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ABSTRACT 
 
The use of proxy models within the insurance sector has grown considerably in recent 
years, particularly in the area of capital management.  This growth has been largely 
driven by the increased demands of a changing regulatory and risk management 
landscape set against the inability of traditional modelling techniques to keep up. 
 
This paper takes a look at some of the types of proxy model available to practitioners, 
suggesting a basic framework for “replicating formula” type proxies into which many 
current proxy models fit.  Within this framework, and drawing heavily on recurring 
themes of complexity, accuracy and, in particular, use of the model, the options 
available in the design and implementation of a model are discussed as well as the 
potential impact of the choices made. 
 
Finally, four specific proxy models are discussed in greater detail, two of which are 
the subject of a case study.  This leads to a key result concerning the distinction 
between risk scenario accuracy and risk distribution accuracy the key driver for risk 
capital estimation. 
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1 INTRODUCTION 
1.1 Previous Actuarial Research (see Frankland et. al., 2013) suggests that any 

Actuarial model is necessarily a simplified representation of the real world, 
and as such there is a huge amount of judgement involved in stripping the 
"real world" into the relevant components within the constraints of today's 
computing power and timing requirements. 

 
1.2 The situation has become like the serpent eating its own tail because actuaries 

must now make models of their own models. Traditional models used for 
insurer's balance sheet calculations are complex functions of millions of 
inputs, with perhaps hundreds of stochastic inputs. However, the regulations 
and management do not stop there. Insurers must derive "Solvency Capital 
Requirement" which requires them to repeat these calculations under many 
different scenarios so as to have a high degree of confidence of meeting their 
"realistic balance sheet" in extreme adverse scenarios. While computational 
power has increased exponentially over the last several years, it would seem 
our demand for financial calculations have increased as an exponential of an 
exponential. 

  
1.3 There are three basic methodologies to meet these demands:  
 

• Vastly enhancing modelling and computing capacity to try and carry out 
'stochastic on stochastic' runs.  

• Speeding up and optimising models  
• Building 'light' or 'proxy' models that that largely replicate the 'heavy' 

models but run much quicker.  
 
1.4 In this context, a natural separation of modelling has occurred. Some models, 

termed "heavy models", are developed that best fit reality (within computing 
constraints) so as to come up with our "realistic" balance sheet based on 
today's market conditions, but involving lots of different future outcomes. 
These models cannot be run as often as required so simpler models, termed 
“proxy models” or “light models” are developed to mimic the heavy models. 
These light models can then be used to explore more scenarios. 

  
1.5 This paper concentrates on this third approach of 'light' or 'proxy' models. 

However, as we noted that there were a huge number of choices in moving 
from the "real world" to a heavy model, there are likewise a large number of 
choices when moving from a heavy to light model. In fact, it may be better to 
think of all these possibilities as a spectrum. 

  
1.6 We find that models range from light to heavy with light being the least 

complex and often the fastest, such as polynomials, and heavy being the most 
complex and often the slowest, for example a cashflow projection model. 

  
1.7 Where a model lies in the range from light to heavy will often depend on its 

degree of complexity. 
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1.8 A proxy model is less accurate than a heavy, detailed model, but is more agile. 
What are the draw backs in accuracy, and what are the advantages in terms of 
speed, cost and management information? What types of proxy models are 
used or considered? How do actuaries present the limitations of each?  This 
paper explores the implications of using such models. 
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2 BACKGROUND 

2.1 A BRIEF HISTORY OF MODELLING TECHNIQUES 
2.1.1 In order to provide some context for the discussions that follow we begin by 

presenting a brief history of modelling methods. This description is by no 
means intended to be comprehensive and it is also perhaps fair to say that it is 
more relevant to complex liability models, the setting for much of the work in 
the area of proxy models.  

 
2.1.2 In the beginning, well perhaps not in the beginning, but within the lifetime of 

most actuaries, deterministic formulae comprising mainly of commutation 
functions were in common use. A vector of cash flows and a vector of 
discount rate were combined via a dot product (known in excel as a 
sumproduct) to derive a present value. The process was easily generalized to 
several vectors to include other factors such as lapses.  

 
2.1.3 Influenced by advances in technology, especially the computerised 

spreadsheet, the use of cashflow models began to gain prominence. The great 
advantage of cashflow models is that it was easier to model complex systems 
of cashflows and allow for path dependency. In particular, the previous 
methodologies did not allow cash flows to vary with discount rates, or for any 
of the different elements to interact. In particular, interest rates or stock returns 
in one period might affect lapses or guarantees in a later period, and the notion 
of path dependence came to be a prominent issue.  

 
2.1.4 Cashflow models allowed evaluation at multiple time-points throughout the 

projection period, and furthermore allowed evaluation of other statistics of 
interest, for example, not just of cashflows but also net asset and liability 
positions. This allowed a wider array of issues to be addressed in the 
modelling, such as liquidity. 

  
2.1.5 Later still, the regulatory demand for the recognition of options and guarantees 

coupled with further advances in technology led to the need for, and naturally 
the development of, stochastic models.  

 
2.1.6 The focus for stochastic models became the evaluation of liabilities and their 

guarantees at one moment in time, the so-called “Time zero”. This can be 
regarded as a step backward. We regressed from multiple time-point 
evaluations to a single time-point evaluation of the liabilities, i.e. the 
deterministic cashflow model providing values at each time-step along a single 
path was replaced by stochastic cashflow models providing the single 
stochastic value at time zero derived from the outcome of a large number of 
paths. Put another way, the capability and ability to perform projections of 
liability values became more limited because the valuations at a single point in 
time were so complicated  

 
2.1.7 These models were, and still are, relatively slow. For the more complex 

insurance liabilities, with-profits in particular, the number of scenarios that can 
be run in any one valuation exercise remains limited by computational power.  
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2.2 WHY ARE PROXY MODELS NEEDED? 
2.2.1 In summary, influenced by advances in computer technology and modern 

financial economic theory there has been an overall reduction in the use of 
analytic functions and greater reliance on cashflow models to provide answers. 
This development would appear to be due to the relative ease with which a 
cashflow model can be developed in comparison to an analytic model. The 
introduction of stochastic modelling has then led to cashflow models being run 
under many thousands of simulations to provide a single evaluation. 

  
2.2.2 Problems now arise because this evolution was predicated on a requirement 

for producing only a small number of scenario results. However, over recent 
years there has been a significant increase in regulatory and risk management 
demand for information which has in turn led to a large increase in the number 
of scenario results being requested. At the extreme many thousands of 
scenario results may be required for a Solvency II internal model. 

  
2.2.3 While computational power has increased dramatically in recent years, the 

demand for scenario analysis has increased exponentially quicker. Models and 
infrastructure have been developed through the years to cope with the 
production of scenario results numbering in the tens, however, scenario results 
numbering in the hundreds or even thousands are now being demanded. 
Solvency II in particular has led a number of life and general insurers to 
develop internal capital models, in which hundreds of thousands of potential 
scenarios are produced reflecting a range of possible outcomes for economic 
and insurance risks. Within each of these scenarios, the insurer revalues its 
balance sheet, and the solvency capital requirement is set so as to ensure 
solvency in all but a one in two-hundred year event. In other words, the ‘tail’ 
of the capital distribution needs to be covered. 

  
2.2.4 While the basic concepts of simulation-driven capital modelling will be 

familiar to a number of practitioners, the challenge remains as to how to 
revalue a balance sheet in thousands of different scenarios within a short space 
of time. The calculation of liabilities itself is a complicated process, and 
computing capacity is finite. A number of simplifications are needed and the 
trick is to ensure that the accuracy of the result is not compromised. 

  
2.2.5 As far as cashflow models are concerned, the modelling demand has finally 

overtaken technological supply. This has led to the introduction of replicating 
formulae and other proxy models in order to replicate the more complex 
cashflow models and thus cope with the increased demand. 

   
2.2.6 This is the subject of this paper; the proxy models that are used to bridge the 

gap between the demand placed on cashflow models and the limited 
technology providing it.  

2.3 WHAT IS A PROXY MODEL? 
2.3.1 So what is a proxy model?  All models model something; however, it is useful 

to distinguish between those models which approximate reality and those 
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which simply approximate a more complex model.  The distinction of a proxy 
model, therefore, is that it models another model.  

 
2.3.2 The primary example of a proxy model arises in capital requirements 

modelling. A typical company spends considerable effort to run a number of 
valuations of the company, for discussion we will say 50 valuations under 
various scenarios. This relatively low number arises because each valuation is 
quite involved, representing calibration of scenarios across interest rates, 
equity markets, currencies, lapse assumptions, mortality, and so on. Each of 
these valuations might be a Monte Carlo valuation involving thousands of 
simulations, producing a single time-zero value. However, these 50 valuations 
are not sufficient to deduce a 1-in-200 stress for the company by themselves. 
The desire is to test many more scenarios, say 10,000 or 100,000. However, 
the technology does not allow so many different valuations. So a proxy model 
is developed and employed.  

 
2.3.3 The proxy model is designed to reproduce the 50 valuations, but also provides 

values for other combinations of the underlying variables. Furthermore, this 
proxy model can be run quickly. It is often in current practice a polynomial of 
the underlying variables, although this paper discusses other models. The 
10,000 or 100,000 scenarios to calculate the 1-in-200 Value-at-Risk (VaR) 
stress for the company are run using this proxy model, not whatever process 
made the original 50 valuations. The 1-in-200 VaR is of particular importance 
since the Solvency Capital Requirement in Solvency II is based on this.  

 
2.3.4 Notice that the proxy model is calibrated to replicate another, more 

complicated model. It is not directly a model of reality. In the typical example 
of a polynomial proxy model, its only claim to be a valuation of the company 
is that it has the same value for the 50 particular scenarios created by the 
complex model.  

 
2.3.5 The jargon for the complex model is a “heavy model” or sometimes on 

valuation will be called a “heavy lift”. The proxy model is called a “light 
model”. For example, one says in the above example that 50 heavy lifts were 
used to calibrate a light model (or proxy model) in order to run 100,000 
scenarios.  

 
2.3.6 The above example, while representative of the situation, is not universal. The 

number of heavy lifts or the number of light model scenarios run may vary. 
The proxy model may not be a polynomial, rather something else.  

 
2.3.7 For our purposes and the remainder of this paper we define proxy models as 

those models approximating a more complex model.  Going further, however, 
we can also make the distinction between proxies that attempt to emulate the 
output of a more complex model and those that attempt to emulate the model 
itself. 
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3 DESIGNING AND CHOOSING A MODEL 

3.1 TYPES OF MODEL 
3.1.1 There are a multitude of choices to be made when building a proxy model.  To 

help us cut through the myriad of options available, we find it useful to think 
of most proxy models as being a replicating formula consisting of a number of 
formula elements with each element being allocated a coefficient. 

  
3.1.2 Specifically, suppose we have N risk drivers, R1,…,RN which take on the 

values r1(s),…,rN(s) for scenario s and each scenario produces value y(s).  We 
would like to fit this with a proxy function, so we select a number of basis 
functions of the risk drivers, Xk(r1,…,rN) for k=1,…,K.  The choice of basis 
function is critical, so let us describe a couple of choices for illustration.   

 
3.1.3 For a polynomial proxy function, the functions Xk are polynomials in the risk 

drivers r1,…,rN. This choice is often justified by the Stone-Weierstrass 
mathematical theorem (Stone, 1948) that if the degree of the polynomials is 
high enough, then any continuous function can be fitted to an arbitrary degree 
of accuracy.  We challenge this justification of polynomials later (ref. 6.2.4) 
but offer an alternate justification (ref. 4.2.5 to 4.2.19 & 6.2.64 to 6.2.72) in its 
place.  

 
3.1.4 For a portfolio replicating model, the functions, Xk, are assumed to be bond-

pricing formulas or other security pricing formulas. However, without 
generalising further, this means that the risk drivers used are restricted to only 
that subset of drivers r1,…,rN that refer to financial markets, such as interest 
rates, corporates spreads, equity prices, volatilities, currencies, and so forth 

 
3.1.5 It is possible to consider other functions, and a number of alternatives are 

considered in chapter 6.  
 
3.1.6 No matter which basis functions Xk are selected, the next step is to find the 

proper combination of these that best reproduce the values for each portfolio. 
In other words, one must solve for β1,…,βk in the following system of 
equations:  

 
( ) )()(,),(

,1
1 sysrsrX

Kk
Nkk =∑

= 

β  

 
 For scenarios s=1,…,S where S≥K. 
 
This is often written in matrix form as βX=y 
 

3.1.7 Where S>K we have an over-determined system for which an exact solution is 
usually not possible thus requiring a best solution be determined (determining 
the best solution is discussed in section 5.3). 

 
3.1.8 We note that the above system of equations is linear in the β1,…,βk for any 

choice of the basis functions, X1,…,XK.  A common impression that many 
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actuaries have is that the linear algebra solves for the proxy model only when 
the basis functions are polynomials, but as can be seen from the above, the 
system can be linear for any basis function.   By viewing proxy models in this 
way we are able to identify the fundamental issues and processes common 
across the different model types and hopefully provide a framework for 
comparison of different approaches.  

 
3.1.9 We have already commented that when the basis functions, X1,…,XK, are 

polynomials, this is the replicating polynomial proxy function which is 
covered in Section 6.2.  When the basis functions are market security 
functions of market risk drivers then this represents the replicating portfolios 
proxy model discussed in Section 6.4. The commutation functions 
methodology (Section 6.5) uses a basis function focused on commutation 
functions. All three of these fit into the above general description of a proxy 
model and how it is derived. 

 
3.1.10 The radial basis methodology (described in Section 6.3) is different in that it 

uses the values of the scenarios themselves as the basis functions and assumes 
that the proxy function is a function of the “distance” between point 
considered and the fitting scenarios. The trick with the radial basis 
methodology is to get the correct weighting between 'local' effects (where the 
scenarios near the point being considered influence that point's value) and 
'global' effects (where the scenarios further from the point considered have an 
impact). 

 
3.1.11 A methodology of increasing prominence, and therefore worthy of mention, is 

that of Least Squares Monte-Carlo (LSMC).  However, we find that LSMC is 
not a different type of model at all, often being implemented to calibrate a 
replicating polynomial.  Instead, it is a method characterised by its method of 
calibration, making use of a large number of scenario results, y(s), the number 
being large in relation to the number of basis functions, Xk.  This methodology 
is discussed further in section 5.4. 

 
3.1.12 At this point we should emphasise that not all proxy models would neatly fit 

into the linear solving-for-weights paradigm describe above, as there can be 
infinitely many ways of simplifying a heavy model. However, we believe that 
this forms a valuable framework for comparison, and that many prevalent 
proxy models in the industry do indeed fall within this framework. Thinking in 
terms of this paradigm will certainly help the reader in the sections that follow 
where we discuss, in a generalised sense, some fundamental choices being 
made in choosing a model. 

3.2 USE OF THE MODEL 
3.2.1 The first choice we consider here is the uses to which the model will be put. 
  
3.2.2 Initially, any heavy model (designed to emulate reality as best as it can) will 

have been developed for a specific purpose or to carry out a specific role. 
However, the model will often be subject to subsequent developments in order 
to fulfil additional roles or for other purposes. Whilst this is usually possible 
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for the primary heavy models, it may not be so straightforward for some proxy 
models, as many fundamental design choices are made early in the process.  

 
3.2.3 By their nature, a proxy model is a less complex version of some other model 

and this loss in complexity is usually accompanied by a loss in the ability to 
reproduce some of the behaviours of that which it is trying to emulate. 
However, rather than a smooth loss in ability across the whole model, a proxy 
model will often sacrifice some behaviours altogether in favour of other 
behaviours.  

 
3.2.4 In other words, in order for a proxy model to do one thing (almost as well as 

the original) it must lose the ability to do something else. This will often be 
required so as to maintain the proxy model's value in terms of speed and 
accuracy.  

 
3.2.5 It is therefore important that the intended use of a proxy model is considered 

before choosing, designing and then building the model since subsequent 
attempts to adapt it may not be possible or may be at the expense of the 
original purpose.  Furthermore, the model may be used for purposes for which 
it is simply not suitable.  

 
3.2.6 It is in this context that we give particular consideration to the use of proxy 

models in capital measurement and management. Proxy models are used in 
capital management to provide a proxy full distribution from which 
appropriate percentile results can be drawn (such as the ubiquitous 99.5th 
percentile or 1-in-200 as used by both the UK Individual Capital Assessment 
and the European Solvency II capital regimes).  

 
3.2.7 Despite a primary interest in the capital distribution, it is often the individual 

scenario results that draw most attention. This is due in part to the fact that a 
comparison between primary and proxy scenario results is often the only way 
of assessing accuracy of the proxy. However, there is also the temptation to 
use the multitude of scenario results for more detailed capital analysis and 
management. 

  
3.2.8 It is here that care must be taken as some proxy models may be ill-suited to 

this use, being very inaccurate at the individual scenario level. However, an 
important result is that a model need not be accurate at the scenario level for it 
to provide an accurate description of the capital distribution and likewise an 
accurate assessment of required capital. This result is discussed in greater 
detail in section 4.2 when considering the goodness of fit of proxy models and 
again in section 6.2 when a case study involving replicating polynomials is 
performed.  

3.3 COMPLEXITY VERSUS ACCURACY 
3.3.1 Having briefly considered complexity in the context of use, we now turn our 

attention to the choice of complexity versus accuracy. If we consider 
complexity and its association with accuracy, we can increase the complexity 
of a proxy model by either increasing the complexity of those formula 
elements, X1,…,XK, introduced in section 3.1 or by increasing the number of 
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elements, K.  And since we normally associate increasing complexity with 
increasing accuracy, more sophisticated formula elements or an increased 
number of formula elements will often be associated with greater accuracy. 
However, this will often lead to slower runtime hence the expected 
relationship between greater accuracy and slower runtime.  

 
3.3.2 Generally, as each formula element, Xk, becomes more sophisticated and able 

to capture more complex behaviour, the number of elements required for a 
given level of accuracy should fall. The important implication of this is that 
the number of calibration points should likewise fall.  

 
3.3.4 We therefore often have a trade-off between complexity of formula elements 

and ease of calibration, i.e. for a given level of accuracy, as the complexity of 
the formula elements reduce, the number of required elements increase and the 
model becomes more difficult to calibrate. This is an important consideration 
when choosing a model and shows how the choice between accuracy and 
complexity will not only influence results but the implementation process as 
well.  

 
3.3.5 We discuss the impact of this choice in more detail in section 4 where we 

describe criteria for developing and implementing a proxy model.  

3.4 INTUITION 
3.4.1 The final choice we consider here, and perhaps a less obvious one, is how 

intuitive we want the model to be. This may be manifested in terms of formula 
structure (which is discussed in section 5.2).  

 
3.4.2 At the one extreme, one could be agnostic to intuition and prioritise the 

descriptive power of the model. This may lead to the use of polynomial fitting, 
which provides tight bounds within a given range, but where the coefficients 
(and in particular changes from one year to next) are not intuitive. Thus, for 
example if the coefficient of x2y changed from -652 to 1,456 from one year to 
next, this information in itself may not necessarily prove insightful, even 
though the overall polynomial fits can be shown to fit well over a given range. 

  
3.4.3 On the other hand, one may try and use a more intuitive formula structure such 

as a portfolio of financial instruments / options or commutation functions, 
each component of which may have an intuitive meaning.  For example, a set 
of with profit liabilities may be represented by a series of portfolio put options, 
with each option roughly corresponding to a block of business sharing similar 
characteristics and maturing in the same year.  In this case, the movement of 
the coefficients of the respective options from year to year do provide valuable 
additional insight. 

  
3.4.5 The two cases above are perhaps extreme examples, but they do serve to 

illustrate one of the key choices available when designing the model.  In an era 
where a wider range of business functions are expected to use and understand 
capital calculations, intuitive methods can ease embedding of capital metrics 
into business as usual processes, as the components have meaning and the 
coefficients provide insight.  Intuitive methods are perhaps more powerful 
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when there is sufficient knowledge of the problem at hand (i.e. knowledge of 
the products and liabilities being analysed), as well as resources to design a 
neat (but potentially more complex) formula structure.  On the other hand, 
when approaching a problem with little knowledge about the products / 
liabilities, a polynomial method can be used as a general (albeit brute force) 
method, that would approximately work in a large number of situations.  

 
3.4.6 Perhaps another advantage of intuitive methods is their behaviour outside of 

their fitting points.  A replicating portfolio can be expected to behave broadly 
sensibly outside of its 'reliable range', whereas a classic criticism of pure 
descriptive methods such as polynomial fitting is that it may run through all 
the known points but vary widely between these points (interpolation), or 
diverge from expectations outside the fitted range of these points 
(extrapolation).  
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4 METHODS FOR EVALUATING A PROXY MODEL 

4.1 INTRODUCTION 
4.1.1 In order to make an informed choice of model we need means of evaluating 

the various models; some objective, some not so.  
 
4.1.2 The choice of model should be influenced primarily by the uses to which the 

model will be put and should therefore be evaluated in this context, i.e. how 
well does the model achieve what it was initially designed to do? In the 
previous section we discussed in general terms some issues to consider in 
choosing a model. It is useful to expand on that discussion and address aspects 
of accuracy and complexity in more detail in order to develop criteria for 
assessing a model. 

  
4.1.3 We start by discussing accuracy.  

4.2 QUALITY OF FIT 
4.2.1 A variety of statistical methods can be used to assess the quality of fit of the 

proxy model. Many of these are well known and often used for comparing the 
results from a known quantity, such as heavy model results on out-of-sample 
test points, to an estimated quantity, such as proxy model results. These 
include, but are not limited to: 

  
• Anderson-Darling  
• Kolmogorov-Smirnov  
• Cramer Von Mises  
• Shapiro Wilks  
• Chi squared  
• Akaike Information Criterion  
• Bayes Information Criterion  
• QQ plots  
• PP plots  
• R squared (regression)  

 
4.2.2 The first five in the list are statistical tests used to assess whether a given 

distribution is an appropriate representation of the observed data. After 
applying this test there may be more than one possible 'answer'. Information 
criterion such as Akaike and Bayes are used to assess the trade-off between 
complexity of the formula structure and the goodness of fit so can help to 
shorten a short list. QQ and PP plots are visual aids used to assess the 
goodness of fits across quantiles or percentiles and are particularly useful 
when looking at specific regions of the distribution. This is different from the 
R squared technique which considers the entire distribution.  

 
4.2.3 In the context of proxy models there are different points to consider when 

applying these tests as, in general, attaining a good quality of fit across all 
aspects of the calculation is unlikely without compromising the speed and 
convenience of the proxy model.  Points to consider include: 
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• Distribution accuracy – is accuracy required across the entire distribution 

of each component, or only in particular regions?  
• Scenario accuracy – is accuracy required for some subcomponent of the 

calculation or for the entire calculation? For example in the capital 
requirement calculations accuracy particular focus is placed on specific 
scenarios (e.g. ‘the’ 1-in-200 scenario) but in other cases the distribution of 
the capital requirement may be the focus. 

• Component accuracy – is accuracy required for particular factors or for the 
combined result? 

 
4.2.4 Answering these questions is required to assess the quality of fit of the model, 

but in order to answer these questions the uses of the model must be 
considered. Before considering some examples, we return to the subject of 
distribution accuracy versus scenario accuracy introduced in section 3.2. 

 
Distribution Accuracy versus Scenario Accuracy 
 
4.2.5 As already discussed, the growing interest in proxy models has largely been 

driven by the need to run many thousands of scenarios from which the capital 
distribution can be estimated and quantile results drawn.  An issue arises in 
that an assessment of distribution accuracy will necessarily be based on 
scenario accuracy, itself being based on a limited number of out-of-sample test 
scenarios.  An important result, however, is that distribution accuracy, and 
therefore required capital assessment, is not necessarily dependant on scenario 
accuracy. 

 
4.2.6 This is best illustrated with an example drawn from our replicating polynomial 

case study (ref. 6.2).  Consider the chart in Figure 4.2.1 showing error 
percentages from 20,000 out-of-sample tests of a proxy cost-of-guarantee 
model. 

 
Fig. 4.2.1 – Proxy ‘Cost-of-guarantee’ error percentages 

 
 

4.2.7 By most conventional measures, in which actual results are compared to proxy 
results for individual scenarios, the results demonstrate a poor quality of fit, 
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ranging from -55% to +38%.  (This fit could have been improved using a 
variety of methods but this is not the purpose of the exercise here.) 

 
4.2.8 Surprisingly though, we found the quantile results to be very accurate across 

the whole distribution.  In particular the error at the 99.5th percentile was less 
than 0.2%.  This is demonstrated in figure 4.2.2 in which the ranked errors 
from the chart in figure 4.2.1 (distribution of scenario errors) are compared to 
the error in ranked results (distribution error given by the difference between 
ranked proxy results and ranked actual). 

 
Fig. 4.2.2 – Ranked errors vs error in ranked results 

 
 

4.2.9 So how can the scenario results be so inaccurate and yet the quantile results be 
so accurate?  Based on our experience of approximations in one risk 
dimension, it is tempting to assume that proxy model errors increase as 
scenarios become more extreme.  Figure 4.2.3 shows the error curve resulting 
from just such an approximation; in this example an optimal quadratic 
polynomial approximation function. 

 
Fig. 4.2.3 Error curve in one risk dimension 

 
 
4.2.10 Beyond a certain point there are no further turning points, and errors continue 

to increase in magnitude.  Drawing quantile results in the tails leads to 
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increasingly large errors as the scenario being considered becomes more 
extreme. 

 
4.2.11 In fact, this occurs not due to the extremity of the event but due to error bias in 

the region of interest.  All errors are of one sign and for any particular 
percentile there is only one point to choose.  Therefore, the error in the 
quantile result is dictated by the error in that scenario result. 

 
4.2.12 However, in multiple risk dimensions the single point is replaced by the curve 

of constant loss.  This is a curve representing the combinations of different 
risk variable values that all give the same result. For example, if equity values 
drop by 10% and lapse rates increase by 5%, we might get the same answer as 
if equity values rise by 5% and lapse rates fall by 10%, and in this case these 
two scenarios would be on the same curve.  If we could plot the errors along 
this path we would not expect the errors to be of one sign, the proxy being 
greater or less than actual at different points along the path.  Figure 4.2.4 
illustrates. 

 
Fig. 4.2.4 – Curve of constant loss 

 
 
4.2.13 At specific points the errors can be large, up to 60% in our example, but the 

nature of least squares, which does a good job of minimising average error, 
removes some of the error bias along the path of constant loss.  However, this 
is by no means guaranteed, even with a least-squares fit. 

 
4.2.14 In order for the result to apply we wish to minimise error bias along the curve 

of constant loss.  More formally, we wish to have an expectation of error equal 
to zero. 

 
4.2.15 So what does this mean for us in the real world?  Returning to our example, 

comparing ranked results of actual versus proxy we find that the scenario 
numbers in each of the two lists of results do not match.  In particular, the 
biting scenario in the proxy model, that scenario providing the 99.5th 
percentile result, is different from the biting scenario in the heavy model that 
provides the actual result.  However, despite the biting scenarios being 
different, the results of the two scenarios are very similar.  This is illustrated in 
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table 4.1 which compares the biting scenario results from each of the proxy 
and heavy models. 

 
Table 4.2.1 

Proxy (£m) Actual (£m) Error (£m) Error (%) 
441.5 442.2 (1.1) (0.17%) 

 
4.2.17 In reality we are unlikely to have the ‘actual’ quantile result so may be 

inclined to check our proxy result by running the implied biting scenario 
through the heavy model.  Table 4.2 shows the results when the biting scenario 
given by the proxy model is run through the heavy model. 

 
Table 4.2.2 

Proxy (£m) Actual (£m) Error (£m) Error (%) 
441.5 448.3 6.8 1.52% 

 
4.2.18 From here on, the inaccuracy at the biting scenario can dominate proceedings 

if we are not careful.  In particular, it may be concluded that the correct result 
is £448m, overstating the true result of £442m.  Worse still, it may be decided 
to change the calibration of the proxy model to provide a better fit at the proxy 
model derived biting scenario. 

 
4.2.19 We conclude, therefore, that using an inaccurate model to determine a ‘biting 

scenario’ which is then subjected to more detailed analysis may not be 
appropriate.  The above results show that the capital measured by a proxy may 
be relatively accurate even if the scenario producing it is not.  It also raises the 
issue of just how much value there is in analysing a single biting scenario.  If 
the proxy model has already provided the correct capital result then from a risk 
management perspective it may be more appropriate to test a range of biting 
scenarios along the curve of constant loss in our primary models. 

 
4.2.20 It is also instructive to consider the problem of estimating VaR from another 

viewpoint.  In determining VaR through a proxy model, there are two possible 
sources of error: 

 
• Proxy model error, where the value in a particular scenario differs to the 

value from the heavy  model in that scenario, 
• Stochastic error, which reflects limitations in Monte Carlo simulation. 

The estimated VaR through Monte Carlo simulation will not equal the true 
VaR.   (There is discussion of simulation error in Frankland et. al., 2013.) 

 
4.2.21 It is interesting to consider research which investigates the relative size of the 

two error sources.  This is considered in a slightly different context by Stentoft 
(2004), looking at pricing American options through a regression that uses a 
Least Squares Monte Carlo approach.  Under this approach, the option value 
before maturity, assuming it is not exercised early, is estimated through a 
value determined by polynomial regression.  This is compared to the value 
under early exercise to determine the option value in the scenario considered.  
Under this approach, the two sources of error are as in 4.2.20 – proxy model 
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error is error caused by the polynomial approximation; and stochastic error is 
caused by an insufficient number of simulations in the Monte Carlo projection. 

 
4.2.22 Stentoft found that the number of simulations in this setting is a more 

important driver to accuracy than the number of terms in the polynomial, 
proving that the estimated option price converges to the true option price 
under certain conditions.  In particular, convergence is guaranteed under 
various assumptions provided that: 

 

  ∞→∞→→ MandNas
N

M 0
3

 

 
 Where M is the number of terms taken in the Legendre polynomial and N is 

the number of simulations.  Hence the number of terms in the polynomial can 
increase at a materially slower rate than the number of simulations. 

 
4.2.23 We believe a similar result applies in the setting of this paper – using 

estimated function values in a Monte Carlo simulation to determine the VaR 
of the true function under some statistical distribution.  [The details will 
appear in Appendix 1.] 

 
4.2.24 Given this discussion around the distinction between scenario accuracy and 

distribution accuracy, we now provide some example uses of the model and 
their respective accuracy considerations.  

Example Uses of the Model 

Daily reporting  
4.2.25 A proxy model used for frequent reporting such as daily capital calculations 

would most normally encounter small movements; although in the event of a 
sudden large movement should also provide reasonable results. If the purpose 
of the daily reporting is to provide fast and accurate results in the event of a 
shock then when assessing quality of fit, we may focus on the areas around the 
current scenario. However, since the model may be used to assess capital 
requirements, the tails of the distribution are potentially also important.  

 
4.2.26 This suggests that calibrating across the entire risk distribution is important; 

near the base case is required to assess the impact of small market movements 
and the tails are required to estimate capital requirements. Also as individual 
scenarios (univariate stresses) are unlikely to be assessed, more accuracy is 
required on the combined result. 

 
Stress testing  
4.2.27 Stress testing involves changing one single component and assessing the 

impact on the combined result. So when assessing the quality of fit we may 
focus on the goodness of fit of particular components. As stress tests by their 
very nature consider extreme results the fit of the whole distribution should be 
assessed. 
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Scenario testing  
4.2.28 Scenario testing involves changes combinations of components and assessing 

the impact on the combined result. In this case when assessing the quality of 
fit the focus is on combined results rather than particular factors and again as 
extreme events are investigated, across the distribution.  

 
Setting limits or appetites  
4.2.29 Appetites, although driven by the combined result, are commonly set at the 

component level rather than the combined result level. This is largely because 
prescribed actions used to manage against those limits are more easily 
prescribed at the component level. This implies the focus of any testing is on 
individual factors. However, the findings discussed above under distribution 
accuracy versus scenario accuracy (ref 4.2.19) suggest a range of biting 
scenarios should be considered when deriving appetites or limits. 

 
Strategic analysis 
4.2.30 This “what if” analysis is not prescribed and can involve any number of 

changes including adding or removing entire components. Changes like these 
will often change interactions between components and are notoriously 
difficult for proxy models. Initially the focus is usually the combined result but 
it is likely that components will also be analysed. 

 
4.2.31 In summary, the regulatory and risk management environment encourage 

businesses to be able to carry out calculations for different purposes with 
increasing frequency, speed and accuracy. The five examples given are just a 
small sample of the uses of proxy models. Consequently the actual use for a 
single proxy model usually includes all of the above examples and more, and 
so the relative importance of the goodness of fit tests requires significant 
expert judgement.  

4.3 EASE OF IMPLEMENTATION  & COST 
4.3.1 There are then the related issues of ease of implementation, cost and speed of 

implementation. Solvency 2 requirements provide a defined reporting timeline 
to aim at but there is also increasing demand for faster model estimates for 
firms looking to embed economic capital metrics as part of an Enterprise Risk 
Management framework. Set against the ever increasing demand for faster 
model estimates is the need to consider the quality of fit across a range of 
metrics supporting regulatory reporting, internal risk appetite and capital target 
reporting and stress and scenario testing. 

  
4.3.2 The competing challenges of speed and quality will drive choices on 

implementation alongside the cost of initial implementation and ongoing 
maintenance.  

Process Design  

4.3.3 Frequency of the reporting cycle and the length of the reporting window will 
influence choices around the design of the reporting process and timing of 
calibration activity. For example, for a company with a simple balance sheet and 
efficient heavy models it may be feasible to carry out calibration as part of a single 
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reporting process. For more complex balance sheets, it will be necessary to 
calibrate the proxy model in advance of the reporting period and use roll forward 
techniques along with a reduced volume of modelling required to “validate and 
true up” as part of the reporting process. Where there are multiple uses for the 
proxy model different levels of validation may evolve. For example: 

  
• Daily or monthly solvency monitor estimates driven by proxy model with a 

trigger framework defining when adjustment would be required.  
• Quarterly regulatory reporting with re-calibration where practical and a 

defined validation and adjustment process.  

Calibration  

4.3.4 Consideration should be given to the following factors when choosing the 
calibration approach: 

  
• Use(s) of the model  
• Quality of fit and error tolerances  
• Model stability  

 
Calibration Method 
4.3.5 The choice of calibration technique will be influenced by the quality of fit 

required and the uses to which the model is to be put. Where there are multiple 
uses demanding a good fit across a range of metrics efficient calibration 
techniques allowing the calibration of more complex proxy functions are 
likely to be required.  

 
Calibration Frequency 
4.3.6 The frequency of calibration activity will be driven by the stability of the 

model (discussed below) and the extent to which any management actions and 
changes in risk profile over time can be adequately captured without the need 
for re-calibration.  

 
4.3.7 Where management actions or evolution of the risk profile are significant 

factors this is likely to point to more frequent re-calibration in turn influencing 
the spend on initial implementation.  

Initial Implementation  

4.3.8 Typically the calibration phase might demand a high volume of fitting points 
to be generated using the heavy models. Efficient calibration techniques such 
as Least Squares Monte Carlo may require fundamental changes to the way 
heavy models are set up and run to support a large number of fitting points 
relative to more traditional curve fitting approaches. In addition to model 
changes, these techniques may also change the way in which heavy model 
output is validated with the need to place more focus on automation and 
validation of model set up.1 

1 Automation is arguably important for traditional curve fitting as well.  If say, 200 fitting points and 
100 out-of-sample test points are required, with 5000 simulations for each point, then automation may 
be critical to run the process in a reasonable time-frame. 
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4.3.9 Alongside costs to implement the proxy model tools themselves this means 

that the cost of initial implementation can be significant. Higher spend at 
outset needs to be set against reduced ongoing costs obtained by the increased 
speed of the calibration and proxy modelling processes. However, the 
marginal benefits of additional model spend will start to reduce as process 
hotspots and validation activity start to impact the critical path.  

4.4 MODEL STABILITY AND FACTORS THAT INFLUENCE IT 
4.4.1 For any model, stability is an important issue. This generally means that the 

output of the model does not change significantly for small changes in the 
inputs. 

  
4.4.2 An example for readers familiar with Monte Carlo simulation would be the 

requirement that insignificant changes in the random number generation 
should not impact the final result. This requirement is normally met by 
performing more simulations so that the significance of any random number is 
minimized. For proxy models that are used for Monte Carlo simulations, this 
would still be a requirement, though there are additional requirements related 
to a proxy model. 

  
4.4.3 Stability requirements specific to a proxy model are:  
 

• Small changes in heavy run results (inputs to the proxy model calibration) 
should not cause large changes in the proxy model itself. Do small changes 
in heavy run results create large differences in light run results?  

• The proxy model should be stable over time. For example, if a proxy 
model is to be recalibrated annually but used quarterly, then the 
methodology employed should be one in which quarterly re-calibrations 
would have been stable if they had been employed. 

  
4.4.4 In general, we test stability by perturbing the inputs and confirming that the 

change in the outputs is not significant.  

4.5 COMPLEXITY – MANAGEMENT ACCEPTANCE 
4.5.1 Complexity is a common theme across many of the factors that influence 

model choice and design, not least in terms of accuracy and cost. However, the 
ability to understand, interpret and then communicate the results produced by 
a proxy model should not be underestimated as a standalone issue to consider.  

 
4.5.2 The risks of putting complete faith in a model without understanding its 

weaknesses and limitations, the so-called 'black box', are well documented. At 
the other end of the scale, however, there are the risks associated with a lack of 
faith in, and management acceptance of, a model.  

 
4.5.3 In particular, management acceptance of a proxy model will impact the degree 

to which the information it provides will be trusted and therefore heeded. 
Modern risk management demands much more of models than simple 
measurement and data production. The data produced by a model needs to be 
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converted into usable information before management will be able to use it to 
inform and guide decision making. The ease with which this conversion can 
take place will be influenced by both the complexity of the model and the 
level of intuitive understanding it provides. 

  
4.5.4 Often, but not always, the complexity of a proxy model will be closely 

associated with the level of intuitive understanding it provides; the simpler a 
model becomes, and thus the easier it is to understand, the less relation it 
might bear to reality, perhaps making it more difficult to have faith in the 
output. This is made worse if it proves difficult to interpret and explain 
unexpected results due to the lack of real-world meaning associated with some 
or all of the model's components. This is a criticism that some may level at 
replicating polynomials.  

 
4.5.5 Conversely, the greater intuition provided by a model that is more reflective of 

reality may come at greater cost due to increased complexity. The output may 
be easier to interpret but then the model is more difficult to understand. 
However, the very reason for needing a proxy model in the first place is to 
reproduce the output of a more complex model. Therefore, as the proxy 
becomes more complex, it moves closer to that which it is meant to 
approximate and becomes of less value. A balance needs to be struck between 
a model that is a sufficient simplification of a more complex model so as to 
have value whilst remaining sufficiently complex to be able to provide 
meaningful and accurate management information.  

 
4.5.6 The heavy-lift cashflow models are an example of very complex models 

attempting to match reality as closely as possible and in which there is a high 
level of trust in the output, even by those that do not know the inner workings 
of the model. At the other end of the spectrum, there remains a degree of 
uncertainty as to the level of reliance that can be placed on proxy models. 
Admittedly this contrast arises not only from the different level of 
intuitiveness of the models but also from the different lengths of time over 
which the models have had to become embedded in operations.  

 
4.5.7 Ultimately, in order for senior management to trust the model, they either need 

to trust the information it provides, understand the model themselves, or a 
combination of both. Thus in the context of gaining management acceptance, 
one could view the choice as being between a model that is easy to understand 
or results that are easy to understand (interpret). Obviously this is a 
generalisation and arguably a little too simplistic since the reality will be a 
balance between the two. But, it does serve to illustrate more succinctly the 
choice that needs to be made.  
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5 CALIBRATION 

5.1 INTRODUCTION 
5.1.1 Once a model basis has been chosen, it will need to be calibrated. Using our 

replicating formula paradigm introduced in section 3.1 we recognise two 
separate stages in the design and calibration of the formula common across 
most model types.  

 
5.1.2 The first stage is determination of the formula structure, deciding the elements, 

Xk, to be included in the formula. For example, in respect of a replicating 
polynomial it is deciding whether to include in the formula an x2, an xy3 or an 
xyz etc.  In respect of a replicating portfolio it is deciding which assets are 
included in the final replicating portfolio.  

 
5.1.3 Once the formula structure and the included elements have been determined, 

the second stage of calibration is determining the coefficients, βk, of each 
element.  

 
5.1.4 Both these stages may occur at the same time, more commonly where an 

automated computer algorithm is being utilised, or the two stages may remain 
distinct processes.  

 
5.1.5 Whether the two stages are run as separate processes or not, their separate 

identification is useful so as to recognise the differing objectives fulfilled by 
each stage. When determining formula structure the objective is to build a 
model that can reproduce the behaviour of a more complex model whilst the 
objective when determining the coefficients is to reproduce the results of a 
specific dataset.  

 
5.1.6 Before considering those objectives further, and in the context of design and 

calibration, it is also worth considering the two different environments in 
which the chosen model will be operated. The development environment, in 
which the model will be designed, built and tested, invariably involves both 
stages of the calibration process, often in an iterative refinement process. Once 
in a production environment, however, the model will often be required to 
produce results to restricted time-scales. As such, once a model is in a 
production environment, calibration may be limited to the second stage only, 
determining formula coefficients. 

  
5.1.7 Within both stages there are various choices over methodology to consider. 

These and other issues are considered in further detail in the following 
sections.  

5.2 DETERMINING FORMULA STRUCTURE 
5.2.1 The key objective when determining formula structure is to construct a model 

that can adequately reproduce the behaviour of a more complex model when 
subjected to variation in a number of different risk parameters.  
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5.2.2 Care must be taken here to distinguish between reproducing the behaviour of 
the underlying model and the behaviour of the results it produces. If relying on 
data to represent the behaviour of the model then any behaviours present in the 
model but not represented within the data will likely not be captured by the 
proxy model. The proxy may fail to be predictive.  

 
5.2.3 Alternatively, relying solely on an understanding of the underlying model may 

also lead to an inadequate proxy due to limitations in knowledge of the model. 
A model will invariably have many variable risk parameters and the 
interactions and interdependencies between those parameters are many and 
complex. Even where interactions are recognised it may be difficult to predict 
the nature of those interactions without reference to data.  

 
5.2.4 In reality it is unlikely that reliance would be placed solely on an 

understanding of the model when trying to construct a proxy and the point is 
made here merely to illustrate the extreme alternative to relying solely on data. 
And yet, it is interesting to note that reliance solely on data for the 
construction and calibration of a proxy model is not unusual.  

 
5.2.5 In order to provide a more intuitive model (even for polynomials) some 

knowledge of that which we are trying to approximate can be employed 
alongside data analysis to provide insights into the complex interactions 
between the risk parameters. Knowledge and data can be used to identify the 
various risk interactions whilst data is then used to determine the nature of 
those interactions.  

 
5.2.6 One such approach to building a proxy model may begin with the construction 

of the formula or components of the formula based on knowledge and 
expectations for the interactions between risk parameters. Following 
calibration and testing, the model can be refined based on observed results, i.e. 
goodness of fit. A series of refine and retest processes may be required before 
an adequate formula structure is derived.  

 
5.2.7 An alternative is the use of an automated algorithm which will seek to derive 

the formula structure by testing many different structures against a given 
dataset, selecting the structure which, following calibration, provides the best 
overall fit to the data.  

 
5.2.8 However, even where an automated algorithm is used, closer examination 

reveals that the method is often just emulating a manual process, replacing 
subjective decision making with objective decision making techniques. The 
obvious advantage of objective methods, however, is that they can be codified 
and carried out by a computer. This makes it possible to test a far greater 
number of formula structures.  

 
5.2.9 Whilst this approach may provide a better fit there is the risk that that fit has 

been achieved through the introduction of non-existent or inappropriate risk 
parameter relationships. This can lead to unexpected results when the proxy is 
used to extrapolate results from the calibration data. That being said, the 
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failure in this example is not in the use of automation but would be due to a 
limitation in the decision making algorithm.  

 
5.2.10 Ultimately, therefore, the choice of process for determining formula structure 

will fundamentally involve a choice between the level of subjective 'expert 
judgement' and the level of objective 'automation'. Here, it should be made 
clear that 'automation' can include processes carried out manually. We are 
referring more to the decision making process rather than the means by which 
decisions are implemented.  

 
5.2.11 This choice, and the balance struck between the two, will influence to what 

degree, if any, a model will be predictive as well as impacting on the stability 
and intuitiveness of results. 

  
5.2.12 If we recall from section 3.4 when discussing intuition and predictive or 

descriptive models, a predictive model arguably demands a more subjective 
approach where the model is constructed from pre-conceived ideas about how 
the various parameters inter-react before being tested and refined. This 
approach should hopefully provide a more intuitive and predictive model 
although the degree of truth in this will be influenced by the basis function 
used. 

  
5.2.13 For example, a carefully constructed polynomial may offer some intuitive 

understanding to those very familiar with the model but trying to explain why 
the coefficient of equity squared multiplied by lapses has changed from 
positive to negative exposes limitations to this intuitive understanding, even 
for those closest to the model's construction. On the positive side, however, 
building the proxy model subjectively should at least explain why this formula 
element is required in the first place, even if the meaning of its coefficient is 
unclear. 

  
5.2.14 That said, there are significant advantages to using more objective or 

automated methods, not least in speed and ease of replication, which will 
themselves have lower cost implications. Without getting drawn too much into 
a discussion around Actuarial philosophy, it may also be tempting to use a 
method which utilises a minimum of expert judgement. However, whilst 
responsibility for design is taken away from those running the proxy model, 
the same cannot be said of the blame should the model fail. It is vital that the 
limitations of the model and the point at which it fails are understood and to 
this end some understanding of the formula structure, however it is derived, is 
crucial.  

5.3 DETERMINING FORMULA COEFFICIENTS 
5.3.1 The second stage of calibration is the determination of the coefficients, or 

weights, βk, to be assigned to each formula element. 
 
5.3.2 Whilst the objective of the first stage is to build a model capable of emulating 

the behaviour of a more complex model, the objective of the second stage is to 
reproduce a specific dataset, or set of outputs, of that model as closely as 

- 25 - 
 



HEAVY MODELS, LIGHT MODELS AND PROXY MODELS 

possible.  This dataset usually consists of a set of ‘in-sample’ scenario results2 
to which the proxy will be calibrated.  A further dataset consisting of ‘out-of-
sample’ scenario results will then be used for testing. 

 
5.3.3 In many ways the second stage will be more straightforward than the first, 

eschewing subjectivity in favour of objective or mechanical processes and 
calculations.  Even so, there remain a number of choices to be made in respect 
of the type of calculation process to be employed.  These choices will impact 
the nature and quality of fit of the model so need to be considered alongside 
the use to which the model is being put. 

 
Target Calibration 
 
5.3.4 The first choice we consider is that of target calibration.  By target calibration 

we mean that metric which we wish to optimise.  The most prevalent method 
(often contracted and referred to as “Least Squares”) seeks optimal calibration 
of the proxy by minimising a single metric, the sum of squared errors.  There 
are alternative targets, in particular the “minimax” problem which seeks to 
minimise the maximum error, but we limit our attention in this paper to the 
method of least squares. 

 
5.3.5 Recall the system of equations from 3.1: 
 

( ) )()(,),(
,1

1 sysrsrX
Kk

Nkk =∑
= 

β  

 
 For scenarios s=1,…,S where S≥K. 
 
This is often written in matrix form as βX=y. 
 
For S>K, the problem is one of regression for which an exact solution may not 
be possible.  The least squares solution is then found by minimising the 
function S given by: 
 
 2)( ββ XyS −=  

 
5.3.6 Provided that the K columns of the matrix X are linearly independent, this 

minimization problem has a unique solution, the formula coefficients being 
given by the vector β: 

 
  β = (XTX)-1XTy 
 
5.3.7 Thus the formula is complete, having coefficients for each formula term.  

Subject to the results of testing on an out-of-sample dataset, the formula can 
then be used in production on alternative datasets.  Before being used in a 
production environment, however, and as already noted, this part of the 

2 Different practitioners will have given the in-sample scenarios various names; calibration scenarios, 
calibration nodes, fitting points.  However, they all refer to the same thing. 
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calibration process may be repeated many times when determining formula 
structure. 

 
5.3.8 As noted in section 5.2, subjective or objective decision will factor in the 

determination of formula structure.  However, the decision will often 
correspond directly to the method of determining formula coefficients, e.g. for 
a given formula structure the aim is to minimise the sum of square errors and 
the chosen formula structure will be that which provides the lowest sum 
squared errors (often implemented as the square root of sum squared errors).  
Other considerations may factor and criteria set accordingly. 

 
5.3.9 In 5.2.8 we introduced the idea that automation is often just the codification of 

a manual process, replacing subjective decisions with objective decisions.  
Taking this a step further we realise that many subjective decisions can be 
analysed and broken down into objective components and that many decisions, 
which would be considered subjective, are simply the unconscious application 
of weights to different outcomes.  In this context, we give more importance to 
some areas of the results distribution and disregard others.  This can 
sometimes lead to the least-squares metric being over-ruled if, for example, a 
part of the result distribution has very large error despite having lowest sum 
squared error. 

 
5.3.10 Realising this, weighted least squares can provide a means by which 

subjective decisions can be potentially codified and automated.  In fact, the 
least squares problem can be generalised further to that of weighted least 
squares, whereby a weight function is applied to the squared errors. 
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 This can be written in matrix form as W½(y-Xβ), where W is the diagonal 

matrix of weights w(s) for each scenario s=1,…,S. 
 

The least squares solution is then found by minimising the function S given 
by: 
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2
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 The formula coefficients thus being given by: 
 

β = (XTWX)-1XTWy 
 
5.3.11 When the weight function, w(s), is a constant, W is the identity matrix and this 

simplifies to the traditional unweighted least squares problem.  However, the 
result will only be an unweighted least squares fit provided the calibration 
scenarios have been drawn from a uniform distribution.  
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5.3.12 If say, an unweighted least squares calibration is performed on scenarios 
drawn from a Normal distribution then this is equivalent to performing a 
weighted least squares calibration on uniformly distributed scenarios, where 
the weight function is the Normal probability distribution function.  An 
example of this is demonstrated in the Appendix. 

 
5.3.13 Care must be taken, therefore, that if an unweighted least squares fit is 

required, the calibration scenarios must be drawn from the uniform 
distribution since drawing the scenarios from anything other than a uniform 
distribution will result in a sub-optimal fit in the traditional (unweighted) 
sense.    

Regression fitting vs precise interpolation 

5.3.14 We have so far considered only regression fitting.  Here we have more 
scenario results, S, than formula terms, K.  However, the quality of fit may be 
poor if S is not sufficiently large in comparison to K.  This may lead to a large 
number of scenario results being required.  As such, it may become necessary 
to consider techniques for improving the efficiency of the process.  One way 
to improve efficiency is to use many inaccurate scenario results as employed 
by Least Squares Monte Carlo (we discuss this method in section. 5.4).  An 
alternative is to use the minimum number of scenario results possible, S=K, 
and solve by precise interpolation. 

 
5.3.15 The problem with precise interpolation is that the resulting fit is entirely 

dependent on, and very sensitive to, the selected calibration scenarios.  
However, the regression fit achievable through using a large number of 
scenarios can be emulated using precise interpolation if the interpolation 
scenarios are picked in a certain way.  In the case of polynomial basis 
functions, Hursey & Scott (2012) showed that, for a given formula structure, 
by selecting scenarios derived from the roots of Legendre polynomials, a best 
estimate of the best possible fit can be achieved through precise interpolation. 

 
5.3.16 More precisely, interpolation using Legendre derived scenarios emulates an 

unweighted least square regression fit.  This relates to the fact that the 
Legendre polynomials are orthogonal with respect to a uniform distribution or 
a weight function, w = c, where c is a constant.  In fact, using scenarios 
derived from the roots of polynomials that are orthogonal to other probability 
distributions, leads to a precise interpolation fit that emulates the weighted 
least squares regression fit, where the weight function is the relevant 
probability distribution function.  For example, using interpolation scenarios 
derived from the roots of Hermite polynomials will emulate a normally 
weighted regression fit, noting that the Hermite polynomials are orthogonal 
with respect to the Normal distribution. 

 
5.3.17 We note that much of the discussion here relates to precise interpolation of 

polynomial replicating formulae and although the principles could equally be 
applied to alternative basis functions it would be unusual in practice.  For 
example, it is possible to calibrate a replicating portfolio of 100 market 
instruments using only 100 calibration scenarios but unlike polynomials there 
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is no quick and easy way of picking the best 100 scenarios.  As such, a 
regression would usually be employed. 

 
5.3.18 The impact of using precise interpolation compared to regression is considered 

in greater detail in our case study for replicating polynomials in section 6.2. 

Optimal Components or Optimised Whole 

5.3.19 A further choice to be made is whether to construct a model as the sum of 
components which have each been independently optimised or optimise the 
model after the components have been summed. 

 
5.3.20 This choice is often already being made in many proxy models, sometimes 

unconsciously, and potentially without full consideration of the implications 
and impact on results.  The most obvious example is where a different formula 
is constructed and then optimised for each product and then the total liability is 
the sum of each individually optimised formula.  The reason for this approach 
is often to add a layer of granularity to the results, allowing better analysis of 
each product whilst also providing greater accuracy at the product level. 

 
5.3.21 However, this accuracy at the product level may be at the expense of accuracy 

at the total liability level due to errors accumulating across products.  
Alternatively, all the product formulae could have been summed and then 
optimised in one go, thus targeting a minimum error distribution at the total 
liability level.  However this would be at the expense of accuracy at the 
product level. 

 
5.3.22 Applying the same principle to each formula, we see that the formula itself can 

be broken down into components and the same decision is required as to 
whether those components are optimised or the formula is optimised. 

 
5.3.23 In the case of replicating polynomials, there arises a natural splitting of the 

formula into individual risk components plus a non-linearity component.  This 
is particularly useful as much of the analysis performed in a risk management 
framework relates to individual risks (risk limits, scenario testing, what-if 
analyses, reverse stress testing etc.).  As such, the choice over optimising 
components or the whole formula is particularly relevant to polynomial 
formulae. 

 
5.3.24 In the same way that optimising a total liability formula will result in a sub-

optimal fit to individual products, so optimising a product formula will result 
in a sub-optimal fit to the components of that product.  In the case of a 
replicating polynomial this would be a sub-optimal fit for each individual risk 
function, potentially making the formula unsuitable for assessing the impact of 
individual risks.  Likewise, a product formula constructed from optimised 
components will not provide as good a fit at product level as a product formula 
that has been optimised in one go. 

 
5.3.25 The impact of this choice is considered in the case study for replicating 

polynomials in section 6.2.  Additionally, a sample proof and analysis for a 

- 29 - 
 



HEAVY MODELS, LIGHT MODELS AND PROXY MODELS 

two-factor 3rd order polynomial is offered in the appendix.  From this example, 
some important conclusions are drawn 

 
When optimising the whole formula: 

 
• Adjusting the domain in one risk variable will change the fit of the 

marginal functions in other risk variables. 
• The fit of marginal risk functions is impacted by  any underlying non-

linearity. 
• The more severe the non-linearity between risk variables, the further from 

optimal the marginal approximation functions becomes. 
 

When optimising components: 
 
• Adjusting the domain in individual risk variables has no impact on the fit 

of the marginal functions in other risk variables. 
• The fit of marginal risk functions are unaffected by the extent of any 

underlying non-linearity 
• The more severe the non-linearity, the further from optimal the overall fit 

becomes. 
 
5.3.26 The conclusion of this is that one must give careful consideration to the uses to 

which the proxy model will be put when deciding on the method of 
calibration.  There is also the possibility of implementing different calibrations 
of the same model to derive the best results specific to different uses.  
However, one must ensure that results from different calibrations are made 
consistent with one another before communication to, and use by, 
management. 

 
5.3.27 Note that, although a regression fit will usually be performed on the whole 

formula, the distinction here is not between interpolation and regression. The 
formula could just as easily be constructed by summing components that have 
each been optimised using regression. 

 
5.3.28 This is to be contrasted with precise interpolation where, even though the 

whole formula will be calibrated in one go, the resulting formula will still be 
the sum of optimal components due to the selected fitting points being the 
same as when optimising components individually.  In theory it is possible to 
solve for the fitting points that optimise the whole function but the number of 
formula terms make it an unrealistic proposition. 

Summary of Options 

5.3.29 In table 5.3.1 we summarise the options discussed here as applicable to some 
of the different formula types currently in use.  Here we see that not all the 
options are available to all model types.  For example, we have already seen 
that a replicating portfolio is usually associated with a regression fit being 
performed.  This does not rule out precise interpolation being used though it is 
unlikely. 
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Table 5.3.1 
Type of Proxy 
Formula Determining 

Formula Structure 

Regression, 
Interpolation or 

Both 

Optimised 
Components, 

Whole or Both 
Replicating 
Polynomials 

Choice and number 
of nomials Both Possible Both Possible 

Radial Basis 
Functions 

Choice of radial 
basis function Both Possible Optimised Whole 

Replicating 
Portfolios Choice of assets Regression Optimised Whole 

Commutation 
Functions 

Choice and number 
of commutators Both Possible Optimised Whole 

 
5.3.30 Another example is Radial basis functions which are usually optimised across 

the whole risk distribution rather than being built up from a series of optimised 
components. 

 
5.3.31 Each of these model types are discussed in more detail in section 6 where we 

also addressing some of the issues discussed in this section. 

5.4 A SPECIAL CASE – LEAST SQUARES MONTE-CARLO 
5.4.1 Least Squares Monte Carlo (LSMC) has its roots in techniques for valuing 

American options where early exercise is possible, the technique originally 
being developed by Longstaff & Schwartz (2001). 

  
5.4.2 LSMC is usually implemented as a polynomial replicating formula, although it 

isn’t the use of a polynomial that characterises LSMC. The method could just 
as equally be applied to calibrate a replicating portfolio or any formula 
constructed from suitable basis functions. In this section, we give an overview 
of what sets LSMC apart from the other methods. 

  
5.4.3 LSMC is not a different type of model but is characterised by the method it 

uses to calibrate the formula coefficients. The insight for LSMC is that under 
alternative methods, a lot of computational power is used to value a few heavy 
lift valuations leaving no computational power for other scenarios. Least-
Squares Monte Carlo comes at the problem from a different angle attempting 
to recapture that power from the few specific valuations and to redistribute 
that computing power over more scenario valuations, each of which is less 
accurate. For example, instead of evaluating five scenarios accurately, each 
requiring two thousand stochastic simulations, the same computational power 
can be utilised to evaluate five thousand scenarios each using only two 
stochastic simulations.  

 
5.4.4 Using only two simulations for each scenario will inevitably lead to large 

simulation errors across individual scenario results. However, the beauty of 
the method is that by performing a least squares regression fit against these 
inaccurate scenario results, the simulation errors across the fitting points tend 
to offset one another, and the resulting curve. The net error between the fitted 
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curve and the true curve is thus minimised without having to estimate the true 
curve or points on it. 

  
5.4.5 LSMC is often implemented by optimising the overall fit rather than 

optimising components so there is the possibility that formula components 
may be sub-optimal. However, should the priority be to achieve greatest 
accuracy within formula components there is no reason why the method could 
not be adapted to optimise components.  

 
5.4.6 Also, the method will often be implemented using automated algorithms to 

determine the optimal formula elements and coefficients at the same time. As 
discussed in section 5.2 this may give rise to issues around intuition3.  It may 
also lead to unstable formula structures that vary from one data set to another 
or from one period to the next without providing insights into why the formula 
structure has changed. However, we again find that there is no reason why the 
method could not be implemented to determine formula coefficients only, 
leaving the user to determine the formula structure as they see fit.  That said, 
despite potential challenges in interpreting the calibration, the considerations 
when validating the model are no different from any other calibration 
technique, requiring an understanding of the quality of the fit and the impact 
any limitations on the metrics which the model is used to produce 

  
5.4.7 Finally, the large number of calibration scenarios used by LSMC requires 

generation through some method such as low discrepancy sequences 
(Glasserman, 2003). For each scenario, there needs to be a robust method for 
choosing the economic simulations for each real-world scenario. This includes 
re-scaling the economic simulation so it is applicable in the scenario chosen. 

3 Any of the methods can be set up in this way so this is not an issue exclusive to LSMC.  Attention is 
drawn to the fact here due to LSMC usually being implemented through automated algorithms.  
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6 SPECIFIC MODELS DISCUSSED IN DETAIL 

6.1 METHODOLOGY 
6.1.1 Our aim here is to compare, across thousands of scenarios, the ‘actual’ value 

of some liability to those approximated by various proxy models. One of the 
problems associated with any proxy model is how to reliably assess accuracy 
without testing every single scenario. If we could run every scenario then a 
proxy model would not be required in the first place. In fact we can do exactly 
that by changing our point of reference from a stochastic cashflow model to 
something less complex. We can then evaluate every simulation result in our 
less complex model of reality and then re-evaluate in the various proxies. 
Analysis of the proxies can be performed and conclusions drawn which are no 
less valid than if a stochastic cashflow model had been used since the proxy 
models remain within definition, i.e. a model approximating a more complex 
model. 

  
6.1.2 The model of reality used to produce 'actual' values was a purpose built 

cashflow projection model of a simple with-profit bond offering a maturity 
guarantee. The biggest simplification came from modelling time value using a 
Black-Scholes closed form solution rather than running thousands of 
simulations. In many other ways, the model retained the various complexities 
one might associate with a bond model used in a real life office environment 
such as guarantees increasing with regular bonuses and decrements from 
lapses, deaths and PUPs. The asset mix was also varied with term to maturity 
switching from equity toward fixed interest as maturity approaches. In this 
way the volatility used by the Black-Scholes formula varied across model 
points and was not a fixed value.  

 
6.1.3 Over a thousand model points of varying term to maturity and ‘moneyness’ of 

guarantees were chosen. The asset share and cost of guarantees were evaluated 
separately for each model point, the total liability being the sum of total asset 
share and cost of guarantees across all model points. For simplicity we 
assumed that the cost of guarantees is backed by a fixed cash amount and the 
asset share liability matched so that capital results are derived purely from the 
variation in cost of guarantees. 

  
6.1.4 Nine market and insurance risks were incorporated into the model as 

instantaneous time zero stress parameters in order to replicate common life 
office methodology whereby the one year Value-at-Risk is estimated from 
many instantaneous time zero stressed scenario results. 

 
6.1.5 The modelled market risks are parallel yield shifts, UK equities, overseas 

equities, property, credit spreads and inflation whilst the modelled insurance 
risks are, mortality, persistency and expenses. 

 
6.1.6 For simplicity, all of the risks are Normally distributed, expressed as stress 

percentages about a mean of zero with standard deviations given in table 6.1.1. 
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Table 6.1.1 Risk Parameterisation  
Risk Parameter Standard Deviation 

Persistency 20.0% 
Mortality 5.0% 
Expenses 5.0% 
Yield 0.75% 
UK Equities 15.0% 
Overseas Equities 17.5% 
Property 7.5% 
Credit Spreads 5.0% 
Inflation 0.75% 

 
6.1.7 In sample fitting points are drawn from both normal and uniform distributions 

whilst out of sample test points are drawn from the normal distribution only 
this being the distribution underlying each of the risks.  Where uniformly 
distributed scenarios are used they are drawn from a domain between plus and 
minus four standard deviations, e.g. ±80% for persistency. 

 
6.1.8 The unstressed base liabilities are as follows: 
 

Asset Share (£m) Cost of Guarantees (£m) Total Liability (£m) 
1,728 232 1,959 

 
6.1. 8 Replicating polynomials would seem to offer the most accessible means of 

demonstrating each of the concepts discussed in earlier sections so it is this 
type of proxy model we consider first as a case study before performing 
similar analyses for other model types.  

6.2 REPLICATING POLYNOMIALS 
Introduction 
 
6.2.1 Within the UK insurance space there has been a significant increase in the use 

of replicating polynomials in recent years. This is due in part to their 
incorporation within mainstream software solutions available to industry. 
However the uptake by insurers and developers alike has most likely been 
driven by the speed and apparent simplicity of using a polynomial to 
reproduce complex liability values.  

 
6.2.2 Polynomials are indeed very quick to evaluate and theory tells us that a 

replicating polynomial can be constructed to any degree of accuracy (Stone, 
1948). As a result, the lure of being able to run tens or even hundreds of 
thousands of scenarios has been a tempting proposition. Unfortunately, the 
reality is not quite so simple and the practical issues to resolve are numerous.  

 
6.2.3 As well as being simple and quick to calculate, polynomials are relatively 

simple to understand as a functional form.  However, this simplicity quickly 
disappears as the number of risk variables increase.  In the language of our 
replicating formulae construction, the basis functions, Xk, are very simple 
functions of the risk variables, rn. 
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6.2.4 As discussed in section 3.3, the simplicity of each formula element means that 

a large number of elements are required in order to model complex 
behaviours.  For polynomial replicating formulae, this is manifested through 
an increase in the order of the polynomial.  Also, as the number of risk 
variables increase so the potential number of formula elements increases 
exponentially.  As the number of formula elements increases, so too does the 
minimum number of heavy model runs that are required to determine the 
coefficients, βk, of each element.  Very quickly, the light model may not seem 
so light any more. 

 
Determining Formula Structure 
 
6.2.5 With the potential for many hundreds, or even thousands, of combinations of 

formula elements, the use of an automated algorithm to test every possible 
formula structure would appear to be an obvious solution.  However, as 
discussed in 5.2, an automated algorithm will often be simply an emulation of 
expert judgement through the codification of subjective decision making. 

 
6.2.6 When it comes to determining formula structure, there are a huge number of 

ways to proceed and the potential for different decision making processes is 
large.  Our interest here is the decisions that need to be made and not the 
codification of those decisions.  As such, we proceed with the determination of 
formula structure in a completely subjective way in order to look more closely 
at one possible decision making and design process. 

 
Marginal Risk Functions 
6.2.7 A replicating polynomial can easily be broken down into its component parts, 

consisting of a number of univariate polynomials combined with a number of 
multivariate polynomials.  Each univariate polynomial, referred to as a 
marginal risk function, represents the variation in value with respect to a single 
risk and it is these marginal risk functions that we address first in determining 
our replicating polynomial formula. 

 
6.2.8 We start by considering the variation in the value of cost of guarantees (CoG)  

with respect to persistency risk.  Asset share is not considered at this stage as it 
does not vary with insurance risks.  We begin by trying a quadratic proxy first, 
for efficiency we use precise interpolation rather than regression as this 
requires only three fitting points or nodes.  We can base the fitting points on 
the roots of the Legendre polynomials which will provide the best estimate of 
the fitting points for the optimal least squares solution (Hursey & Scott, 2012).  

 
6.2.9 The chart in figure 6.2.1 shows the variation in cost of guarantee with respect 

to persistency risk for both the primary and proxy models.  The resulting error 
curve is shown in figure 6.2.2. 

 
6.2.10 The error curve is very close to the third order Legendre curve demonstrating 

that it is close to an optimal fit for a quadratic polynomial proxy as shown by 
Li, Y,M (n.d.).  The implication of this is that to improve the fit further would 
require a higher order polynomial. 
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Fig. 6.2.1 Persistency Risk, Actual vs Estimated 

 
 

Fig 6.2.2 Persistency Risk, Error Curve 

 
 
6.2.11 Based on this error curve we can either deem a quadratic to be a sufficient 

order of polynomial for modelling persistency risk or demand a closer fit 
through a higher order polynomial, the fit already being optimal for a 
quadratic polynomial.  This is further demonstrated in figure 6.2.3 where we 
show that a regression fit using 100 calibration scenarios drawn from a 
uniform distribution provides the same fit as precise interpolation using 
Legendre polynomials. 

 
6.2.12 We also consider here the impact of performing a regression fit if the 

calibration scenarios are drawn from a Normal distribution.  Figure 6.2.4 
shows the error curves that result from calibration scenarios drawn from the 
Normal and Uniform distributions. 

 
 

- 36 - 
 



HEAVY MODELS, LIGHT MODELS AND PROXY MODELS 

Fig. 6.2.3 Precise Interpolation vs Regression 

 
 

Fig 6.2.4 Normal vs Uniform calibration scenarios 

 
 
6.2.13 The greater mass of points in the centre of the uniform distribution lends more 

weight in this area thus providing greater accuracy at the centre but at the 
expense of larger errors at the tail of the distribution.  In fact, drawing 
calibration scenarios from a normal distribution and then performing a least 
squares fit is equivalent to performing a weighted least squares fit, the weights 
provided by the normal distribution. 

 
6.2.14 We have already observed that the roots of the error curve that result from 

Uniformly distributed calibration scenarios correspond to the roots of the 3rd 
order Legendre polynomial.  It can also be shown that the roots of the error 
curve resulting from Normally distributed calibration scenarios correspond to 
the roots of the 3rd order Hermite polynomial.   
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6.2.15 In this example, the 3rd order Hermite polynomial predicts roots of the error 
curve at 0 and ±34.64% (risk standard deviation of 20% multiplied by ).  
The actual roots occur at -35.7%, 0, and +34.69%.  This demonstrates that the 
regression fit could have been reproduced through precise interpolation using 
the Hermite roots.  A proof is provided in the appendix. 

 
6.2.16 All this serves to demonstrate that care must be taken with the calibration 

scenarios when employing a regression fit since points drawn from anything 
other than a Uniform distribution will provide a sub-optimal fit in the 
traditional least squares sense, i.e. unweighted. 

 
6.2.17 Returning to our original quadratic fit in figure 6.2.2, we decide in this case 

that the fit is sufficient for our purposes, noting that the maximum error at 
£2.3m is less than 1.0% of base CoG. 

 
6.2.18 Similar exercises are carried out for the other insurance risks; mortality and 

expenses.  Precise interpolation is used throughout with the fitting points again 
being determined using the three roots of the third order Legendre 
polynomials.  The resulting error curves are shown in figures 6.2.5 and 6.2.6. 

 
     Fig 6.2.5 – Expense Risk    Fig 6.2.6 – Mortality Risk 

  
 
6.2.19 Errors are less than £200 for mortality risk and less than £25 for expense risk 

compared to a variation in CoG with respect to each risk of £11m and £6m 
respectively.  Such a close fit despite the movement in CoG is perhaps 
indicative of insufficient complexity in the cashflow model used to generate 
results but in the author’s opinion it does not invalidate the analysis.  
However, such small errors lead us, again, to deem a quadratic proxy 
sufficient for modelling each of these risks. 

 
6.2.20 We get similar results when we test various market risks.  UK equity risk, 

overseas equity risk, and spread risk are shown in figure 6.2.7 along with the 
error curves resulting from fitting quadratic polynomials.   

 
6.2.21 Whilst the error curves for overseas equity and spread risk indicate an optimal 

fit for a quadratic, the error curve for UK equity risk indicates that the fit is not 
optimal and could be improved further without an increase in polynomial 
order.  However, even with a sub-optimal fit, the maximum error for UK 
equities is less than £600k.  Maximum errors for property risk and inflation 
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risk (not shown here) are significantly less.  Therefore a quadratic is, again, 
deemed sufficient to model each of these market risks. 

 
Fig. 6.2.7 – Market Risks 

 
 
6.2.22 The analysis so far relates only to the cost of guarantee liability.  Asset share is 

also sensitive to market risks but due to this sensitivity being linear for all but 
the interest rate risk, the proxy marginal risk functions trivially fit the data 
perfectly in respect of these risks.  Consequently, no further analysis is 
offered. 

 
6.2.23 Things gets a little more interesting when we consider the fit for interest rates.  

We begin with CoG, showing the variation with respect to parallel yield shifts 
in figure 6.2.8.  The behaviour of the curve at low interest rates leads to a 
quadratic not providing an ideal fit as it fails to capture the flattening out of the 
curve due to the flooring of interest rates. 

 
Fig 6.2.8 – Interest Rate Risk, Actual vs Estimated 

 

- 39 - 
 



HEAVY MODELS, LIGHT MODELS AND PROXY MODELS 

6.2.24 As a result, we tested higher order polynomials – cubic and quartic – to see if 
the fit can be improved.  The resulting error curves are exhibited in figure 
6.2.9.  Unfortunately, even with higher order polynomials, the fit remains 
unsatisfactory at the lower end of the domain. 

 
6.2.25 As we have been using precise interpolation to fit and assess the formulae, we 

investigate the possibility that it is the use of prescribed fitting points that 
leads to a poor fit at the extreme low end of the curve.  Potentially, performing 
a regression fit using a larger number of points drawn from the whole domain 
may capture the shape of the whole curve more effectively and improve the fit.  
We again test quadratic, cubic and quartic polynomials.  The chart in figure 
6.2.10 shows the error curves resulting from regression fitting. 

 
          Fig. 6.2.9 – Error Curves, Interpolation      Fig. 6.2.10 – Error Curves, Regression 

   
 
6.2.26 Comparing the regression fit alongside the interpolation fit, some 

improvement is observed at the lower end of the curve but at the expense of 
the fit elsewhere.  However, it would still appear that a much higher order 
polynomial or another type of function may be required to capture more 
precisely the behaviour of the curve at low interest rates. 
 

6.2.27 The decision over how to proceed from here is not straightforward.  An 
increase in order of the polynomial to a quartic may be justified on the 
grounds that the error is much lower at the very tail of the distribution.4  
However, if we were to set a materiality limit of, say, £5m then based on the 
interpolation results it could be argued that a cubic or quadratic should be 
favoured over the quartic as materiality is not breached until interest rates fall 
by more than 2.5% compared to 2% for the quartic.  A lower order polynomial 
also has the advantage of reducing complexity by lowering the potential 
number of cross terms later in the design process.  If we consider the 
regression results, the justification for a move to a quartic is even less clear 
with all three error curves exhibiting very similar traits.  

 
6.2.28 Note here the level of subjective judgement that is required.  Clearly, metrics 

could be drawn and a more objective decision made and this would have the 
advantage of being repeatable and perhaps codified and automated.  However, 

4 An alternative is to split the domain and fit to each sub-domain separately.  There are disadvantages, 
however, not least in the potential increase in number of fitting and test scenarios. 
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the subjective analysis provided here shows us that a more sophisticated 
measure than least squares would be required if we wished to do so.  In fact, 
we have here an example of less weight being given to the outcomes at the 
lower tail (ref. 5.3) of the distribution due to other considerations.  Applying a 
mechanical weighted least squares process to a subjectively designed weight 
function may therefore offer a potential route to automation.   

 
6.2.29 In this example, we opt for a quadratic fit as we will be employing both 

interpolation and regression fits for analyses.  We also note that our domain 
extends to four standard deviations.  Based on this, the 99.5th percentile stress 
will be around 2% at which the quadratic should prove sufficient within a 
materiality limit of £5m.  Also note here that we have also derived an 
approximate limit for the model, being aware that stresses beyond a fall of 
2.5% will ‘break’ the model. 

 
6.2.30 This example also serves to highlight the importance of communicating any 

limitations to management, along with a clear explanation of the consequences 
of those limitations.  In the above example we have an approximate limit of 
2.5% beyond which the model should not be relied upon to assess the impact 
of falls in yields.  If the model is used to “roll forward” results in a decreasing 
interest rate environment then the biting point for failure will reduce even 
further.  Additionally, once a model is in a production environment it will 
undoubtedly be called upon to produce analyses and metrics beyond that 
envisaged by those that initially set up the model; queries from regulators and 
other ad-hoc investigations may not be known in advance of calibration.  If 
limitations are not advertised sufficiently then the model may unknowingly be 
used beyond its limits thus providing misleading or incorrect information. 

 
6.2.31 Turning our attention to the asset share we note that the fit exhibits the same 

properties as the fit to cost of guarantees albeit with lower magnitude of errors.  
Figure 6.2.11 illustrates. 

 
Fig. 6.2.11 – Asset Share Error Curves 
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6.2.32 Noting that the errors are much smaller as a percentage of asset share and 
following the same reasoning as for the fit to cost of guarantees we decide a 
quadratic is sufficient for the purposes of analysis.  Additionally, noting the 
lack of dependence on insurance risks and the trivial nature of the dependence 
on other market risks we limit our interest to the cost of guarantees for the 
remainder of the formula design process reasoning that a formula sufficient to 
model cost of guarantees should be sufficient for the much less complex asset 
share. 

 
6.2.33 Ultimately, we have a quadratic marginal risk function for each of the nine 

risks which can be added together to build a replicating formula ignoring non-
linearity effects. Non-linearity and the risk dependency structure are 
considered next. 

 
Non-Linearity and Risk Dependency Structure 
6.2.34 Having determined all the marginal risk function we turn our attention to non-

linearity and the risk dependency structure. 
 
6.2.35 Non linearity is the difference between the combined impact of two or more 

risk factors and the sum of the marginal impacts of those same factors.  So if 
an equity scenario leads to a stress of 40 and a lapse scenario leads to a stress 
of 60 and the combination of both leads to a stress of 110 we have a non-
linearity impact of 10.  Given that the marginal risk functions deliver a value 
of 100, we require a function in both lapse and equities to deliver the 
additional 10.  We refer to this multivariate function as the non-linearity 
surface. 

 
6.2.36 To derive our first non-linearity surface we consider the risk pairing 

Persistency and UK equity.  We begin by constructing a combined risk surface 
adding together the two marginal risk functions.  The resulting surface is 
illustrated in figure 6.2.12.  Deducting this from the actual combined risk 
surface (evaluated using our primary heavy model) allows us to evaluate the 
non-linearity surface, illustrated in figure 6.2.13. 

 
  Fig 6.2.12 Combined Risk Surface   Fig 6.2.13 Non-Linearity Surface 
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6.2.37 We can now attempt to construct a two factor polynomial approximation to 
non-linearity starting with a simple xy cross term.  Deducting from our non-
linearity surface leaves the error surface depicted in figure 6.2.14. 

 
   Fig. 6.2.14 – Non-Linearity Error             Fig. 6.2.15 – Non-Linearity Error 

           Surface, xy term only    Surface, xy, x2y and xy2 terms 

  
 

Fig. 6.2.16 – Non-linearity Error Surface (Final) 

 
 
6.2.38 The problem with using a single xy cross term is that it is a symmetrical and 

linear function in both x and y.  Non-linearity is rarely either so a single xy 
cross term will often provide a poor fit to non-linearity.  By using a 
combination of terms in xy, x2y and xy2, the fit can be improved significantly 
as shown by the error surface in figure 6.2.15 (note the change in axis scale).  
The fit can further be improved with the addition of a fourth x2y2 term as 
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illustrated in figure 6.2.16, where the magnitude of the errors are reduced 
below £1m across the whole surface.   

 
6.2.39 Thus the formula component for non-linearity between persistency risk and 

UK equity risk will be of the form: 
 
  c1xy + c2xy2 + c3x2y + c4x2y2 
  

where x and y are the persistency and UK equity stresses and c1,…,c4 are 
constants. 

 
6.2.40 Just as we did for the marginal risk functions in one dimension, our two 

dimensional non-linearity functions can potentially be calibrated using either 
regression or precise interpolation.  We demonstrate this when considering the 
non-linearity between persistency and interest rates which ultimately proves to 
have the largest non-linearity impact ranging from +£150m to -£100m as 
shown by the non-linearity surface in figure 6.2.17. 

 
Fig. 6.2.17 – Non-Linearity Surface 

 
 
6.2.41 A non-linearity function of the same form as that derived for persistency and 

UK equity risk is fitted to this non-linearity surface, first by least squares 
regression using one hundred fitting points and then using precise 
interpolation.  The four fitting points for interpolation are derived from the 
intersection of the non-zero roots of the 3rd order Legendre polynomials for 
each of the two risk parameters.  The resulting error surfaces are shown in 
figures 6.2.18 and 6.2.19 respectively.  

 
6.2.42 Using a least squares regression fit provides a better overall fit than when 

precise interpolation is used, as measured by sum squared errors and 
maximum error.  However, the nature of our interpolation fitting points leads 
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to a better fit for a large portion of the domain.  In fact, it is only at one corner 
of the domain that the fit is worse than the regression fit.  If this corner is 
excluded then the interpolation fit is better in terms of both maximum error 
and sum squared errors 

 
         Fig. 6.2.18 – Error Surface, Regression Fit        Fig. 6.2.19 – Error Surface, Interpolation 

  
 
6.2.43 If we consider that the likelihood of events in this corner are a combination of 

two extreme events it may be that these events are outside our region of 
interest and the interpolated fit is preferred.  Alternatively, very extreme 
events may be of particular interest in which case the regression fit would be 
preferred.  Once again, the importance of considering the use to which the 
model is put comes to the fore.  Note also that we have another example where 
a sub-optimal fit, in the least squares sense, may be chosen due to other 
subjective considerations.   However, this decision over the preferred fit can 
be codified and potentially automated if we realise that the sub-optimal fit in 
the least squares sense can be chosen by attaching less weight to the corners of 
the surface through application of an appropriate weight function. 

 
Completing the formula structure 
6.2.44 The formula components for each of the risk pairings considered so far each 

have four coefficients to determine thus requiring at least four heavy lift 
calculations to calibration each one.  Even with only nine risks, there are thirty 
six possible pairs to consider so the potential number of formula terms is 
already quite high before we even consider interactions between three or more 
risks.  Process automation may help but a large number of scenario results 
would still be required in order to perform the analysis and determine formula 
structure effectively. 

 
6.2.43 We must therefore proceed in a methodical manner, where possible, making 

use of any knowledge we have to eliminate risk interactions from the 
investigation.  Also, where non-linearity effects are trivial they can be 
excluded from the formula structure. 
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6.2.44 Completing our analysis we find that risk interactions involving expenses, 
mortality and inflation could be ignored altogether as being either trivial or 
non-existent.  For risk pairings involving persistency and interest rates, two 
factor polynomials of the form already described were used.  All other risk 
pairings were also ignored, e.g. equities and property, leaving nine risk 
pairings to be modelled. 

 
6.2.45 One further formula component was added, that being a three factor non-

linearity function combining the three largest risks, persistency, interest rate 
and UK equities.  The purpose is to capture any residual non-linearity arising 
from the three risks acting together, over and above that already captured by 
the non-linearity components derived from pairs of risks. 

 
6.2.46 Putting it altogether we have a formula which consists of nine quadratic 

marginal risk functions, each consisting of two terms plus a single combined 
constant term for all nine.  We then have nine two-factor non-linearity 
functions each consisting of four terms plus one further three factor non-
linearity function consisting of eight terms.  This gives a total of twenty 
formula components of sixty three terms.  Table 6.2.1 summarises. 

 
Table 6.2.1 – Replicating Polynomial Summary 

Formula Component Number of 
Components 

Number of 
Elements 

Constant 1 1 
Quadratic Marginal Risk Function 9 18 
2 Factor 2nd Order Non-Linearity Function  9 36 
3 Factor 2nd Order Non-Linearity Function 1 8 
TOTAL 20 63 

 
Optimised components vs Optimised whole 
6.2.48 Now that the formula structure has been determined we can calibrate and test 

the formula using various datasets.  Before proceeding, however, we take a 
brief look at the impact of optimising the formula as a whole compared with 
building the formula from optimised components (ref. 5.3). 

 
6.2.49 Whilst precise interpolation of the whole formula will continue to optimise 

components (due to the choice of fitting points), regression fitting the whole 
formula will optimise the whole formula and in doing so will lead to sub-
optimal fit for formula components. 

 
6.2.50 Recall the optimised persistency risk error curves in figure 6.2.3.  These are 

the error curves resulting from the optimisation of the formula component for 
persistency risk, one by interpolation and the other through regression, but 
both leading to the same result.  The chart in figure 6.2.20 compares that curve 
with the marginal risk error curve that results when the whole formula is 
optimised together in one go. 

 
6.2.51 As can be observed, optimising the whole formula has led to a loss in quality 

of fit of this formula component, and potentially others.  In particular, the error 
at the tail of the distribution is significantly worse than when the formula 
components were optimised individually. 
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Fig. 6.2.20 – Optimised Components vs Optimised Whole 

 
 
6.2.52 If, say, we wished to use this model to measure individual risks and risk 

capital components, then optimising those components will provide better 
answers, noting here that both of the curves in figure 6.2.20 were derived 
using regression.   Once again, use of the model must be consideration when 
deciding the method of calibration.  

 
Results 
 
6.2.53 We now consider the results produced by a number of different calibrations.   

We consider both precise interpolation and regression using between 100 and 
1,000 fitting points.  4,500 out-of-sample test points are used to calculate the 
asset share and cost of guarantee liabilities. 

 
Fig. 6.2.21 – Asset Share, Actual vs Estimated 
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6.2.54 We start by testing the proxy for asset share.  The chart in figure 6.2.21 shows 
the true asset share for the out of sample points plotted against the estimated 
value when 100 fitting points were used. 

  
6.2.55 It is immediately obvious that the fit is very good.  The goodness of fit is 

confirmed by the chart in figure 6.2.22 which plots the percentage error in the 
approximation against the true value of the asset share. 

 
Fig. 6.2.22 – Asset Share Error% 

 
 
6.2.56 The maximum error is only 0.12% and the root mean square error is 0.01%.  If 

we consider the linear nature of the market stresses, it is perhaps to be 
expected that a good fit would be achieved using a polynomial proxy.  We 
now turn our attention to cost of guarantees. 

 
6.2.23 – CoG, Actual vs Estimated 
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6.2.57 Asset share is assumed matched and VaR driven by variation in CoG so given 
the more complex (non-linear) and more interesting behaviour of CoG we 
restrict our analysis to CoG for the remainder of this section.5 

 
6.2.58 The chart in figure 6.2.23 shows the CoG for the out of sample points plotted 

against the estimated value when 100 fitting points were used.  The percentage 
errors in the approximation are plotted in the chart in figure 6.2.24. 

 
6.2.58 The maximum error magnitude is significant at over £50m (53%).  Root mean 

squared error is £4.6m (2.45%).  The fit could be considered inadequate for 
the purposes of risk management.  However, given that a 63 term formula is 
being calibrated using only 100 fitting points it is perhaps not surprising. 

 
Fig. 6.2.24 – Cost of Guarantees Error % 

 
 

6.2.59 We now investigate the impact of increasing the number of fitting points, still 
fitting by regression, or reducing the number of fitting points and fitting by 
interpolation.  For the regression fit we increased the number of fitting points 
to 400.  For the interpolation fit we reduce the number of fitting points to 63, 
the minimum possible for a unique solution.  The interpolation result is very 
sensitive to the fitting points used so they are selected based on the roots of 
Legendre polynomials.  See Hursey & Scott (2012) for theoretical justification 
and explanation. 

 
6.2.60 The charts in figure 6.2.25 show the scatter plots of actual versus estimated for 

each of the two calibrations along with the corresponding scatter plots of 
relative error. 

 
6.2.61 Both calibrations have significantly improved the fit over that using 100 fitting 

points.  The overall quality of fit appears very similar between the two 
although precise interpolation does, in this case, appear to give a slightly better 
fit than regression using 400 fitting points.  This observation is confirmed if 
we compare maximum error, £22m (14.3%) versus £15m (7.2%), and root 

5 We did consider a combined fit to total liability (Asset share + CoG) but found that the errors in CoG 
were second order compared to the size of asset share, masking valuable insights and analysis. 
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mean squared error, £1.8m (0.9%) vs £1.7m (0.8%), for regression and 
interpolation respectively. 

 
Fig. 6.2.25 – Cost of Guarantees, Interpolation vs Regression (400 fitting points) 

 
 
6.2.62 Further regression calibrations were tested ranging from 200 to 1000 fitting 

points.  The results of a number of metrics were measured and are given in 
table 6.2.2 for each of the regression calibrations and the interpolation. 

 
Table 6.2.2 

No. of Calibration 
Scenarios 100 200 300 400 500 750 1000 63 

Average Absolute 
Error (£m) 2.5 1.5 1.3 1.2 1.1 1.0 1.0 1.3 

Root Mean Squared 
Error (£m) 4.6 3.3 2.2 1.8 1.7 1.6 1.5 1.7 

Min Error (£m) (53.4) (20.5) (12.0) (12.3) (12.9) (13.9) (11.8) (9.1) 

Max Error (£m) 57.8 83.5 34.5 21.8 19.6 9.8 9.0 14.8 
Average Absolute % 
Error  1.2% 0.7% 0.6% 0.5% 0.5% 0.5% 0.5% 0.6% 

Root Mean Squared 
% Error  2.5% 2.6% 1.3% 0.9% 0.8% 0.7% 0.7% 0.8% 

Min % Error  -53.3% -19.4% -11.4% -7.8% -8.2% -8.8% -7.5% -7.2% 

Max  % Error  38.3% 102.7% 35.6% 14.3% 13.5% 6.6% 5.7% 4.2% 

R-squared 99.73% 99.87% 99.94% 99.96% 99.96% 99.97% 99.97% 99.97% 
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6.2.63 The charts in figure 6.2.26 plot various metrics from table 6.2.2 against the 

number of calibration scenarios to better illustrate and compare the quality of 
fit of each calibration.  The interpolation fit is also plotted for comparison. 

 
Fig. 6.2.26 – Goodness of fit by number of Fitting Points 

 
 
6.2.63 For most metrics the quality of regression fit improves as the number of fitting 

points increases.  However, the law of diminishing returns applies with the 
rate if improvement decreasing as the number of fitting points increases.  We 
also found that the interpolation fit gave near optimal results, being of an 
equivalent quality of fit to that achieved using between four and five hundred 
fitting points under regression fitting. 

 
6.2.64 We now turn our attention to the 1-in-200 VaR as measured using each of the 

proxy calibrations.  The VaR estimates and their error from actual of £445.8m 
are shown in table 6.2.3. 

 
Table 6.2.3 

No. of Calibration 
Scenarios 

100 200 300 400 500 750 1000 63 

1-in-200 VaR 440.8 441.4 443.3 442.4 442.4 443.3 442.9 444.5 
Error (5.0) (4.4) (2.4) (3.4) (3.4) (2.5) (2.9) (1.3) 
Error % 1.1% 1.0% 0.6% 0.8% 0.8% 0.6% 0.7% 0.3% 

 
6.2.65 The errors at the extreme of the distribution are smaller than perhaps expected 

given the other metrics in table 6.2.2.  Also, the correlation between VaR error 
and number of fitting scenarios is not as strong as for other metrics. 

 
6.2.66 According to most conventional metrics, the regression calibration using 100 

points is a poor fit as shown in table 6.2.2.  However, the capital estimation 
error at the tail of the distribution is only £5m (1.1%).  This is illustrated in the 
chart in figure 6.2.27 which shows ranked actual versus ranked 
approximations for this calibration.  It shows that despite the poor fit at a 
scenario level, the distribution of the proxy is very close to that of the actual.  
Taking various quantiles is effectively just comparing results at different 
points along these two lines which are a close fit. 
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Fig. 6.2.27- Ranked Actual vs Ranked Proxy 

 
 

6.2.67 This can be illustrated more clearly on the chart in figure 6.2.28 where we plot 
the difference between the two lines from the chart in figure 6.2.27 (the 
difference between the ranked proxy results and the ranked actual results).  
Over this we have plotted the ranked errors (from figure 6.2.24).  The ranked 
errors are as expected, representing the distribution of errors.  The shape of the 
other line was not as expected, showing a good fit across nearly the whole 
distribution.  This would lead to an accurate capital result despite the inherent 
inaccuracy of the model.  An explanation is offered in section 4.2. 

 
Fig. 6.2.28 – CoG Error, 100 point Regression 

 
 
6.2.68 Plotting the same charts for other calibrations seems to show that increasing 

scenario accuracy does not necessarily translate to an increase in distribution 
accuracy.  The charts in figures 6.2.29 and 6.2.30 show the results of precise 
interpolation and 400 point regression respectively. 

 
6.2.69 The precise interpolation shows a deterioration in fit at the lower end of the 

distribution when compared to the 100 point regression despite having 
significantly better scenario accuracy.  At the upper end of the distribution, the 
fit is similar to that which results from using 400 point regression. 
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Fig. 6.2.29 – CoG Error, 63 Point Interpolation 

 
 

Fig. 6.2.30 – CoG Error, 400 point Regression 

 
 
6.2.70 For each calibration, the distribution errors become more volatile at the tails of 

the distribution, oscillating to varying degrees.  In fact, the 99.5th percentile 
VaRs, as shown in table 6.2.3, are not the ideal metric for comparing 
distribution accuracy due to this oscillation.  For example, precise 
interpolation gives the most accurate 1-in-200 VaR but not the most accurate 
1-in-100 VaR.  The results in table 6.2.4 illustrate. 

 
Table 6.2.4 

No. of Calibration 
Scenarios 100 200 300 400 500 750 1000 63 

99.9th Percentile Error 1.69% 1.12% 0.77% 0.71% 0.43% 0.36% 0.51% 0.09% 

99.5th Percentile Error 1.12% 0.98% 0.55% 0.77% 0.75% 0.57% 0.65% 0.29% 

99th Percentile Error 0.56% 0.86% 0.69% 0.78% 0.65% 0.74% 0.53% 0.66% 

95th Percentile Error 0.57% 0.19% 0.10% 0.26% 0.13% 0.05% 0.01% 0.22% 

 
6.2.71 Finally, we consider the impact on distribution accuracy of increasing the 

number of out-of-sample test scenarios.  This is illustrated by the charts in 
figure 6.2.31 which show the results of using 4,500 and then 20,000 scenarios 
for each of the 63 point interpolation and 100 point regression calibrations. 
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Fig. 6.2.31 – CoG Distribution Accuracy 

 
 
6.2.72 Increasing the number of scenarios to 20,000 acts to smooth out the volatility 

in the distribution errors whilst retaining the overall shape of the error curve.  
A further set of tests was performed using 50,000 out-of-sample scenarios 
which smoothed the curve even further.  This observation is consistent with 
the comments in 4.2 regarding the impact on VaR accuracy of increasing the 
number of Monte Carlo simulations.  In particular, it should be noted from 
figure 6.2.31 that the 63 point interpolation gives rise to VaR errors at the 
upper tail of the distribution that range, approximately between +1% and -2% 
when using 4,500 scenarios whereas using 20,000 scenarios has reduced the 
impact of simulation error until only the approximation error of around 0.5% 
remains. 

 
6.2.73 This concludes the case study for replicating polynomials.  However, there 

still remains considerable scope for variation and further analysis, both in the 
derivation of the polynomial formula and in its calibration and 
implementation.  The purpose of this case study was to give some flavour of 
the issues that need to be addressed and the decisions that need to be made.  It 
should be obvious that a great deal of subjective judgement was used and 
hopefully it has been made clear that sometimes these decisions are not in line 
with, or as would be suggested by, objective application of measured statistics. 
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6.3 RADIAL BASIS FUNCTIONS 

Introduction 

6.3.1 Approximation via use of radial basis functions (RBFs) has been used 
successfully in a number of areas, including image reconstruction in computer 
graphics. See Holger Wendland (2010) for further background details on 
RBFs. 

 
6.3.2 An RBF approximates the unknown function f(x) by a function of the form: 
 

g(x)=∑ ψi Φ(||x,xi ||) 
 
6.3.3 In this equation, the xi are the fitting points where the value of the unknown 

function is known. In the example considered in the later sections, the 
unknown function is the cost of guarantees and each xi is the value of the risk 
drivers (equity, rates, lapse etc.) at that fitting point. The ψi are weights 
assigned to each fitting point. The function Φ(||x,xi ||) is the radial basis 
function. It is "radial" because its value depends only on the Euclidean 
distance between the point to be approximated, x, and the fitting point xi. 

 
6.3.4 The RBFs considered in this section are all interpolations rather than 

regressions. Hence at each of the fitting points xi the value of the function to 
be approximated f(xi) equals g(xi). We solve for the weights ψi, and so this 
gives n linear equations in n unknowns. In general, this will have a unique 
solution and it is possible to choose Φ to ensure that this is the case.  

 
6.3.5 If the function Φ is positive definite, then the system of equations for ψi will 

have a solution.  A function  is said to be positive definite if and 
only if the following two conditions hold: 

 
1. Φ is even, so  
2. For all  and all , for all pairwise distinct 

 we have  
 

This is a generalisation of the idea of positive definiteness for matrices.  See 
Wendland (2010) for further details and a proof. 

 
6.3.6 The most common choices for Φ satisfy this condition. These choices include: 
 

• Gaussian. This has the form 
2)()( rer εφ −=  

• Multi-quadric. This has the form 2)(1)( rr εφ +=   

• Inverse Multi-quadric. This has the form 2)(11)( rr εφ +=  
• Thin plate splines. This has the form )ln()( 2 rrr =φ   

 
6.3.7 In general, adding more fitting points will improve the quality of fit. There is a 

general convergence result that, under mild conditions on the smoothness of 
the unknown function, ensures that this result holds. 
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Splines as RBFs 

6.3.8 Although the form of the formula in 6.3.2 may be unfamiliar, polynomial 
RBFs in 1 dimension are a spline. We demonstrate this by way of an example.  

 
6.3.9 Consider the cubic spline illustrated in Figure 6.3.1.  
 

Fig. 6.3.1 – Cubic Spline 

 
 
6.3.10 This spline, F(x), is defined as follows:  
 

F(x) Domain 
0 x<-2 

¼*(x+2)3 -2≤x<-1 
¼*(-3x3 - 6x2 +4) -1≤x<0 
¼*(3x3 - 6x2 +4) -0≤x<1 

¼*(x-2)3 1≤x<2 
0 2≤x 

 
6.3.11 It is possible to re-write F(x) as:  
 

F(x) = ∑  (|| −  ||)  
 

where (r) = r3, and the fitting points xi and associated weights  are given 
by: 

  
xi  
-2 0.125 
0 0.75 
1 0.5 
2 0.125 

 
This expresses F(x) as an RBF, as required. 

- 56 - 
 

http://www.tigerbun.com/research/index.php?title=File:Spline.jpg


HEAVY MODELS, LIGHT MODELS AND PROXY MODELS 

Example of RBF Interpolation 

6.3.12 In this section, we present the practical results of using RBF interpolation on 
the with-profits model referred to in [the introduction to this chapter.] The 
liabilities considered were the cost of guarantees; the asset share; and the total 
liability, which was the sum of the cost of guarantees and the asset share.  

 
6.3.13 For the majority of this section, the RBF used was multi-quadric, and so the 

approximation had the form: 
  

∑ψi (|(|x-xi |)|2/ε2 +1)  
 

We investigate alternatives to multi-quadric in the final part of this section. 
  
6.3.14 As noted in section 5.3, there are different methods of choosing the fitting 

points. Throughout this section, we assume the fitting points were chosen from 
independent normal distributions.  

 
6.3.15 The liability was calculated at 4,400 fitting points in total. The first points 

were used to calibrate the RBF; and the remaining points were used as out-of-
sample test points. The RBF was calibrated with between 50 and 400 fitting 
points.  

 
6.3.16 The chart in figure 6.3.2 shows the true asset share for the out of sample points 

plotted against the estimated value when 100 fitting points were used. 
 

Fig. 6.3.2 – Asset Share, Actual vs. Estimated 

 
 
6.3.17 It appears from this diagram that there is a reasonably good fit across the 

whole domain tested. This is borne out by the chart in figure 6.3.3 which plots 
the percentage error in the RBF approximation against the true value of the 
asset share. 
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6.3.18 It is clear that the maximal absolute percentage error of -2.3% is achieved at 
the extreme left hand tail of the distribution.  In the body of the distribution, 
the fit is reasonably good. This is borne out by the root mean square error, 
which equals 0.1%. The 1-in-200 Value-at-Risk estimated by the RBF differed 
from the true value by 0.3%.  

 
Fig. 6.3.3 – Asset Share, Error % 

 
 
6.3.19 For the remainder of the section, we consider fitting to the cost of guarantees, 

which are more non-linear and therefore a more interesting case study than 
asset share  

 
Fig. 6.3.4 – Cost of Guarantees, Actual vs Estimated 
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6.3.20 The chart in figure 6.3.4 shows the true cost of guarantees plotted against the 
estimated values for the out-of-sample test points when there were 100 fitting 
points. This shows that there was a reasonably good fit from the 
approximation, although visually it appears to be a worse fit than asset share.  

 
6.3.21 The chart in figure 6.3.5 shows the percentage error of the fit, plotted against 

the true value of the COG. The chart indicates that although there is generally 
a good fit for most value of the COG, there are some outliers and the fit is 
generally poorer towards the extreme ends of the distribution.  

 
6.3.22 The mean square error of the fit is 0.3%. The 1-in-200 Value-at-Risk 

estimated by the RBF differed from the true value by 0.4%. The maximum 
error was 3.5% and the minimum error was -2.1%. 

 
Fig. 6.3.5 – COG Error %, 100 fitting points 

 
 
6.3.23 We now investigate the sensitivity to different numbers of fitting points.  

Under the assumption that the liability is reasonably well behaved, extra fitting 
points should improve the quality of fit.  This is borne out in this example. 
Table 6.3.1 shows the statistics of using 400 fitting points compared to using 
100. 

 
Table 6.3.1 

Statistic 100 Fitting 
Points 

400 Fitting 
Points 

Root means square error  0.3% 0.1% 
Error in 1-in-200 VaR  0.4% 0.0% 
Maximum error  3.5% 1.8% 
Minimum Error -2.1% -0.9% 

 
6.3.24 The chart in figure 6.3.6 shows the chart of the true COG plotted against the 

percentage error using RBF interpolation with 400 fitting points. Visually, the 
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fit appears to be an improvement on the result with 100 fitting points. It is 
worth noting that the error in estimating the 1-in-200 VaR is in line with the 
root mean square error and not in line with the maximum, minimum or 1-in-
200 level of the error.  This is in line with the result discussed in section 4.2 
and demonstrated in 6.2 (replicating polynomials). 

 
Fig. 6.3.6 – COG Error %, 400 fitting points 

 
 
6.3.25 A formal investigation of goodness of fit would use some criterion such AIC.  

See Section 4.2 for a description of AIC. 
 

Fig. 6.3.7 – COG Error &, 100 fitting points 
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6.3.26 The chart in figure 6.3.7 shows the AIC of the fit achieved with various 

numbers of fitting points. We investigated the RBF model with 50; 75; 100; 
125; 150; 175; 200; 225; 250 and 400 fitting points. A lower AIC indicates a 
better fit. As expected, increasing the number of fitting points improves the fit 
as measure by AIC. 

 
6.3.27 This chart demonstrates the trade-off between complexity and accuracy. More 

fitting points result in a better fit to the unknown variable. However, offsetting 
this, if a greater the number of fitting points is chosen, the model is more 
complex with respect to calibrating, running and validating the heavy model to 
produce the fitting point and out-of-sample results.  

6.4 REPLICATING PORTFOLIOS 

Introduction 

6.4.1 A replicating portfolio is a pool of assets designed to approximately reproduce 
the market values of a pool of liabilities across a large number of stochastic 
scenarios. These can then be used to create an ideal hedge for the liabilities, 
which a firm then has the option to purchase in the capital markets. Also, an 
important by-product of a replicating portfolio is to act as a proxy for the 
liabilities, which (given certain conditions hold) can be used to predict the 
behaviour of change in value of the liabilities based on a number of economic 
outcomes.  

 
6.4.2 In this paper, we shall focus the majority of the discussion on the second use 

(as a proxy model). As with other proxy models, the single biggest advantage 
compared to 'heavy' models is simply, speed. This is made possible by a 
number of 'closed form' formulae available from advances in financial 
mathematics (e.g. Black Scholes formula for equity options and Black 
formulae for swaptions). Even where closed form formulae do not exist, the 
nature of the replicating assets is such that they can be recalculated 
significantly quicker than the heavy models they are intending to replicate.  

 
6.4.3 The range of assets used depends on the aim of the replicating portfolio. If 

required to calculate financial hedges (or potential hedges), the family of 
assets are often restricted to vanilla instruments whose prices can be found in 
the capital markets. However, in theory, there is no requirement to restrict the 
family of replicating assets to those that can actually be purchased, and a 
number of 'exotic' options / mathematical constructions can be used. This is 
where a replicating portfolio merges with some of the other proxy models 
described in this paper and so won't be discussed further in this chapter. 

  
6.4.4 There are two main advantages to a replicating portfolio: 
 
Intuition 
6.4.5 The replicating portfolio method scores very highly on the intuition front, 

especially if the senior management of a firm have significant investment 
knowledge. For example, there are clear analogies between a with profits 
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product with a given term and guaranteed amount to a put option with a given 
strike and maturity date. Furthermore, the strike of the replicating option 
provides valuable information to the insurer on the 'moneyness' of the 
guarantees that they have provided to the customers.  

 
Use for Hedging 
6.4.6 Although a fairly obvious use, it is worth bearing in mind. In particular, given 

a theoretical replicating portfolio, the firm often has a number of choices in 
terms of what risks it wants to hedge and what risks it wants to retain based on 
cost benefit analysis. The replicating assets could be decomposed into 'greeks' 
(the rate of change of replicating portfolio values to key market variables), and 
a firm could decide to selectively hedge some of the 'greeks'. A classic real life 
example is using replicating portfolios to dynamically delta-hedge the 
liabilities (i.e. hedge the first order sensitivities to equity market movements, 
and rebalance frequently). Note that the use of greeks such as delta, gamma, 
vega and rho are coming into more common usage in terms of insurance risk 
monitoring systems, in colloquial use if not for actual hedging activity! 

Determining Formula Structure 

6.4.7 An important design choice within the replicating portfolio method is the 
choice of replicating assets to use. Unfortunately, unlike replicating 
polynomials, there is no guaranteed 'one size fits all' method, and considerable 
thought needs to be given to the family of assets used. This does very much 
depend on the nature of the design of the heavy model, as well as details about 
the product / liability under consideration. For example, with profits products 
would have a number of distinctive features such as term, nature of 
guarantees, level of guarantees and cohort, which may provide insight into the 
opportunity set of replicating assets to use. Likewise, products that behave 
more like annuity would have fundamentally different cashflows and features. 

  
6.4.8 Once the 'formula structure' has been designed (i.e. the family of assets to use 

as the opportunity set), the coefficients boil down a rather large regression and 
optimisation exercise. This requires similar numerical and computing 
challenges as some of the other basis functions described in this paper. In 
addition, there may need to be a number of iterations of replicating portfolios, 
progressively moving from the exotic/theoretical families to the more practical 
vanilla instruments that a firm may want to trade in the capital markets.  

Limitations of Replicating Portfolios 

6.4.9 Replicating portfolios can help insurance companies improve the speed and 
accuracy of certain calculations. However, replicating portfolios have some 
limitations. 

  
Non-financial risks 
6.4.10 Replicating portfolios as we know them can be very useful for quantifying and 

managing financial risk, but not ideal for non-financial risks. It is possible to 
merge a replicating portfolio with some of the other basis functions in proxy 
modelling to mitigate this aspect. However, in practice it means that when 
there is a material change in liability methodology and assumptions (e.g. 
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decrements, management actions, etc...) there would be a need to recalibrate 
the replicating portfolio.  

 
Know-How 
6.4.11 Replication work requires thorough knowledge of both sides of the balance 

sheet, as well as the interaction of assets and liabilities. This is not usual, as 
the common path is for the Actuarial department of an insurance firm to 
specialise in the understanding of the liabilities, and for the investment 
management side of an insurance firm to specialise in knowledge of the assets! 
Additionally, the introduction of stochastic calculus is (relatively) new in the 
actuarial syllabus, having been introduced circa 2004, and replicating portfolio 
theory remains at present remain a specialist area of knowledge outside of the 
Actuarial (or CFA) syllabus. Thus a firm has the difficult choice of either 
building a critical mass of individuals with quantitative skills as well as 
knowledge of both sides of the balance sheet to build a tool, or to outsource (at 
a considerable cost!) to consultants.  

 
Knowledge of the Liabilities 
6.4.12 Finally, given the sheer number of regression possibilities when creating the 

family of assets representing replicating portfolios, these require detailed 
knowledge of the firm's products in order to succeed.  

6.5 COMMUTATION FUNCTIONS 
6.5.1 The Commutation Proxy model is not prevalently used in industry.  It is 

presented here as a methodology covering the advantages of replicating 
portfolio methodology with respect to marketable securities but expanding that 
methodology further to include non-market related risk drivers. Thus any basis 
function (as describe in Section 4) used in a replicating portfolio proxy model 
is also available in a commutation proxy model. 

 
What is a commutation function? 
 
6.5.2 Commutation functions were developed before computers were widely used in 

insurance.  Without going into the exact definitions, essentially they are a 
series of vectors used to describe aspects of an insurance product, where the 
index of the vector is over time.   

 
6.5.3 With classic commutation functions, individual risk are projected separately 

and combined together in a dot product formula.  For example, for life 
insurance, you might have: 

 
• a Nominal Amount life cover vector ( )LastnnN ,,1 


=  with indices 

indicating years forward, 
• a Discount Factors vector ( )LastDDD ,,1 


= , 

• a Survival vector ( )Lastlll ,,1 

= , and 

• a Persistency vector ( )LastperperP ,,1 

= . 
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6.5.4 The present value of this situation is given by the equation: 
 

∑
=

⋅⋅⋅=
Last

i
iiii perldnPV

1

. 

 
6.5.5 A generalized Commutation (our usage, not common usage) may use 

something other than a dot product.  It is a function of vectors: 
 

),,,( PlDNfPV


= for some function f. 
 
6.5.6 Clearly, the classic commutation function is a special case of the general one.  

It is possible to have vectors of different size in the function.  For example: 
 

Discounted Cash flows: ),(
)1(1

rFCf
r

CFPV
Last

i
i

i
Commutator


=

+
=∑

=

 

 
6.5.8 This is a standard actuarial formula, which is a generalized commutation.  The 

cash flows naturally form a vector, ).,,( 1 LastccFC 


=  The variable r is 
viewed as a vector of length 1.   

 
6.5.9 The power of this methodology rests on how well these generalised 

commutation functions can be defined.  Clearly the discount function, 
( )LastDDD ,,1 


= , can be defined as a function of interest rates.  The vector 

might be 30 years long, but it may be a function of only 3 interest rates 
variables, as would be the case in a model that used Principal Component 
Analysis to develop a 3 factor model.  If a spread-laden rate were needed, 
again the final vector could be as long as our projection period but the number 
of variables would be much smaller.  

 
6.5.10 The general idea is that the above expression for PV would be our new basis 

function as presented in Section 3.1.  It would be a function of the underlying 
risk drivers, whatever they are.   

 
6.5.11 The commutation functions would have a strong advantage over polynomials, 

however, because the form of the basis function is actuarially/financially 
based, and accordingly should better reflect the shape of the actual function of 
risk drivers.  Expressed mathematically, the commutation function would 
extrapolate and interpolate better away from the scenarios points from the 
heavy lifts better than polynomial functions would.    

 
6.5.12 Commutation functions could include all the function from replicating 

portfolio proxy models, but also include functions of risk drivers other than 
market risk drivers, such as pure insurance drivers (mortality, expenses, 
lapses, etc.) and as such would reflect these risk drivers. 
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7 SUMMARY 

7.1 FINAL THOUGHTS 
7.1.1 The interest in, and use of, proxy models within the insurance sector has 

grown considerably in recent years driven by both regulatory (Solvency II) 
and risk management requirements.  Arguably, some organisations did not 
have as much time as they would have liked to review the proxy modelling 
landscape before choosing a solution to be embedded in their risk management 
framework.  The imperative for these organisations is likely to be the 
understanding and improvement of their models.  However, in order to achieve 
this it may be necessary to take a step or three backwards and recognise the 
fundamental choices that have already been made in selecting a particular 
model and with that choice, the potential limitations.  Understanding those 
limitations will be crucial to devising ways over or around them.  For those 
organisations still contemplating proxy models, the situation is perhaps a little 
better as there is opportunity to learn from the experience of others.  However, 
the required knowledge and information is the same. 

 
7.1.2 If the question being asked now is “Which is the best proxy model?” then 

unfortunately there is no right answer.  Proxy modelling, by its nature, requires 
a series of compromises to be made, in both the abilities and features of the 
model; some features will be preferred to others, accuracy in one metric 
maintained at the expense of others.  As such, the chosen model (and design) 
should be driven by the uses to which the model will be put.  Perhaps the 
question should be expanded to ask “Which is the best proxy model to answer 
this particular set of questions?” whatever those question may be.  If we 
consider the natural desire and tendency to expand the uses of, and therefore 
extract maximum value from, a model then perhaps the question should 
instead relate to maximum flexibility or adaptability. 

 
7.1.3 Unfortunately, these questions are no more easily answered and, this being a 

working paper, we have not attempted to offer a solution here, merely a 
discussion around the issues to be considered and perhaps a basic framework 
for comparison. Likewise, detailed conclusions are deferred until later 
publication. 

7.2 NEXT STEPS 
7.2.1 Undoubtedly, as knowledge and experience of proxy models increase then so 

the techniques being used will be refined and enhanced to take advantage of 
new information.  Technology, too, will play a part leading to increases in 
efficiency and speed which will offer the opportunity for more calibration 
scenarios and increasingly complex formula structures.  We can easily imagine 
an increasing reliance on automated processes for determining formula 
structure.  Strides have already been made in this direction with techniques 
such as those employed by Least Squares Monte Carlo.  A continuation of this 
development through a greater understanding and increased use of intelligent 
decision making algorithms will likely prove necessary.  
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7.2.2 At the same time, judgement shall remain an important aspect of the process, 
but perhaps the pure judgement would be concentrated around the big-picture 
model design aspects.  This will be especially true as more insurers have the 
luxury, time and resource when being tasked with building a proxy model 
from a clean sheet of paper (as opposed to being forced to choose a set menu 
template to comply with ‘impending’ capital regulations). 

 
7.2.3 If we consider the development of liability models from analytic functions and 

formulae through to stochastic cashflow models, in a strange way we have 
now come full-circle with a return to functions and formulae. The irony, 
however, is that the formulae being used now are often less sophisticated than 
those originally replaced by cashflow models two decades ago. 

 
7.2.2 Perhaps then, there are lessons to be learned from the past.  Recognising the 

disconnect between that which we are trying to model and the basis functions 
being used to do so, there seems considerable scope for development of more 
bespoke basis functions, many of the principles and methods discussed in this 
paper being equally applicable to more bespoke functions, particularly those 
that better reflect the characteristics of the heavy model under consideration.  
Marrying the old with the new, therefore, would certainly appear to be an area 
for further discussion and research. 
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APPENDIX 1 – CONVERGENCE OF LEAST SQUARES MONTE CARLO 
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APPENDIX 2 – OPTIMISED COMPONENTS VS OPTIMISED WHOLE, AN 
EXAMPLE 
A.2.1 We start by considering some unknown function in two variables.  We assume 

that this function can be approximated with arbitrarily small error using a two-
factor 4th order polynomial Q(x,y), i.e. 5th order terms are negligible. 

 
Q(x,y) = a24x4y4 + a23x4y3 + a22x4y2 + a21x4y + a20x3y4 

+ a19x2y4 + a18xy4 + a17x3y3 + a16x3y2 + a15x3y 
+ a14x2y3 + a13x2y2 + a12x2y + a11xy3 + a10xy2 
+ a9xy + a8x4 + a7x3 + a6x2 + a5x + a4y4 + a3y3 
+ a2y2 + a1y + a0 

 
Optimised Whole 
 
A.2.2 Assuming we wish to approximate using a two-factor 3rd order polynomial 

p(x,y), the optimal fitting points are given by the intersections of the roots of 
the 4th order Legendre Polynomials.  This will give 16 fitting points such that 
the interpolating polynomial will be the best fit surface in the least squares 
sense. 

 
A.2.3 The diagram in figure A.2.1 shows a bird’s eye view of the error surface that 

results from finding the least squares fit across a large number of data points.  
The intersection between the two differently shaded areas indicates zero error.  
It can be shown that zero error always occurs at the intersection of the roots of 
the Legendre polynomials as shown by the thick black lines.  This indicates 
that they provide optimal fitting points. 

 
Fig. A.2.1 

 
 
A.2.4 The replicating formula that results is a two-factor 3rd order polynomial which 

can be deconstructed into its component parts: 
 
  p(x,y) = f(x) + g(y) + h(x,y) 
 

Where f and g are cubic functions in one variable representing the marginal 
risk functions and h represents the non-linearity function consisting of cross 
terms only, e.g. xy, x2y, xy3.  Slight adjustment is need to the combined 
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formula due to the effective doubling counting of the constant terms from each 
of the marginal risk functions: 

 
p(x,y) = f(x) + g(y) + h(x,y) – a0 

 
f(x) = b7x3 + b6x2 + b5x + xb0 

 
g(x) = b3y3 + b2y2 + b1y + yb0 

 
h(x,y) = b17x3y3 + b16x3y2 + b15x3y 

+ b14x2y3 + b13x2y2 + b12x2y 
+ b11xy3 +b10xy2+b9xy 

 
b0 = yb0+ xb0 – a0 

 
p(x,y) = b17x3y3 + b16x3y2 + b15x3y + b14x2y3 + b13x2y2  

+ b12x2y + b11xy3 + b10xy2 + b9xy + b7x3 + b6x2 
+ b5x + b3y3 + b2y2 + b1y + b0 

 
A.2.5 If we plot f and g we get the two charts in figures A.1.2 respectively.  It can be 

seen that the resulting marginal risk functions are not optimal so care must be 
taken when using the components of a holistically derived approximation.  For 
example, using the marginal risk functions to analyse sensitivity to individual 
risks may lead to incorrect conclusions, especially at the tails. 

 
Fig. A.2.2 

 
 
Optimised Components 
 
A.2.6 We now consider the same example but start by finding the optimal cubic 

approximations for the marginal risks, f(x) and g(y), first.  The two diagrams 
in figure A.2.3 show the resulting error curves.  These curves have zeroes at 
the roots of the 4th order Legendre polynomial. 

 
A.2.7 Errors are reduced significantly and more importantly have a predictable shape 

given their derivation from Legendre polynomials. 
 
A.2.8 The optimal non-linearity approximation for h(x, y) is found by fitting to the 

intersection of the one dimensional solutions where the error is constrained to 
be zero along the axes, i.e. not at the roots of the Legendre polynomials. 
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Fig. A.2.3 

 
 
A.2.9 Combining all three optimal components we obtain the final replicating 

formula and can compare its error surface with that derived from the holistic 
optimal fit as shown in the two diagrams in figure A.2.4. 

 
Fig A.2.4 

 
 
A.2.10 There is some loss of goodness of overall fit when using optimal components, 

though this seems to be limited to the extreme corners of the domain.  
Depending on what use the formula is to be put, this loss in quality of overall 
fit may or may not be desirable. 

 
Further Analysis 
 
A.2.11 We can analyse the functions further to gain an understanding of the factors 

that may influence to what extent a holistic approach may lead to unsuitable 
marginal risk approximations. 

 
A.2.12 We can derive functions for each of the approximation function coefficients in 

terms of the coefficients of the function we wish to approximate and the 
domain over which the best fit is required.  Table A.2.1 provides these 
functions in this example, where a 3rd order fit is required for a 4th order 
function.  We then summarise these results in terms of the dependencies in 
Table A.2.2. 
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Table A.2.1 
  Optimal Components Holistic (overall optimal) 

Constant b0 a0 – 3/35a8Rx
4-3/35a4Ry

4 a0 – 3/35a8Rx
4-3/35a4Ry

4 

+(3/35)2a24Rx
2Ry

2 

Coefficients 
of y 

b1 a1 a1 – 3/35a22Rx
4 

b2 a2+6/7a4Ry
2 a2+6/7a4Ry

2– 3/35a21Rx
4 

– (3/35)(6/7)a24Rx
4Ry

2 

b3 a3 a3 – 3/35a23Rx
4
 

Coefficients 
of x 

b5 a5 a5 – 3/35a18Ry
4 

b6 a6+6/7a8Rx
2 a6+6/7a8Rx

2 – 3/35a19Ry
4 

– (3/35)(6/7)a24Rx
2Ry

4 
b7 a7 a7 – 3/35a20Ry

4 

Coefficients 
of non-

linearity 

b9 a9 a9 
b10 a10+5/7a18Ry

2 a10+6/7a18Ry
2 

b11 a11 a11 
b12 a12+5/7a21Rx

2 a12+6/7a21Rx
2 

b13 a13+5/7a19Ry
2+5/7a22Ry

2 

+(5/7)2a24Rx
2Ry

2 
a13+6/7a19Ry

2+6/7a22Ry
2 

+(6/7)2a24Rx
2Ry

2 

b14 a14+5/7a23Rx
2 a14+6/7a23Rx

2 
b15 a15 a15 
b16 a16+5/7a20Ry

2 a16+6/7a20Ry
2 

b17 a17 a17 
 

Table A.2.2 
 Optimal Components Holistic (overall optimal) 

Coefficients of 
marginal 

approximation 
function in x 

Function of the coefficients 
of the underlying marginal 

function in x and the domain 
in x 

Function of the coefficients 
of the underlying marginal 

function in x, the coefficients 
of the underlying non-

linearity function and the 
domains in both x and y 

Coefficients of 
marginal 

approximation 
function in x 

Function of the coefficients 
of the underlying marginal 

function in y and the domain 
in y 

Function of the coefficients 
of the underlying marginal 

function in y, the coefficients 
of the underlying non-

linearity function and the 
domains in both x and y 

Coefficients of non-
linearity 

approximation 
function in x and y 

Function of the coefficients 
of the underlying non-

linearity and the domains in 
both x and y 

Function of the coefficients 
of the underlying non-
linearity and the domains in 
both x and y 

 
Summary 
 
A.2.13 When the optimal fit is found holistically, coefficient of the marginal 

approximation functions in x and y are functions of the coefficients of non-
linearity in the original function and functions of the domains in both x and y: 
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• Adjusting the range in y will change the marginal fit to the function in x as 

will a change in non-linearity. 
 

• The more severe the non-linearity, the further from optimal the marginal 
approximation functions become 

 
A.2.14 When optimal components are found, the coefficients of the approximation 

functions in x and y are functions of the coefficients of the corresponding 
underlying marginal risk functions and corresponding domain only: 

 
• Adjusting the range in y will have no impact on the marginal fit to the 

function in x nor will the extent of underlying non-linearity 
• The more severe the non-linearity, the further from optimal the overall fit 

becomes. 
 
A.2.15 As a final observation, it should be noted that this example has used a 3rd order 

approximation function in order that the optimal component fit is different 
from the fit derived through optimising the whole.  For even-ordered 
approximation functions, the optimised component fit is the same as that 
derived through optimising the whole.  This is due to the optimal non-linearity 
surface being zero along the x and y axes.  Only odd-powered Legendre 
polynomials have roots at zero meaning that when optimising the whole only 
even-powered approximation functions will provide a non-linearity component 
that is zero on the x and y axes.  For odd ordered approximations, the non-
linearity surface will be non-zero along the x and y axes.  
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