a particular fund – tailored to broadly match those of its participants over the specified 
horizon – with regard to the wealth process w.  (Throughout the paper we use boldface type 
to represent random entities.)  U is used to recommend rebalance decisions which shape the 
state distributions of w over problem scenarios.  Risk attitude may concern only terminal 
wealth (Hakansson, 1974; Dempster & Ireland, 1998) or be imposed at each portfolio 
rebalance date.  The (deterministic equivalent form of the) decision process x represents 
portfolio composition at each rebalance date in each scenario subject to the data (A, b) 
representing the constraints.  As such it is a complete contingency plan for the events defined 
by the scenarios.  This basic model will be detailed in §5 and the appendices. 
2.3. Literature Review 

2.3.1. The problem of maximising expected utility under uncertainty subject to 
constraints can be a highly non-trivial problem.  From the point of view of maximising utility 
the fund will naturally want its set of potential investments to be as large as possible.  Thus, it 
will want the option to invest in global assets ranging from relatively low risk, such as cash, 
to relatively high risk, such as emerging markets equity.  The inclusion of such assets greatly 
increases the complexity and the amount of uncertainty in the problem since it necessitates 
the modelling to some degree of not only the asset returns, but also of exchange rates and 
correlations.  Further sources of complexity arise from the multi-period nature of the problem 
and frictions such as market transaction costs and taxes. 

2.3.2. The most well known and probably the most widely used method to solve such 
a problem is the mean-variance analysis pioneered by Markowitz (1952).  This analysis can 
be characterised by a quadratic utility function which depends only on the mean and variance 
of the portfolio return parameterised by a risk aversion coefficient.  Solving the utility 
maximisation problem for a range of values of the risk aversion parameter gives rise to the 
efficient frontier.  This method is now easily implemented in a spreadsheet and only requires 
an estimate of the mean and covariance of the returns, which are normally obtained from 
historical data and/or subjective opinion.  However, as noted above, the standard 
implementation of the mean-variance model is static (one-period) and thus fails to capture the 
multi-period nature of the problem.  It also ignores market frictions such as transaction costs.  
Mean-variance analysis has been extended to incorporate multiple periods and market 
frictions (see e.g. Steinbach (1999), Horniman et al. (2000) and Chellathurai and Draviam 
(2002)) but at the cost of greatly increased complexity. 

2.3.3. In this paper we apply dynamic stochastic optimisation to solve pension fund 
management problems with global investments.  The advance of computing technology and 
the development of effective algorithms (see e.g. Scott, 2002) have made stochastic 
optimisation problems significantly more tractable.  Following the early work of Bradley & 
Crane (1972), Lane & Hutchinson (1980), Kusy & Ziemba (1986) and Dempster & Ireland 
(1988), the growing body of literature concerning the application of stochastic optimisation to 
fund management problems includes Mulvey and Vladimirou (1992), Dantzig and Infanger 
(1993), Cariño et al. (1994), Consigli and Dempster (1998), Zenios (1998) and Geyer et al. 
(2002) and is a testament to the suitability of this method for solving such problems.  A 
comparison of the application of mean-variance analysis, stochastic control and stochastic 
optimisation to fund management problems can be found in Hicks-Pedron (1998) where it is 
shown that dynamic stochastic optimisation performs best in terms of the appropriate Sharpe 
ratio. 
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3. ASSET RETURN, EXCHANGE RATE AND ECONOMIC DYNAMICS 

3.1. Asset Return Model 
3.1.1. Our asset return model is in the econometric estimation tradition initiated by 

Wilkie (1986, 1995) and continued, for example, by Cariño et al. (1994), Dert (1995), 
Boender et al. (1998) and Duval et al. (1999).  An alternative approach, in the tradition of 
Merton (1990), is to set up a continuous time stochastic differential equation (sde) model for 
the financial and economic dynamics of interest, discretise time to obtain the corresponding 
system of stochastic difference equations and calibrate the output of their simulation with 
history by various ad hoc or semi-formal methods of parameter adjustment, see, for example, 
Mulvey & Thorlacius (1998) and Dempster & Thorlacius (1998).   

3.1.2. Several other alternative approaches have appeared in the literature which also 
attempt to generate scenarios known to be arbitrage free within the model.  One method 
widely used for very specific problems in financial stochastic optimisation is sampling 
scenarios from arbitrage-free lattice paths for the appropriate – e.g. short rate (Zenios, 1998) 
– arbitrage free model.  The resulting sampled scenarios however need not be arbitrage free 
unless the sampling procedure is carefully controlled (see §4.3).  More recently, arbitrage-
free methods (Cairns, 2000) and deflator techniques (Smith & Speed, 1998; Jarvis et al., 
2001) for designing models in more complex situations have appeared.  These modelling 
approaches involve – at least implicitly – risk neutral (i.e. risk discounted) probabilities and 
market price of risk premia to allow simulation of cash flows under real world probabilities.  
While such approaches are appropriate – indeed necessary – for full discounting for valuation 
purposes, they are totally inappropriate  for making dynamic ‘what-if’ forward investment 
decisions which must face an approximation of the real world risks.  Even for valuation 
purposes, calibration of complex arbitrage-free models to current –but not necessarily past – 
market data is difficult, not least since the literature on estimating multivariate market prices 
of risk or state price densities is sparse (but see §3.4 for such a 3-factor yield curve 
calculation).  By contrast with the assumption of no arbitrage – when portfolio decisions are 
irrelevant to total return (Jarvis et al., 2001) – time varying investment opportunities and 
potential macro-economic arbitrages occur in the real world. 

3.1.3. We have therefore opted for the econometric approach which can – if successful 
(cf. the positive results of system backtests in §7) – model these effects, together with the fact 
that the estimation procedures involved have been widely employed and most pitfalls in their 
use documented.  Although in our experience some further informal calibration (tuning) of 
parameter estimates is usually required, for the complex asset return models developed here 
this has been minimal. 

3.1.4. Note that real world scenario generation for stochastic optimisation models by 
any method may still introduce spurious arbitrages due to sampling errors.  Simple 
techniques for their suppression will be discussed in §4.3.  In this study sampling error has 
been found to completely swamp statistical parameter estimation error – even assuming that 
the fitted econometric model actually underlies the data. 

3.1.5. Figure 3.1 depicts the global structure of the asset return model involving 
investments in the three major asset classes – cash, bonds and equities – in the four major 
currency areas – US, UK, EU and Japan (JP) – together with emerging markets (EM) equities 
and bonds.  Arrows depict possible explanatory dependence. 
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Figure 3.1  Pioneer Asset Return Model Global 
3.1.6. Following Dempster & Thorlacius (1998), the approach is to specify a 

canonical model for each currency area which is linked to the others directly via an exchange 
rate equation and indirectly through correlated innovations (disturbance or error terms).  For 
capital market modelling with monthly data this approach was deemed likely to be superior to 
the usual macroeconomic (quarterly) trade flow linkages (see e.g. Pesaran & Shuermann 
2001) between currency areas.  Figures 3.2 and 3.3 show respectively at overall and detailed 
level the structure of the canonical model of a major currency area.  Potential liability models 
in each currency area are shown for completeness although of course pension or guarantee 
liabilities might be needed only in fewer currencies.  The next three sections discuss 
respectively the canonical model for the capital markets and exchange rate, the emerging 
markets model and the canonical economic model.  The home currency for these models is 
assumed to be the US dollar, but of course scenarios can be generated in any of the four 
major currencies since cross rates are forecast and any other currency (e.g. the Euro) can be 
taken as the home currency for the statistical estimation. 
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Figure 3.3  Major currency area detailed model structure 

3.2. Capital Markets and Exchange Rate Model 

3.2.1. For simplicity we specify here the evolution of the four state variables – equity 
(stock market) index (S), short term (money market) interest rate (r), long term (Treasury 
bond) interest rate (l) and exchange rate (X) – in continuous time form as 
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3.2.2. Here the drifts and volatilities for the four diffusion equations are potentially 
functions of the four state variables and the dZ terms represent (independent) increments of 
correlated Wiener processes.  All dependent variables in this specification are in terms of 
rates, while the explanatory state variables in the drift and volatility specifications are in 
original level (S and X) or rate (r and l) form. 

3.2.3. Detailed specifications of discretised versions of this model are given in 
Appendix A.  The resulting econometric model has been transformed to have all dependent 
variables in the form of returns and the disturbance structure contemporaneously correlated 
but serially uncorrelated.  In vector terms, the econometric discrete time model has the form 

� x = diag(x) [ µ(x) + � ε ], 

where  denotes forward difference, diag (.) is the operator which creates a diagonal matrix 
from a vector, µ is a first order nonlinear autoregressive filter, 

�

�  is the Cholesky factor of 
the correlation matrix   of the disturbances, and the vector ε has uncorrelated standardised 
entries. 

�

3.2.4. Although linear in the drift parameters to be estimated, this model is second 
order autoregressive and highly nonlinear in the state variables, making its long run dynamics 
difficult to analyse and potentially unstable.  For use in scenario generation over long 
horizons the model must therefore be linearised so that its stability analysis becomes 
straightforward.  Some linear variants used to date will be discussed in the sequel; we 
continue to experiment with appropriate forms.  Due to its linearity in the parameters this 
(reduced form) model may be estimated using the seemingly unrelated regression (SUR) 
technique, see e.g. Hamilton (1994) or Cochrane (1997), recursively until a parsimonious 
estimate is obtained in which all non-zero parameters are statistically significant. 

3.3. Emerging Markets Model 

3.3.1. After preliminary analysis of the emerging market equity and bond indices (see 
Table 3.1) using extreme value theory (Kyriacou, 2001) and experimentation with various 
ARMA/GARCH specifications, it was decided to fit the following ARMA (1,0) model with 
GARCH (1,1) error structure to index returns individually, viz. 
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where y denotes the (monthly) index return and ε is a serially uncorrelated standard normal or 
student t random variable.  Interestingly, although in the EM index data analysed individually 
the equity index was less extreme than the bond index in terms of tail parameter estimate 
(Kyriacou, 2001),  the above model fit both sets of index data reasonably well with Gaussian 
innovations.  However, these innovations could be expected to be contemporaneously 
correlated between EM indices and with the innovations of the other variables in the model. 

3.3.2. In this case the system model remains as in §3.2, but the enlarged 
contemporaneous covariance matrix  is no longer constant and becomes a process �  for �
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the entries corresponding to the two extra EM returns.  Following a general quasi-likelihood 
strategy (White, 1982) we may estimate a constant covariance matrix  as before using the 
residuals from the SUR capital market equation estimation and the normalised residuals 

�

/tu Ht  from the individual EM index estimations with sample variance (approximately) 1.  
Then we compute the Cholesky factor of the corresponding correlation matrix estimate and, 
for simulation of the full system equation, scale each correlated standardised innovation by 

the appropriate volatility estimate – constant �  or time and scenario dependent ˆ ˆ
tH . 
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3.4. Economic Model 

3.4.1. In order to capture the interactions of the capital markets with the economy in 
each major currency area, a small model of the economy was developed with four state 
variables in nominal values: three financial – consumer price index (CPI), wages and salaries 
(WS) and public sector borrowing requirement (PSB) – and gross domestic product (GDP).  
For stability the specification is in terms of returns similar to the capital markets model but 
with non-state-dependent volatilities, viz. 
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This is again a second order autoregressive model in the state variables which as shown is 
linear in parameters and nonlinear in variables.  It may be estimated using the techniques 
mentioned in §3.2. 

3.4.2. With a view to eventually including Treasury bond asset classes of different 
maturities in the system, a standard 3-factor yield curve model (Campbell, 2000) was 
developed for fitting to spot yield curve data.  The three factors in this model are a very short 
(one month) rate (R0) and long rate (L) corresponding to the capital markets model and a 
slope factor (Y: = L-R) between the short and long rates.  By using a time series of monthly 
yield curve data, it is possible to estimate the evolution over the sample period of the market 
prices of risk (MPRs) for the three factors in volatility units by assuming the model fits the 
yield curve exactly (commonly referred to as backing-out the MPRs).  

3.4.3. In more detail, suppose the processes for the three factors R0, Y and L under the 
real world probabilities satisfy 
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To calculate market prices of risk time series � �  for t=1,…,T, we first calibrate 
the model to detailed yield curve data at t=1 in the usual manner giving estimates of the 
model parameters .  Estimates of the real world drifts 

0 Yt Lt,  , ,
R t

�
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0 , , , 1,...,Yt LtR t
t T� � � �  can then be obtained from the historical (monthly) time series for the 

factors using a suitable backward moving average and data prior to 1t � .  Estimates of the 
market prices of risk can then be calculated using the expressions 

0 0 0
0( ) /

( ) /
( ) / .

t t tR t R t R

Yt Yt y y t Y

Lt Lt L L t L

kL kY kR

Y

L

� � �

� � � � �

� � � � �

� � � �

� � �

� � �

 

3.4.4.  Figure 3.4 depicts the result of this procedure for the US over nearly a 24 year 
horizon.  Note that while the MPRs of the very short rate and the yield curve slope are highly 
positively correlated, they are both negatively correlated with the MPR of the long rate, as 
might be expected for a market which shifts its interest rate risk focus back and forth from 
short to long term. 
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Figure 3.4  Evolution of US yield curve factor market prices of risk 
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Variable Corresponding Proxy 

SUS S&P 500 stock index 

RUS US 3 month T-bill rate 

LUS US 30 year T-yield with semi-annual compounding 

SUK FTSE stock index 

RUK UK 3 month T-bill rate 

LUK UK 20 year GILT rate with semi-annual compounding 

SEU MSCI Europe stock index 

REU German 3 month FIBOR rate 

LEU German 10 year bond yield with annual compounding 

SJP TOPIX stock index 

RJP JP 3 month CD rate 

LJP JP 10 year bond yield with annual compounding 

SEM MSEMEI stock index 

BEM EMBI+ bond index 

XUK UK/US Exchange Rate 

XEU EU/US Exchange Rate 

XJP JP/US Exchange Rate 

CUS US CPI 

WUS US wage index 

GUS US GDP 

PUS US public sector borrowing 

Table 3.1 Data proxies for model variables  
 

3.4.5. As a preliminary analysis of the interactions of the US macroeconomic and 
capital market variables over the sample period, these MPRs were regressed on the 
macroeconomic variables expressed in both levels and returns and significant relationships 
noted.  These accorded well with significant coefficients in the subsequent US system model 
estimation (see §3.6). 

3.5. Data and System Model Estimation 
3.5.1. Table 3.1 sets out the data used as proxies for the variables of the full system so 

far discussed.  Sources were Data Stream and Bloomberg at monthly frequency from 1977 
except for economic variables available only quarterly.  Monthly levels were computed for 
the latter by taking the cube root of the actual quarterly return and finding the corresponding 
monthly levels between announcements.  Figure 3.5 shows equity index evolution in the US 
and Japan over the 284 month period from July 1977 to February 2001.  Dummy variable 
techniques were required to estimate the effects on constant terms of the bubble and crash 
period, thereby enabling a meaningful estimation of the Japanese currency area capital 
market equations.  So far they have not proved necessary for recent US history!  A consistent 
database of Pioneer model data is currently being maintained and updated monthly by the 
fund manager. 



14 

Topix Levels (JP)

Source:  DataStream

 

Figure 3.5a  Equity index evolution in JP  

 

S&P 500 Levels (US)

Source:  DataStream

 

Figure 3.5b  Equity index evolution in the US 
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3.5.2. Various subsystems of the full capital markets and economic model have been 
estimated (see §7) using the SURE model maximum likelihood estimation procedures of 
RATS (Doan, 1996).  For each model the full set of model parameters was first estimated and 
insignificant (at the 5% level) variables sequentially removed to obtain a parsimonious final 
model with all statistically significant coefficients.  This procedure has been automated in a 
PERL/RATS script, and (although we are well aware that for given data best variable 
selection is an NP-hard problem) the automated results agree virtually completely with the 
much more time consuming hand procedures.  Estimation of the emerging market individual 
ARMA/GARCH equations to yield the AR(1)/GARCH (1,1) specification  of §3.4 has been 
accomplished using S+.  The quasi-likelihood procedure for estimating full models with EM 
returns was described in §3.4. 

3.6. Results 
3.6.1. We summarise here only illustrative or highly significant findings;  more 

detailed results are forthcoming in Arbeleche (2002).   
3.6.2. In this project we have devised a way of presenting econometric model 

estimation results concisely and graphically.  For example, Figure 3.6 shows such an 
influence diagram for a full system model including the US economic variables.  Boxes 
(economic variables) or circles (capital market variables) denote dependent variables (in 
return form with corresponding adjusted R2 values shown in percentage terms) and arrows 
denote a significant influence (solid) or lagged influence (dotted) from a corresponding 
explanatory variable (tail) to a dependent variable return (tip).  The seemingly unrelated 
regression nature of the model is obvious as each currency area is directly related only 
through exchange rates and indirectly related through shocks.  In light of Meese & Rogoff’s 
(1983a, b) classical view on the inefficacy of macroeconomic explanations of exchange rates 
even at monthly frequency, after considerable single equation and subsystem analysis we 
have found that interest rate parity expressed as inter-area short rate differences – together 
with other local capital market variables – has significant explanatory power, while 
purchasing power parity expressed various ways does not (cf.  Hodrick & Vassalou, 2002). 
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Influence at time t �<5%

Influence at time t-1 �<5%

 

Figure 3.6  Influence diagram for CM +USE + EM 93/01-02/01 system model 
3.6.3. Figure 3.7 emphasises our main econometric finding that the world’s equity and 

emerging bond markets and currency exchange rates are linked simultaneously through 
shocks.  The first covariance (diagonal and below)/correlation (above diagonal) matrix is that 
of raw returns.  The second is estimated using residuals from the fitted system model.  The 
circled entries have high correlations and do not change significantly – some actually 
increase – from the one to the other showing that the dependent variables react mainly to 
current shocks (innovations) in spite of the stochastic nature of the explanatory variables.   
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Covariance/correlation matrix of raw returns 93:12 to 01:02

Covariance/correlation matrix of residuals 93:12 to 01:02

 
Figure 3.7  Covariance/correlation matrices for the model of Figure 3.6
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4. ASSET RETURN AND LIABILITY SCENARIO SIMULATION AND CALIBRATION 

4.1. Simulation and Calibration 
4.1.1. The system model discussed in the previous section is a vector nonlinear second 

order autoregressive model with a monthly timestep.  Given initial values of its state 
variables, it may be simulated without stochastic innovations as a discrete time deterministic 
dynamical system defining the mean paths of the state variables.  The nonlinear dynamics of 
this deterministic system may be exceedingly complex and the system may rapidly explode 
or die to zero values of some variables for certain configurations of the (significant) estimated 
parameters.  Graphical emulation of the central tendencies of the historical path by this 
deterministic system (see Figure 4.1) is a necessary condition for the generation of realistic 
scenarios – alternative histories – by Monte Carlo simulation of the stochastic dynamical 
system. Monte Carlo simulation of this nonlinear vector stochastic difference equation is 
effected by Euler (first order) stochastic simulation of the independent Gaussian or Student t 
disturbances which are correlated through the estimated Cholesky factor of the 
contemporaneous covariance matrix. The implication is that a limited number of estimated 
parameters – both coefficients and volatilities – may need adjustment to make both the 
deterministic and corresponding stochastic systems graphically match history (in-sample).  
Since the impacts of parameter changes is complex due to the nonlinearity of the system, this 
is not an easy task.  Nevertheless, intuitions can be developed to make the achievement of 
reasonably accurate calibrations tractable and we have developed a prototype graphical 
interface tool stochgen 3.0 (Dempster et al., 2002) to aid the process graphically.  Ideally, the 
calibration process itself should be formalised as a nonlinear optimisation problem for some 
out-of-sample prediction error criterion and we are currently working on limited versions of 
this.  However, the development of appropriate prediction criteria is itself a challenge, to say 
nothing of the fact that the parameter optimisation problem involving an out-of-sample 
prediction error criterion is a nonconvex optimisation problem of at least the difficulty of the 
dynamic stochastic optimisation problems we wish to solve.  As previously noted we have 
therefore made considerable use of graphics. 
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Figure 4.1a  In-sample drift with US history – stock index 

 
Figure 4.1b In-sample drift with US history – long rate 

4.1.2. Figure 4.1 shows a typical graphical result of a calibrated deterministic 
simulation of the nonlinear system in the estimation period (in-sample).  Figure 4.2 shows the 
corresponding in-sample scenario generation where one is looking for scenario paths with 
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similar properties to the historical path.  Similar scenarios may be generated out-of-sample.  
For calibration purposes however the 0, 25, 50, 75 and 100 percent scenario values in each 
out-of-sample period, as shown in Figure 4.3, are more valuable.  The US stock index plot in 
the figure shows the desirable calibration in which out-of-sample the historical path is centred 
in the 50 percent inter-quantile range of the scenario state distributions over time.  The US 
long rate plot shows the less desirable result in which the historical path is captured by the 
scenario distributions, but is probabilistically over-predicted.  As noted above, in- or out-of-
sample calibration of all variables is difficult and while the weaker criterion may always be 
met out-of-sample by calibration, in our experience the stronger criterion is usually only met 
for about 50% of the state variables in a calibration. 

 
Figure 4.2a  In-sample scenarios with US history – stock index 

 



21 

 
Figure 4.2b  In-sample scenarios with US history – long rate 

Calibration Period: 77Calibration Period: 77--9090

Figure 4.3a  OOuutt--ooff--ssaammppllee  ssiimmuullaattiioonn  qquuaannttiilleess  wwiitthh  UUSS  hhiissttoorryy  ––  ssttoocckk  iinnddeexx  
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Simulation Period: 90Simulation Period: 90--9595

  

Figure 4.3b  OOuutt--ooff--ssaammppllee  ssiimmuullaattiioonn  qquuaannttiilleess  wwiitthh  UUSS  hhiissttoorryy  ––  lloonngg  rraattee 

4.1.3. Another approach to econometric model calibration is to linearise a nonlinear 
system to obtain a vector autoregressive (VAR) system which is stable in the state variable 
returns, so that the deterministic system converges to steady state returns and shocks to the 
corresponding stochastic system are nonpersistent.  Stability analysis for such a system is 
more easily conducted by appropriate eigenvalue analysis of the explanatory variable 
coefficient matrices – the leading eigenvalue (root) must be less than one in modulus.  For 
given data the feasibility of fitting such a model may be checked by (autoregressive) impulse 
response analysis (Garratt et al., 2000; Hamilton, 1994) and testing on our full model data to 
August  2002 has been affirmative.  The VAR approach can be extended to an adaptive 
error-correcting VAR model (Boenders et al., 1998; Pesaran & Schuerman, 2001) on which 
we are currently engaged and will be reported elsewhere (Arbeleche, 2002). 

4.1.4. Finally, treating the process generating the historical data as stationary with 
independent increments – an unrealistic assumption – we may alternatively conduct historical 
simulation by resampling from the empirical marginal distributions of state variable returns 
constructed from the historical paths over the in-sample period. 

4.1.5. All these options have been evaluated and we report dynamic stochastic 
optimisation backtest results for all three approaches to scenario generation for our dynamic 
ALM problem in §7. 
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Calibration Period: 77Calibration Period: 77--9090

 

Figure 4.4a  Comparison of 1-month returns with US history – stock index 

Simulation Period: 90Simulation Period: 90--9595

 

Figure 4.4b  Comparison of 1-month returns with US history – long bond 
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Calibration Period: 92Calibration Period: 92--0000

FFiigguurree  44..55aa    CCoommppaarriissoonn  ooff  1100--yyeeaarr  aannnnuuaalliizzeedd  UUSS  rreettuurrnnss  wwiitthh  IInnQQAA  ––  ssttoocckk  iinnddeexx  

Simulation Period: 00Simulation Period: 00--1010

  

FFiigguurree  44..55aa    CCoommppaarriissoonn  ooff  1100--yyeeaarr  aannnnuuaalliizzeedd  UUSS  rreettuurrnnss  wwiitthh  IInnQQAA  ––  lloonngg  bboonndd 

4.2. Comparative Scenario Return Distribution Evaluation 
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Out-of-sample scenario marginal return distributions from calibrated system models 
were evaluated in two ways:  against the empirical marginal return distribution generated by 
the out-of-sample historical path (Figure 4.4) and against an alternative scenario generation 
system (Figure 4.5).  The 10 year out-of-sample annual return distributions in (the 
representative) Figure 4.5 were generated by the capital markets model and the market-
neutral version of InQA’s simulator based on the Wilkie global model (Wilkie, 2002).  These 
comparative results were judged to be more than acceptable. 

4.3. Suppression of Sampling Error 
Since we must always use a finite sample of scenarios, there will always be sampling 

error in the generation of scenario return state distributions relative to the calibrated estimated 
system model.  This can lead to serious errors and spurious arbitrages in subsequent portfolio 
optimisation.  These can however be suppressed by ensuring that the sample marginal return 
distributions corresponding to all generated scenarios at a specific point in time have two 
moments matched to those of the theoretical model underlying the simulations (Høyland & 
Wallace, 2001; Høyland et al., 2001).  This can be posed in terms of matching the moments 
of the sampled innovations with their theoretical –here independent standard normal or 
student t – distributions.  The first sample moments are easily set to zero by translation and 
the unit second moments can be matched in terms of a nonlinear programme which can be 
solved by sequential quadratic programming using the SNOPT sequential quadratic 
programming software (Villaverde, 2002). 

4.4. Liability Modelling and Simulation 
4.4.1. A proprietary stochastic Markov chain model for defined benefit pension fund 

liabilities has been developed which currently assumes (unrealistically) that liabilities and 
fund return performance and macroeconomic variables such as CPI and the wages and 
salaries index are independent.  Nevertheless, formidable calibration problems for the 
liability model remain due to lack of historical data. 

4.4.2. For defined contribution pension funds similar interdependence between lagged 
fund performance and participation rates is a reality.  In principle this can be handled 
(Dempster, 1988), but is again difficult to specify and calibrate. 

4.4.3. Tax liabilities for funds in the jurisdiction of the fund manager are particularly 
simple – a one percent proportional transaction cost. 

4.4.4. If complex liability models (including more complex tax liabilities) can be 
simulated – possibly together with asset returns and macroeconomic variables – to result in a 
net liability cash flow process, no difficulties arise in the optimisation model (see e.g. 
Consigli & Dempster, 1998).  In this paper however we concentrate on the newer – 
previously unsolved – problem of incorporating the guarantee liabilities of defined 
contribution pension plans into scenario based stochastic optimisation models (see §6.4). 

4.5. Scenario Tree Generation 
4.5.1. As mentioned in §2.2, in order to mirror reality dynamic stochastic optimisation 

models for strategic DFA problems must face alternative scenario uncertainty at each 
decision point in the model – e.g. at each forward portfolio rebalance.  Otherwise, the model 
decisions incorporate future knowledge along scenarios– hardly possible in the real world of 
finance!  The distinction is between the so-called flat out-of-sample scenarios of Figure 4.6 
and a scenario tree, an example of which is shown schematically in Figure 4.7.  Each path 
from the root to a leaf node in the latter scheme represents a scenario and the nodes represent 
decision points – the root node represents the initial implemented decision (e.g. initial 
portfolio balance).  Subsequent nodes represent forward ‘what-if’ decisions facing the 
uncertainty represented by all scenarios emanating from that node. 
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Figure 4.6   Out-of-sample flat scenario generation 
 

4.5.2. Note that the Monte Carlo simulation of scenarios corresponding to a given 
scheme is a nontrivial matter requiring generic software to handle a complex simulator such 
as is needed for the Pioneer model.  We have used the generic stochgen 2.3 software of the 
STOCHASTICS™ toolchain for dynamic stochastic optimisation (Dempster et al, 2002) and 
its variants tailored for Pioneer. 
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Figure 4.7  Schematic out-of-sample scenario tree branching structure 
with uniform branching factor 3 
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4.5.3. In this software the input tree structure is represented for a symmetric balanced 
scenario tree by a product of branching factors, e.g. 3.3.3 or 33 for the scenario tree of Figure 
4.7, or by a scenario or nodal partition matrix for asymmetric trees  as shown in Figure 4.8.  
The scenario partition matrix (Lane & Hutchinson, 1980) corresponds to the discrete 
scenario information partition inherent in the tree structure at each decision point while the 
nodal partition matrix (used in stochgen 2.3) denotes the node through which each scenario 
passes at each decision point and is useful for decomposition-based optimisers. 

1 1 1 1
1 1 1 2
1 1 1 3
1 1 4 4

L =
1 1 4 5
1 6 6 6
1 6 6 7
1 6 8 8

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

1 2 4 8
1 2 4 9
1 2 4 10
1 2 5 11

M =
1 2 5 12
1 3 6 13
1 3 6 14
1 3 7 15

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

 

Figure 4.8  Example of a scenario tree with corresponding scenario and 
nodal partition matrices 

4.5.4. The stochgen software must handle at each node multiple conditional stochastic 
simulations of versions of the asset return model initialised by the data at the node and two 
previous timesteps (months) along the scenario path.  Notice that the simulation time step (a 
month) is much shorter than the decision point frequency (for forward portfolio rebalancing: 
quarterly, semi annually or annually), cf. Dempster et al. (2000). 

4.5.5. In the reported project backtests we used balanced scenario trees with high 
initial branching (see §7.2). 

4.5.6. A number of variants of the BMSIM stochastic simulator for the Pioneer model 
have so far been written in C++/C, but in the stochgen 3.1 software currently under 
development these variants are specified as extensions or restrictions of a full model.  
Similarly VARSIM and VARSIM 2 are simulators for variants of the VAR linearisation of 
the asset return model and HSIM performs the historical bootstrap simulation described 
above in §4.1. 

4.5.7. Obtaining bond returns in a currency area is somewhat subtle since they must be 
derived from bond yields.  A representative derivation is given in Appendix B.  Handling a 
complex external stochastic simulator is just one function of the variants of the stochgen 
software and we will return to its other functions in §6 after describing in the next section the 
strategic ALM dynamic stochastic optimisation models used in our project. 

5. OPTIMAL DYNAMIC ASSET LIABILITY MANAGEMENT 

5.1. CALM Problem Formulation 
5.1.1. The dynamic ALM model used in the Pioneer project is a variant of the CALM 
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(computer-aided asset liability management) model (Dempster, 1993) used previously in 
other projects (Consigli & Dempster, 1998; Hicks Pedrón, 1998).  Here we describe the main 
features of the model.  A precise mathematical description is given in Appendix C. 

5.1.2. We focus in this paper on what is normally called strategic asset allocation 
which is concerned with allocation across broad asset classes such as equity and bonds of a 
given country.  The problem is as follows:  

Given a set of assets, a fixed planning horizon and a set of rebalance dates, 
find the trading strategy that maximizes the risk adjusted wealth accumulation 
process subject to the constraints.  

As noted in §4.4, defined contribution pension plans or other complex liabilities (such as 
insurance or reinsurance claims) may be added to the basic model as a stochastic net 
cashflow stream (see e.g. Consigli and Dempster, 1998). 

5.1.3. In the model description given below we begin with a discussion of alternative 
utility functions (fund risk tolerances) (§5.2) and continue on to treat the specification of risk 
management objectives through the problem objective function (§5.3) and then the 
constraints (§5.4).  The last two sections discuss respectively the optimal setting of 
benchmark portfolios (§5.5) and the specification of probabilistic value at risk (VaR) 
constraints for the model connected with defined contribution guarantee liabilities (§5.6). 

5.1.4. We consider a discrete time and space setting.  It is assumed that the fund 
operates from the view point of one currency which we call the home currency.  Unless 
otherwise mentioned all quantities are assumed to be in the local currency.  There are T+1 
times (the first T are decision points) indexed by t=1,...,T+1, where T+1 corresponds to the 
planning horizon at which no decisions are made.  Uncertainty is represented by a finite set of 
time evolutions of states of the world, or scenarios, denoted by �.  The probability p(�) of 
scenario � in � is here always the reciprocal of the number of scenarios since these scenarios 
are being generated by Monte Carlo simulation as discussed in the previous section.   

5.1.5. Assets take the form of equity, bonds and cash.  Let I denote the set of all equity 
and bond assets and K denote the set of cash assets.  The fund begins with an initial 
endowment of equity and bonds given by {xi: i � I} and of cash in the home currency given 
by w1.   The fund trades in the assets at t=1,...,T, i.e. at all times except for at the planning 
horizon.   

5.1.6. A trading strategy is given by �ikt(�):=(xit(�),xit
+(�),xit

-(�),zkt
+(�),zkt

-(�)) for i 
in I, k in K, t=1,..., T, � in �, where: 

- xit(�) denotes the amount held of asset i between time t and time t+1 in state �. 

- xit
+(�)/xit

-(�) denotes the amount bought/sold of asset i at time t in state �.  The 
introduction of the buy/sell variables is used to account for proportional transaction costs on 
buying and selling equity and bond assets.  Denote by f and g respectively the proportional 
transaction cost of buying or selling an equity or bond asset..  For example, a 1% 
proportional transaction cost on buying and selling an equity or bond asset corresponds to 
f=1.01 and g=0.99.   

- zkt
+(�)/zkt

-(�) denotes the amount of cash lent/borrowed in asset k between time t and 
time t+1 in state �.  The positions in cash are split into long and short components to account 
for different rates of borrowing and lending.  We assume that cash lent and borrowed at time t 
in any currency is automatically converted back to the home currency at time t+1.    

- The asset returns are given by {vit(�), (rkt
+(�),rkt

-(�)): i in I, k in K, t=2,...,T+1, � in 
�} where: 

- vit(�) denotes the net return on asset i between time t-1 and time t in state �. 
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- rkt
+(�)/rkt

-(�) denotes the net return on lending/borrowing asset k between time t-1 
and time t in state �. 

5.1.7. The exchange rates are given by {(pit(�),pkt(�)): i in I, k in K, t=1,...,T+1, � in 
�} where: 

- pit(�) denotes the exchange rate of asset i at time t in state � expressed as home 
currency/local currency. 

- pkt(�) denotes the exchange rate of asset k at time t in state � expressed as home 
currency/local currency. 

5.1.8. The fund may face cash inflows and outflows given by {(qt
+(�),qt

-(�)): 
t=2,...,T, � in �} where: 

- qt
+(�)/qt

-(�) denotes the cash flow in/out at time t in state �. 

5.1.9. A trading strategy � results in a wealth before rebalancing of � �tw�
�  for 

t=2,...,T+1 and � ��, and a wealth after rebalancing of � �t
�
�W  for t=1,…,T and � ��. 

5.1.10. Subject to the constraint structure, the fund acts by choosing the trading strategy 
which maximizes the (von Neumann-Morgenstern) expected utility of the wealth process 
which is assumed to take the form 

1

2 1
2

[ ( ,..., )] ( ) ( ( ))
T

T t
t

E U p u w� � �

�

� �

�
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Alternative period utility functions ut are discussed in the next section. 

5.2. Utility Functions 

5.2.1. The functional U is used to define the risk preferences of the fund over the 
wealth process in such a way that  if and only if the 
wealth process generated by �  is strictly preferred to the wealth process generated by � .  
Thus a clearly desirable property of U is that it be strictly increasing.  Another desirable 
property of U is that it be concave.  If U is concave 

.  The interpretation is that the utility of having 
the certain quantities is preferred to the expected utility of having the 
uncertain quantities .  Thus if U is concave the fund is said to be risk-averse and 
if it is linear it is said to be risk-neutral.  (If U is convex then it is said to be risk-loving or 
risk-seeking.)  Since U is a linear combination of the u

1 1 2 2
2 1 2[ ( ,..., )] [ ( ,..., )]TE U E U� � � �

�
�w w w w

1[ ])TE �

�
w

1[ ]TE �

�
w

1

1

],�w
],...,w

T �
w

2

2 1 2[ ( ,..., )] ( [ ...,TE U U E� �

�
�w w

2[E �

2 ,...,� �w

t, U will be strictly increasing and 
concave if they are. 

5.2.2. As noted in §2.1 the utility functional is used here to represent the general 
attitude to risk of the fund’s participants over a specified fund horizon.  Short horizon funds 
are likely to attract more risk averse participants than very long horizon funds whose long 
term participants can afford to tolerate more risk in the short run.  Even for such problems 
however the fund manager will likely wish to mitigate the long term participants’ risk 
tolerances in the short run in the interest of maintaining competitive participation rates.  In 
any event, choice of a sequence of period utility functions can be used to shape the evolution 
of the wealth process over the scenarios in the scenario tree of the problem.  Appropriate tree 
size and branching structure – together with variance reduction (§4.3) – can be used to ensure 
that these distributional properties resulting from the implemented decisions continue to hold 
against sufficiently large samples of further flat scenarios not included in the problem 
scenario tree – a prerequisite for good out-of-sample performance (see §7.2). 
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5.2.3. We consider the following period utility functions: 
1. Exponential (CARA):    ( ) awu w e�

� � 0a �

2. Power (CRRA):           
1

( )
1

aw
a

�

�

�

u w      0a �

3. Downside-quadratic:  u  . 2( ) (1 ) ( )w a w a w w
�

� � � � � 0 1,0a w� � � � ��

5.2.4. Note that log utility given by u w is a limiting case of power utility as 
.  The  parameter that appears in the downside-quadratic utility function denotes a 

target wealth. Note that this utility function reduces to linear (risk-neutral) utility given by 
 for a:=0. 

( ) log( )w�

1a �

( )u w �

w�

w

 
Figure 4.9  Scaled risk averse utility functions 

5.2.5. The exponential utility function is also referred to as the constant absolute risk 
aversion (CARA) utility function because its Arrow-Pratt absolute measure of risk aversion 
defined by ( ) ( )u w u w�� ��  is equal to the constant a.  The power utility function is also 
referred to as the constant relative risk aversion (CRRA) utility function because the Arrow-
Pratt relative measure of risk aversion defined by ( ) ( )wu w u w�� ��  is equal to the constant a.  
The downside-quadratic utility function, similar to the mean-downside-variance or mean-
semi-variance utility function except that it has  in place of E[w], aims to maximize wealth 
and at the same time penalize downside deviations of the wealth from the target.  This is 
illustrated in Figure 4.9 which depicts the different amounts of risk aversion implied by the 
curvature of the utility functions – for a fixed slope the greater the curvature the greater the 
aversion to risk.  Of particular interest is the curvature for wealth levels less than the initial 
wealth (1) or the target wealth ( ). 

w�

w�

5.2.6. Table 4.2 gives the Arrow-Pratt absolute measure of risk aversion for each 
utility function considered above and used in our models. 
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Exponential a 

Power a/w 

Downside-Quadratic 2a/[(1-a)-2a(w- )] w�

Table 4.2  Arrow-Pratt Absolute Measure of Risk Aversion 
Kallberg and Ziemba (1983) have shown in the one period case that utility functions with 
similar Arrow-Pratt absolute measures of risk aversion result in similar optimal portfolios. 

5.3. Risk Management Objectives 

As noted above, in principle different attitudes to downside risk in fund wealth may be 
imposed at each decision point through the additively separable utility U which is a sum of 
different period utility functions ut, t=2,…,T+1, or may be of a common form with different 
period-specific values of its parameters.  Adjustment of these parameter values allows the 
shaping of the fund wealth distribution across scenarios at a decision point as we shall see in 
more detail in §6.  In practice however a common specification of period utility is usually 
used. 

5.4. Basic, Diversification and Liquidity Constraints 

5.4.1. The basic constraints of the dynamic CALM model (cf. Consigli and Dempster, 
1998) detailed in Appendix C are: 

- Cash balance constraints.  These are the first set of constraints of the model referring 
respectively to period 1 and the remaining periods before the horizon. 

- Inventory balance constraints.  These are the second set of constraints and involve 
buy (+), sell (-), and hold variables for each asset (and more generally liability, with buy and 
sell replaced by incur and discharge).  This approach, due to Bradley & Crane (1974), allows 
(with double subscripting) all possible tax and business modelling structures to be 
incorporated in constraints (see e.g. Cariño et al., 1994). 

- Current wealth constraints.  The third set of constraints involves the two wealth 
variables: beginning of period wealth before rebalancing (w) from the previous period and 
beginning of period wealth (W) after a possible cash infusion from borrowing, or an outflow 
from the costs of portfolio rebalancing and possible debt reduction, i.e. after rebalancing. 

5.4.2. The remaining constraint structures required will likely differ from fund to 
fund.  Possible constraints include: 

- Solvency constraints.  These constrain the net wealth of the fund generated by the 
trading strategy � to be non-negative (or greater than a suitable regulatory constant) at each 
time, i.e. � � 0tw�

� �  for t=2,…,T+1 and � in �. 

- Cash borrowing limits.  These limit the amount the trading strategy can borrow in 
cash and take the form: ( ) ( )kt kt kp z� �

�

� z  for k in K, t=1,…,T and � in �, where recall pk 
denotes the appropriate exchange rate. 

- Short sale constraints.  These limit the amount the trading strategy can short the 
equity and bond assets and take the form: ( ) ( )it it ip x� � � x  for i in I, t=1,…,T and � in �.  

- Position limits.  These limit the amount invested in an asset to be less than some 
proportion �  of the fund wealth and take the form: 1�

( ) ( ) ( )
( )( ( ) ( )) ( )

it it i t

kt kt kt k t

p x W
p z z W

�

�

� � � �

� � � � �� �

�

� �
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for i in I, k in K, t=1,…,T and � in �. 

- Turnover (liquidity) constraints.  These limit the approximate change in the fraction 
of total wealth invested in some equity or bond asset i from one time to the next to be less 
than some proportion of the fund wealth �i <1 and take the form: 

1 1 1| ( ) ( ) ( ) ( ) | (it it it it i tp x p x W �
� � � � � �

� � �

� � )  

for i in I, k in K, t=1,…,T and � in �.  They are imposed on large funds primarily from 
market liquidity considerations which are not modelled. 

5.4.3. All the above constraints are piecewise linear convex. 

5.4.4. For backtesting purposes (see §7) we define the following three types of 
constraint structures.  T1 constraints have no position limits or turnover constraints.  T2 
constraints have 20% position limits on all assets and no turnover constraints.  T3 constraints 
contain both position limits and turnover constraints as summarized in Table 4.3. 

 

Asset 
Position 

Limit 
Turnover 
Constraint 

US Equity 0.40 0.15 
US Bonds 0.40 0.15 
UK Equity  0.80 0.15 
UK Bonds 0.80 0.15 
EU Equity  0.80 0.15 
EU Bonds 0.80 0.15 
JP Equity  0.15 0.15 
JP Bonds 0.15 0.15 

EM Equity 0.05 - 
EM Bonds 0.05 - 

Sum of Cash 0.25 - 
US Equity + Bonds 0.50 - 
JP Equity + Bonds 0.20 - 

EM Equity + Bonds 0.08 - 

Table 4.3  Position limits and turnover restrictions by proportion of value 
 

5.4.5. Short selling and borrowing are not allowed in any of these constraint 
structures.  Assuming that the simulated price processes are non-negative, this automatically 
enforces the solvency constraints.   

5.5. Benchmark Portfolio (Fixed Mix) Constraints 

5.5.1. A common problem in the management of funds of all types is the setting of 
realistic benchmarks.  This is usually done in an ad hoc manner in light of experience.  For a 
given set of asset classes a benchmark portfolio whose performance can be used to set a 
return benchmark may be decided optimally by applying a further constraint to any variant of 
the dynamic strategic ALM model so far defined.  The corresponding portfolio rebalance 
(trading) strategy is to rebalance the asset portfolio to the initial optimally determined 
proportions – i.e. fixed mix – at each trading date (decision point), see Mulvey (1995).  Thus 
assets which have appreciated since the last rebalance will be sold to finance the purchase of 
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depreciating assets to bring their value up to the initial fixed proportion of portfolio value – 
buy low and sell high! – but of course this policy is no protection against generally falling 
asset values. 

5.5.2. Mathematically, the fixed mix constraint on asset values held in each scenario � 
in � at each time period t=1,…,T is given by 

� �

� � � � � � � �

1 1 0

1

 ,

i I i

i i i

it it i jt jt
j I

p x w i I

p x p x

�

� �

� � � � �

�

�

�

� �

� � �

� �
� �� �

	 

� i I

 

where , are the initial portfolio proportions to be optimally determined,  is 
initial wealth and �  is an estimate of the transaction costs of the initial portfolio balance.  
Obviously the imposition of these constraints reduces the terminal wealth achievable in the 
model relative to the full optimum without such constraints – sometimes severely in practice 
(Hicks Pedrón, 1998) – and hence constitutes a benchmark to beat.   Unfortunately, due to the 
bilinear nature of the constraints applying to the portfolio decisions subsequent to the initial 
one the resulting optimisation problem becomes nonconvex (Dempster et al., 2003), but we 
shall address its practical solution in §6. 

0,i i I� � � 0w

5.6. Guaranteed Return Constraints 

5.6.1. Of course the return guarantee to an individual investor in a defined 
contribution pension fund is absolute, given the solvency of the guarantor.  In the situation of 
a banking group such as the fund manager and its parent guarantor this necessitates strategies 
both to implement the absolute guarantee for individuals and to manage the investment 
(trading) strategy of the fund so as to ensure meeting the guarantee for all participants of the 
fund with a high probability. 

5.6.2. Mathematically, this latter goal can be met by imposing a probabilistic 
constraint of the VaR type on the wealth process at specific trading dates, computing 
expected shortfall across scenarios which fail to meet the fund guarantee and adding the 
corresponding penalty terms to period objective functions.  For example, at the horizon T+1 
or any intermediate date  this would take the form t�

� �* 1 ,t tP w �
� �
� � �w  

where α: = 0.01 or 0.05, corresponding to respectively 99% or 95% confidence, and  is 

calculated from the initial wealth and the guaranteed annualised rate r as   
However, such scenario-based probabilistic constraints are extremely difficult to implement 
in that they again convert the convex (deterministic equivalent) large scale optimisation 
problem to a nonconvex one.  We will nevertheless describe a practical approximation 
procedure in the next section, but we leave expected shortfall penalties to future work. 

*
tw
�

� �w r�0 1 .t�

6. PROBLEM GENERATION AND SOLUTION TECHNIQUES 

6.1. Optimisation Problem Generation 

6.1.1. Instantiations of the CALM model and other similar strategic DFA models lead 
to very large deterministic equivalent nonlinear optimisation problems involving perhaps 
hundreds of thousands of scenarios and millions of variables and constraints.  Moreover in a 
production setting both parameter values and the model itself are constantly changing due to 
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changes of view, objectives and regulations.  Mathematical programming modelling 
languages such as AMPL (Fourer, 1994) and OPL (ILOG, 2000) have been developed to 
handle deterministic optimisation models in this regard by specifying the variables, objective 
and constraints of the problem in an algebraic language in terms of entity sets which is 
similar to the ordinary mathematical specification of the Pioneer CALM model given in 
Appendix C.  Such systems take as input the model in algebraic form together with specific 
parameter values and they output a structured file in a standard format such as MPS (IBM, 
1972) which is readable as input by a wide range of optimisation solvers.  These concepts 
have been extended to large scale dynamic stochastic optimisation problems with the 
STOCHASTICS™  software (Dempster et al., 2002) and the SMPS standard solver input format 
(Birge et al., 1986) which have been used for this project.  As discussed in §4.4 the stochgen 
subsystem handles the scenario tree generation using routine dynamic stochastic simulation 
from a standardised tree structure specification – horizon and branching structure –and 
making use of AMPL (or a new modelling language SAMPL currently under development 
for stochgen 3.1) outputs the optimisation problem for decomposition based techniques – or 
appropriate pieces of the optimisation problem – in the SMPS or MPS formats to the solver – 
possibly as it runs.  See Dempster & Consigli (1998) and Dempster et al. (2002) for more 
details. 

6.2. Optimal Strategic ALM Algorithms and Software 

6.2.1. A variety of large scale optimisation algorithms have been used to solve 
variants of the CALM model.  For linear and quadratic problems – both linearly constrained – 
these are simplex, interior point and nested Benders decomposition methods.  For general 
linearly constrained convex and general nonlinear problems both nested Benders 
decomposition and sequential quadratic programming algorithms have been used.   

6.2.2. Simplex and interior point algorithms are well documented (see e.g. Vanderbei, 
2002) and the basic reference to nested Benders decomposition is Gassmann (1990), see also 
Scott (2002).  Nested Benders decomposition is a sequential cutting plane technique in which 
the subproblems at each node of the scenario tree are solved independently for each major 
iteration until the cuts for each subproblem lead to the solution of the problem.  Like interior 
point methods, the number of major iterations required for convergence by nested Benders 
decomposition depends more upon the size of the feasible region than on the problem 
dimensions (size) itself.  We have used CPLEX 5.1 for linear and quadratic programming, 
solgen 1.2 of the STOCHASTICS™ toolchain for nested Benders decomposition and SNOPT for 
general nonlinear programming by sequential quadratic programming (see Gill et al., 2002). 

6.2.3. For the CALM model of Appendix C and its variants - which are linearly 
constrained convex problems generally and quadratic problems for the best performing 
downside quadratic utilities (see §7.3), we usually first solve a quadratic version of a new 
instantiation with a few thousand scenario tree using CPLEX interior point.  For the very 
large scenario trees corresponding to long horizon multi-portfolio rebalance problems 
however the solgen 1.2 implementation of nested Benders decomposition is required since 
the other techniques must load the full problem into the computer’s memory. 

6.3. Optimal Benchmark Portfolio Algorithms 

6.3.1. Due to the bilinear nature of the constraints – in initial portfolio proportions and 
subsequent portfolio asset positions – which apply to portfolio decisions subsequent to the 
initial one the fixed mix problem for setting optimal benchmark portfolios is nonconvex.  
However these nonconvexities add only finescale “noise” to a generally well behaved, though 
not unimodal, problem value considered as a function of the initial portfolio proportions � ��  
to be optimised.  This formulation as a low dimensional general nonconvex problem in the 
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number of asset classes in the model is possible since for fixed s subsequent rebalance 
decisions may be computed either by one iteration of nested Benders decomposition or 
directly by algebraic calculation (Dempster et al., 2003). 

�

67
99

1

 un

6.3.2. In an attempt to reduce transaction costs it is also possible to define a model and 
corresponding trading strategy which rebalances to the fixed mix proportions only when 
current portfolio proportions have varied by more than specified percentages.  Such a relaxed 
fix mix model has dead zones in which no portfolio rebalancing is necessary and may also be 
formulated as a global optimisation problem (using nested Benders decomposition) in the 
initial portfolio proportions. 

6.3.3. To attack these nonconvex problems we have applied a variety of algorithms 
and software – local smooth approximate conjugate directions (Powell, 1964), the DIRECT 
global Lipschitz smooth partitioning algorithm (Gablonsky, 1998) and several others – to 
fixed mix variants of the CALM model with reasonable success (Scott, 2002).  Currently we 
are working on improving the efficiency of these methods to make their routine operational 
use more robust. 
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Figure 6.1  Terminal wealth distribution from a scenario tree 
6.4. Capital Guaranteed Products Algorithm 

6.4.1. The so-called chance-constrained programme arising from applying one or 
more probabilistic VaR-type capital guarantee constraints to the CALM model would only be 
convex if the distribution of current wealth  satisfies certain analytic conditions (Prékopa, 
1980).  This is not the case of course for a finite scenario-based distribution and hence the 
resulting problem is nonconvex and will require approximation for practical purposes.  Like 
the benchmark portfolio problem however this approximation problem is not intractable.  
Instead of solving a problem (involving, for example, expected terminal wealth) of the form 

tw
�

1max T �
�w  
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while searching for a value of target wealth  for which the probabilistic constraint is 
satisfied.  Alternatively, a severe downside linear penalty can be employed and this appears 
to be better at shaping wealth so as to reproduce scenario-based problem confidence levels 
out-of-sample using simulator or historical data, see Figure 6.1.  We are currently perfecting 
this method for operational use with long horizon problems. 

1Tw
�

�

6.4.2. We have also tested a 0-1 mixed integer programming formulation in which the 
binary variables are used to count explicitly scenarios on which the guaranteed fund wealth is 
violated, but this approach currently appears intractable for anything but toy problems. 

7. SYSTEM HISTORICAL BACKTESTS 

7.1. Implementation 

7.1.1. In a practical implementation of the dynamic stochastic optimization approach 
to strategic DFA a new problem is solved for each trading time, t=1,…,T, and the initial 
portfolios implemented.  At each time t, the asset return and exchange rate model's 
parameters are re-estimated and re-calibrated using historical data up to and including time t, 
and the initial values of the simulated scenarios are given by the actual values of the variables 
at that time.   

7.1.2. There are several reasons for implementing our approach in this manner.  The 
first is that the actual value of the variables at t=2 are unlikely to coincide with any values of 
the variables in the simulated scenarios at t=2.  If this is the case then the optimal investment 
policy will be undefined.  The second and more important reason is that re-estimating and re-
calibrating the simulator's parameters at each time t captures information in the history of the 
variables up to that point.  Since the asset return and exchange rate model employed is only 
an approximation to the real dynamics, using the most recent history should improve the 
scenario simulation.  

7.1.3. For a given problem formulation, the process of implementing the stochastic 
optimization approach at each trading time t can be represented by the following system 
diagram of Figure 7.1 (cf. Figure 1.1).  Much of this system has been automated for the 
purposes of this research. 
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Figure 7.1  Pioneer CALM model system diagram 

 

7.1.4. The quality of the first stage implementable and subsequent ‘what-if’ portfolio 
rebalance decisions of a dynamic stochastic optimisation ALM model clearly depend on a 
number of real world scenario contingent factors. 

7.1.5. Obviously the most crucial factor is the ‘predictive’ power of the asset return 
statistical model underlying the scenario (tree) simulations.  (We shall return to ad hoc tests 
of this factor in the next section).  Less obvious perhaps is the impact of the number of 
scenarios used in the optimisation model and even more importantly the branching structure 
used in the scenario tree.  Although there is general consensus that in dynamic models 
branching should be larger for the earliest decisions – in particular for the first implementable 
one – than for those later in the tree (see e. g. Dempster & Thompson, 2002) the number of 
scenarios required to stabilise problem value and decisions is highly model dependent.  This 
is clearly a sampling problem for a continuous state stochastic optimisation problem – one 
level higher than a (discrete time) stochastic process sampling problem.  Although asymptotic 
consistency results for both value and decisions are available (see Dempster (1998) or 
Shapiro (2002) and the references therein) the proofs are mathematically very difficult and 
the results of limited practical use.  It is however generally agreed for a given problem that its 
value is stabilised by smaller scenario trees (samples) than are required to stabilise its (even 
implementable) decisions.  Moreover, suppressing sampling error by the techniques discussed 
in §4.3 has also generally been seen to be beneficial for decision stability (although to an 
extent not reported in any detail in the literature).  In our experiments, tree sizes (i.e. numbers 
of scenarios) have been reduced by a factor 5 by these means with a slightly greater problem 
run time reduction (to several minutes on a top end PC) which is of great practical use in fund 
design – although much remains to be done.  We define a practical decision stability criterion 
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in the next section. 

7.2. Backtesting 

7.2.1. Backtesting strategic DFA systems out-of-sample can take two forms: 
experimental and historical.  In the more familiar historical backtest, statistical models are 
fitted to data up to a trading time t, scenario trees are generated to some chosen horizon 
t+T+1, the optimal decisions implemented at t are evaluated against historical returns at t+1, 
and the whole procedure rolled forward for T trading times.  Experimental backtests can 
repeat this procedure as many times as is necessary to suppress sampling error by treating 
independently generated out-of-sample flat scenarios to T+1 as pseudo-histories.  Such tests 
are invaluable in exploring the stability properties of decisions in specific models and we 
have termed a given model decision stable in scenario tree size and structure experiments 
when the standard deviation of the sampling error in each implementable decision portfolio 
proportion has been reduced to 10% of its sample mean value by a suitable choice of scenario 
tree for the model.  Typically, 10,000 flat scenarios are used for such experiments. 

7.2.2. Either type of backtest can involve a telescoping horizon as depicted in Figure 
7.2 or a rolling horizon as shown in Figure 7.3. 

 

Figure 7.2  Telescoping horizon backtest schema 

 

Figure 7.3  Rolling horizon backtest schema 
7.3. Pioneer CALM Model Backtests 

7.3.1. A number of historical backtests have been run on variants of the CALM global 
model, with perhaps surprisingly uniformly good results, see Villaverde (2002) for complete 
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details.  The aims of these tests were several.  First we wished to establish the relative 
‘predictability’ or otherwise of the alternative Pioneer tuned econometrics models for short 
horizons.  (Long horizon (20 or 30 year) experiments – where the simpler aim is merely to 
recapture historical statistical patterns – are currently in progress but require significant 
computational resources.)  Secondly, we wished to understand the impact of the alternative 
utility functions available to the system on optimal portfolio decisions.  Thirdly, we wished to 
evaluate the impact of risk attitudes imposed on fund wealth trajectories period-by-period (in 
terms of additively separable utility functionals) versus their imposition only on fund terminal 
wealth.  Fourthly, we were interested in the farsightedness or otherwise of the dynamic 
stochastic optimisation approach to strategic DFA relative to rolling over single period-based 
systems à la Markowitz – the raison d’être of dynamic models.  Finally, we were interested in 
what effects imposing the practical diversification and liquidity (turnover) constraints (T3 in 
Table 4.3) would have on backtest returns.  We discuss the (at least partial) evidence to date 
on all these topics here. 

7.3.2. All historical asset allocation backtests we report were from the viewpoint of a 
US dollar-based fund in Eire.  The benchmark used is therefore the S&P500 equity index 
over the out-of-sample period for each test.  All portfolio rebalances are subject to a 1% value 
tax on transactions which of course does not apply to the benchmark index.  Monthly data (as 
set out in Table 3.1) were available from July 1977 to August 2002. 

7.3.3. Figure 7.4 shows the results in terms of annualised returns of a typical backtest 
with a 2 year telescoping horizon and semi-annual rebalancing from February 1999 to 
February 2001 using the model of Appendix C with 8192 scenarios, a 128.16.2.2 branching 
structure and a terminal wealth criterion.  During this period the S&P500 returned 0 percent.  
With no position limits the model tends to pick the best asset(s) and so in this case a high 
annual historical return is an indication of predictability in the tuned econometric model used 
to generate the scenarios.  Once more realistic constraints are imposed in this test however 
portfolios become well diversified and in the results corresponding to the various attitudes to 
risk there is little to choose from.  However, performance is improved by the use of the 
emerging market asset returns even though they were actually not used in the optimal 
portfolios.  Corresponding results for the addition of the US economic model to the system 
are mixed.  When this backtest was extended one period to August 2001 – when the S&P500 
annualised return over the 2.5 year period was –2.3% – similar results were obtained with the 
best position limited result being 6.8% per annum for the downside-quadratic utility with a: = 
0.5 and target wealth a 61% increase over the period. 

Utility Function No  Limits 20%  Limits No  Limits 20%  Limits No  Limits 20%  Limits
Linear 91% 9% 92% 10% 31% 11%
Quadratic 8% 9% 6% 11% 21% 6%
Downside-quadratic 54% 9% 70% 11% 29% 9%
Exponential 72% 9% 92% 10% 51% 11%
Power 91% 92% 49%

Capital Markets
Capital Markets + Emerging 

Markets

Capital Markets + Emerging 
Markets + US Economic 

Model

                         Figure 7.4    Asset allocation backtests: Annualised returns  
                                               from February 1999 – February 2001 

7.3.4. Overall, the best overall historical backtest results were obtained using the 
downside-quadratic utility function with appropriate parameters.  A summary of the backtests 
performed to date for this attitude to risk is given in Table 7.1.  Note here that imposing the 
practical liquidity (T3) constraints, which could be expected generally to reduce returns, 
sometimes led to significantly increased returns.  Notice also that the imposition of an 
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attitude to risk of wealth in each period – the 10 year 5 year horizon rolling 4 area backtest 
using the linearised VARSIM simulation – improved annual return over the position limited 
returns for the two constituent 5 year periods (using 3 and 4 area capital market models) and 
employing only an attitude to risk on fund terminal wealth. 

7.3.5. Table 7.2 shows analysed implemented solver output for an historical backtest 
over the period 1996-2001 with annual rebalancing and the liquidity (T3) constraints imposed 
(corresponding to the bolded entry in Table 7.1).   Note that the successive implemented 
portfolios are responding as much as possible to changing market conditions by asset 
allocations with varying diversification. 

7.3.6. Overall, we found that the imposition of the T3 liquidity constraints in the 
model forced its decisions to take full advantage of the information in future scenarios and 
optimal forward rebalances to result in well diversified portfolios and significant 
improvement in historical backtest performance over rolling myopic single period models (cf. 
Hicks-Pedrón, 1998).  

8. CONCLUSIONS 

8.1. �his paper describes an innovative joint project to construct the model base for a 
decision support system for defined contribution pension fund design at the strategic level.  
Each block of the system diagram of Figure 1.2 has been described in detail (including the 
third party component software utilised).  The methods developed are much more widely 
applicable to a range of strategic DFA problems in finance.  Practical solutions to two new 
problems – optimal fund benchmark setting and value-at-risk constrained guaranteed return 
fund design – have been outlined.  In all historical backtests using data over roughly the past 
decade the global asset allocation system equalled or outperformed the S&P500 when 
transactions costs are taken into account.  All system returns for the nonlinear statistical 
model were positive – even through the recent high tech crash.   

8.2. A number of areas for further work have been identified throughout the paper and 
much work remains to be done.  However if we have convinced the reader that the dynamic 
stochastic optimisation approach to strategic DFA problems is a practical reality today, the 
paper will have achieved its aims.  

8.3. Currently we are developing an industrial strength version of the expected value of 
perfect information importance sampling algorithm (Dempster, 1998) represented by the 
inner dotted feedback loop in Figure 1.2.  Eventually it should be possible to automate the 
reestimation and updating procedure of the outer dotted loop in the figure, but this adaptive 
filtering approach for this application is still a long way off. 

8.4. The fund manager intends to become a leader in the management of pension funds 
for third parties.  Its collaboration with the Centre for Financial Research at Cambridge has 
already made possible important advances in both its long-term forecasting engines and its 
optimisation techniques.  Such know-how is currently used in the development of its new 
financial products and services.   
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Constraint Annualised 
Return %  

(see Section 5.4) 

Initial 
Estimation 

Period 

Out-of-
sample 
Period 

Length Asset Return Model Simulator Number of 
Scenarios k

Rebalance 
Frequency 

Risk 
Management

Criterion 

Horizon 

T1   T2 T3

S&P 500 
Benchmark 
Annualised 
Return % 

1972-1990 1990-1995 5 years 3 areas (ex Japan) BMSIM 4 annual     terminal telescoping 10.33 9.34 - 7.41
1992-1996 1996-2001 5 years 4 areas BMSIM 4 annual     terminal telescoping 13.36 7.13 - 14.12
1992-1996 1996-2001 5 years 4 areas VARSIM 4 annual     terminal telescoping 1.51 8.30 - 14.12
1992-1999 1999-2001 2.5 years 4 areas BMSIM 8.2 semi-annual      terminal telescoping 27.89 6.48 2.69 -2.30
1992-1999 1999-2001 2.5 years above + emerging markets BMSIM 8.2 semi-annual      terminal telescoping 16.98 5.72 3.38 -2.30
1992-1999 1999-2001 2.5 years above + US economy BMSIM 8.2 semi-annual      terminal telescoping 19.16 4.64 -0.38 -2.30
1992-1999 1999-2001 2.5 years 4 areas VARSIM 8.2 semi-annual       terminal telescoping -6.40 - -3.92 -2.30
1990-1996 1996-2001 5 years 4 areas BMSIM 8.2 annual all periods      telescoping 8.54 - 8.37 14.12
1990-1996 1996-2001 5 years 4 areas VARSIM 8.2 annual    all periods telescoping 5.78 9.99 9.37 14.12 
1990-1996 1996-2001 5 years 4 areas HSIM 8.2 annual       all periods telescoping 4.95 - 6.04 14.12
1972-1991 1991-2001 10 years 4 areas VARSIM 8.2 annual all periods 5-year rolling 3.56 - 9.98 12.72 

Table 7.1 Summary of CALM US$ fund historical backtests 
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VARSIM, 1996-2001, annual rebalancing, 8192 scenarios, additive downside-quadratic utility, T3 constraints
USstock UScash USbond UKstock UKcash UKbond UK  fx EUstock EUcash EUbond EU  fx JPstock JPcash JPbond JP  fx

Date: Feb-96
First Stage Weights 0.19 0.25 0 0.03 0 0.52 0 0 0 0 0 0 0 0 0
Historical return (dollar) 1.23 1.05 1 1.22 1.13 1.24 1.07 1.21 0.92 1.01 0.9 0.78 0.88 0.98 0.87
12-Month Portfolio Return Against History 1.18
Date: Feb-97
First Stage Weights 0.23 0.25 0 0 0 0.4 0 0 0 0 0 0.12 0 0 0
Historical return (dollar) 1.33 1.05 1.19 1.28 1.08 1.26 1.01 1.36 0.96 0.99 0.92 0.87 0.96 1.04 0.95
12-Month Portfolio Return Against History 1.17
Date: Feb-98
First Stage Weights 0.4 0.06 0.06 0 0 0.28 0 0.15 0 0 0 0.04 0 0 0
Historical return (dollar) 1.18 1.05 1.13 1.03 1.04 1.24 0.98 1.11 1.06 1.15 1.02 0.93 1.06 1.04 1.06
12-Month Portfolio Return Against History 1.16
Date: Feb-99
First Stage Weights 0.4 0 0.06 0 0 0.15 0 0.29 0 0 0 0.09 0 0 0
Historical return (dollar) 1.1 1.05 0.94 1.04 1.04 1 0.99 1.17 0.9 0.8 0.88 1.66 1.08 1.12 1.08
12-Month Portfolio Return Against History 1.15
Date: Feb-00
First Stage Weights 0.41 0 0 0 0 0 0 0.45 0 0 0 0.14 0 0 0
Historical return (dollar) 0.91 1.06 1.19 0.88 0.97 0.98 0.92 0.86 1.01 1.06 0.96 0.68 0.94 1 0.94
12-Month Portfolio Return Against History 0.85

Table 7.2  Implemented annual portfolio rebalances for an historical backtest with liquidity constraints using VARSIM 
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APPENDIX  A  DETAILED PIONEER ASSET RETURN MODELS 

Let the home currency be USD, and for a given scenario let: 

�� St
c denote the equity price at time t for c=US,UK,EU,JP,EM.  St

EM is assumed to be 
denominated in USD 

�� Rt
c denote the percent return on lending cash between time t-1 and time t for 

c=US,UK,EU,JP. The percent return on borrowing cash is taken to be Rt
c + � for 

some � > 0 
�� Lt

c denote the bond yield, expressed as a monthly percent, at time t for 
c=US,UK,EU,JP.  The maturity and compounding frequency depends on c and is 
specified in Table 3.1 

�� Xt
c denote the exchange rate at time t for c=UK,EU,JP expressed as $/local currency 

of c 
�� Bt

EM denote the EM bond price at time t denominated in USD; the maturity of the 
bond is specified in Table 3.1 

�� Ct
US denote the US Consumer Price Index (CPI) at time t 

�� Wt
US denote US wages at time t 

�� Gt
US denote US GDP at time t 

�� Pt
US denote US public sector borrowing (PSB) at time t. 

The formulation of the capital markets discrete time model corresponding to the 
BMSIM3 simulator (see §4.4) is given by the following (with a monthly time step): 

 

1 1 1 1

US US US US US US US US USUS
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for c=UK,EU and Xt
US =Xt

UK .  The � terms are correlated standard normal or standardized 
student t random variables.  The a, b and � terms are parameters of the model.  Note that 
since we are assuming the home currency is USD, modelling an exchange rate for the US in 
unnecessary.  Salient features of the model include non-linear drifts, a lag structure and 
constant volatilities. 

The formulation of the model for the BMSIM4 simulator is identical to that for BMSIM3 
with the addition of Japan so that c=UK,EU,JP and with Xt

US =Xt
JP.  As noted in §3.2 

additive binary dummy variables were used to remove the St
JP bubble and crash. 

The formulation of the model for the BMSIM4EM simulator is identical to that for 
BMSIM4 with the addition of the following AR(1)/GARCH (1, 1) processes for EM equity 
and bonds 
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We assume that all � terms are contemporaneously correlated but serially uncorrelated.  
Because the EM variables in BMSIM4EM only influence the US, UK, EU and JP financial 
variables via the shocks (the contemporaneously correlated � terms) the EM variables will 
normally not influence the US, UK, EU and JP financial variables significantly. 

The formulation for BMSIM4EME is similar to that for BMSIM4EM with the exception 
of two changes.  The first is that we introduce the model for the US macroeconomic variables 
of §3.4.  The second is that we the replace the US equations with: 
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The addition of the US macroeconomic variables is an attempt to create a more realistic 
model for asset returns and exchange rates.  Because they influence the US financial 
variables through the drift terms and the shocks they should have a significant impact on the 
US financial variables.  Again we assume that all � terms are contemporaneously correlated 
but serially uncorrelated. 

 
The generation of the dynamic stochastic optimisation problems requires the asset 

returns and exchange rates in each scenario.  Appendix B explains how bond yields are 
transformed into bond asset returns. 
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APPENDIX B  DERIVATION OF BOND RETURNS FROM BOND YIELDS 

The following is a derivation of the 1 month bond return for the US.  The UK, EU and 
Japan formulas differ only in the maturity and compounding frequency of the bond yield.  

The US bond has a 30 year maturity with semi-annual compounding.  Let L1t denote the 
30 year  annualised bond yield with semi-annual compounding, i.e. L1t = 12Lt/100.  Let F 
denote the face value of the bond, and let ct denote the annual coupon rate.   

Consider holding a newly issued 30 year bond from time t to time t+1 which is 1 month 
later.  The value of the investment at time t is the cash price of the 30 year bond which is 
given by: 
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At time t+1 or 1 month later there has been no coupon payment and the value of the 

investment is the cash price of a bond with a 1129
12

 year maturity and which pays a coupon in 

5 months and then every 6 months until maturity.  The cash price of this bond is: 
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If we assume that � 1 11 1t tL L�
�

� , then we can approximate Vt+1 by: 
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Then the 1 month bond return can be estimated as: 
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ct can be approximated as some multiple of L1t, i.e. ct =mL1t.

 



52 

APPENDIX C  THE PIONEER CALM ASSET ALLOCATION MODEL 

The mathematical formulation of the basic asset management problem in deterministic 
equivalent form for solution is given by the following version of the CALM model of 
Dempster (1993).  We assume that u is given by one of the utility functions described in §5.2, 
that as a consequence of Monte Carlo simulation each scenario � in � is equally likely, that 
there are no cash inflows or outflows and that the only regulatory and performance 
constraints are cash borrowing limits, short sale constraints, position limits and turnover 
constraints.  Liabilities are easily added in terms of cash inflows or outflows (Consigli and 
Dempster, 1998). 
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where ( ) 1 | |p � � �  and �ikt(�):=(xit(�),xit
+(�),xit

-(�),zkt
+(�),zkt

-(�)) for i in I, k in K, t=1,..., 
T, � in � .   

The first set of constraints are known as cash balance constraints.  They insure that the 
net flow of cash at each time and in each state is zero.  The next set of constraints are known 
as inventory balance constraints.  They give the position in each equity and bond asset at 
each time and in each state.  The third set of constraints define respectively the before and 
after rebalancing wealth at each time in each state.  The next six constraints are the cash 
borrowing constraints, short sale constraints, position limit constraints, turnover constraints 
and solvency constraints discussed in the previous section.  This deterministic mathematical 
programming problem is convex, linearly constrained and (unless u is the identity) has a non-
linear objective.   
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