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abstract

Late life mortality patterns are of crucial interest to actuaries assessing longevity risk. One
important explanatory variable is year of birth. We present the results of various analyses
demonstrating this, including a statistical model which lends weight to the importance of year-of-
birth effects in both population and insured data. We further find that a model based on age
and year of birth fits United Kingdom mortality data better than a model based on age and
period, suggesting that cohort effects are more significant than period effects. The financial
implications of these cohort effects are considerable for portfolios with long-term longevity
exposure, such as annuities written by insurance companies and defined benefit pension
schemes.
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". Introduction

1.1 A macro-economic environment of low inflation and modest
nominal investment returns has made increasing longevity a much bigger
issue for sponsors of defined benefit pension schemes. Low nominal interest
rates have also thrown the spotlight onto the mortality assumptions used by
insurers for fixed annuity business. Furthermore, new product innovations,
such as equity release mortgages, have created entirely new forms of financial
exposure to longevity risk (Richards & Jones, 2004). The need to understand
late-life mortality patterns, especially future mortality improvements, has
grown rapidly in recent years.

1.2 As shown by Willets (1999), an important explanatory variable for
mortality patterns is year of birth, and a key task is the efficient separation of
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patterns from background noise. This paper presents the results of three
different techniques for achieving this with two-dimensional mortality data.
In each case, the year of birth proves to be a strong explanatory factor for
patterns of mortality improvement in the United Kingdom, both in the
insured and in the general populations. A statistical method is presented,
which formally shows the dominance of cohort effects over period effects in
the U.K.

1.3 It is not the goal of this paper to comment on work done by the
Continuous Mortality Investigation Bureau (CMIB), although the interested
reader is directed to CMIB (2005), which contains further consideration of
penalised-spline models for projection purposes.

Æ. Factors Driving Mortality Patterns by Year of Birth

2.1 Since the 1970s, new evidence has been gathered which suggests that
adult chronic disease is at least partly rooted in conditions experienced in
early life, including conditions in utero. Ongoing research uses a variety of
means of measuring this. One simple approach uses the month or season of
birth as a proxy for the pre-natal and perinatal environmental conditions
experienced by a child ö see Gavrilov & Gavrilova (1999), Doblhammer &
Vaupel (2001) and Gavrilova et al. (2002). Other work finds that disease load
in the first year of life has a strong impact on mortality in later life,
especially diseases from airborne infections (Bengtsson & Lindstrom, 2000).
The theory is that infection during crucial developmental stages is damaging,
and not just in direct mortality terms. For example, much research has
been devoted to the alleged connection between influenza infection and
schizophrenia: see Izumoto et al. (1999) and Selten et al. (1999). Influenza is
increasingly suspected of playing a major role in susceptibility to heart
disease (Madjid et al., 2004), which remains the leading cause of death
amongst the elderly in the U.K. Some mechanisms and results are discussed
by Gluckman & Hanson (2004), while Finch & Crimmins (2004) discuss the
idea of a ‘cohort morbidity phenotype’. Under this hypothesis, early-life
exposure to infectious agents causes an inflammatory reaction which can lead
to chronic disease in middle age. Figure 1 shows the substantial fall in
mortality due to infectious agents and respiratory disease in the first half of
the twentieth century in England and Wales. Perhaps not coincidentally,
mortality from circulatory disease shows a steep and sustained fall as the
generation born in the first half of the twentieth century enters middle age in
the latter half.

2.2 For ethical reasons, it is impossible to conduct experiments to
conclusively verify the causal pathways in humans. However, certain
historical events do enable some hypotheses to be researched and tested. One
example is the famine in the northern Netherlands in 1944 - 45, during the
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closing stages of the Second World War. This gave, not only an exposed
population which is precisely known, but also a comparable contemporaneous
control population in the rest of the Netherlands, which did not suffer the
famine. Analysis of the mortality of those born before, during and after the
famine gives insight into the relationship between under nutrition and late-
life susceptibility to disease (Rosebloom et al., 2001). The results are not
conclusive, however, while the Dutch famine of 1944 - 45 appeared to lead to
increased susceptibility to coronary heart disease (CHD), the famine
associated with the Leningrad Siege of 1941 did not. Stanner et al. (1997)
found that the Leningrad group had greater levels of obesity and higher
blood pressure for those exposed to intrauterine malnutrition than those
either unexposed to malnutrition, or else exposed to malnutrition only as
infants. This suggests that it is not merely early life conditions which drive
later health and mortality, but also the conditions which applied at key
developmental stages.
2.3 Early-life conditions impact directly, not only on later health and

mortality, but also act as contributing factors towards wealth accumulation
and socio-economic status. Links between mortality and wealth, or between
mortality and socio-economic status, cannot be interpreted in isolation. Some

Source: ONS data with own extrapolations beyond 2002

Figure 1. Mortality rates per 100,000 for England and Wales by main
causes of death
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research does a control for socio-economic variation (McCarron et al., 2002),
and yet still finds a strong inverse relationship between height (an indicator
of early life conditions) and increased cardiovascular mortality. A possible
mechanism for this is that low birth weight is associated with concentric
enlargement of the left ventricle in adult life (Vijayakumar et al., 1995).

2.4 Some studies compare the relative influence of year of birth and
year of observation. Age-period-cohort studies in Sweden suggest that both
contain relevant information explaining trends in stroke mortality (Peltonen
& Asplund, 1996). In some instances, year of birth proves to be more
important than year of observation. For example, stillbirth rates have been
linked to sub-optimal early life conditions, and there is evidence in Norway
that stillbirth rates are more closely linked to the mother’s own year of birth
than the year of the stillbirth itself (Liestol, 1981). One interpretation here
might be that the mother’s early-life conditions dominate the effect of
improved standards of living and medical care. This makes sense when one
notes that human females are born with all the oocytes (eggs) they will ever
have, making pre-natal conditions decisive, both for a woman’s future
fertility and her mortality. One could even imagine using cohort stillbirth
data as a signpost for late-life cohort mortality patterns in females.

2.5 Besides pre-natal and early-life conditions, mortality is also strongly
influenced by lifetime health behaviours. A great deal is now known about
mechanisms linking various health behaviours to mortality outcomes,
especially smoking (Doll & Hill, 1954; Doll et al., 2004) and diet (Ames,
1998). Where there are pronounced and consistent generational differences in
such life course health behaviours, these will also be picked up in a year-of-
birth analysis. An example of this is smoking and rates of lung cancer
mortality, as shown in Figures 2(a) and 2(b). When one looks at these
graphs, and also Figure 1, they suggest that the cohort effect in the U.K. is
perhaps less about a ‘healthy generation benefiting from wartime rationing
and the Welfare State’, and rather more the result of preceding generations
being particularly unhealthy and, indeed, ‘damaged’.

2.6 It has been suggested that the cohort effect is largely due to the
changing incidence in smoking. It is true that changes in personal smoking
habits are a component part of the cohort effect, as evidenced in Figures 2(a)
and 2(b), and confirmed by Willets (2004). However, smoking does not
account for the cohort effect in full; Willets (2004) found that only part of the
cohort effect could be explained by lung cancer incidence (and thus
smoking), whereas Doll et al. (2004) found ‘a progressive reduction in the
mortality of never-smokers’, with the survival probability of reaching age 90
from age 70 increasing threefold amongst those who had never smoked over
the 50-year study period. Doll et al. (2004) found year-of-birth patterns in
mortality rates amongst lifelong non-smokers, as shown in Figure 2(c),
suggesting that smoking patterns can be only a partial explanation of the
cohort effect.
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Source: Lee et al. (1990), Forey et al. (1993) and ONS (Twentieth Century Mortality)

Figure 2(a). Lung cancer mortality rates per 100,000 for U.K. males by
age band (left) and estimated cumulative lifetime cigarette consumption for
males (right); CCTCC ¼ Cumulative Constant Tar Cigarette Consumption,

a standardised measure of lifetime cigarette consumption, shown in
units of 100,000

Source: Lee et al. (1990), Forey et al. (1993) and ONS (Twentieth Century Mortality)

Figure 2(b). Lung cancer mortality rates per 100,000 for U.K. females by
age band (left) and estimated cumulative lifetime cigarette consumption for

females (right); age band labelling is as per Figure 2(a) for males;
CCTCC ¼ Cumulative Constant Tar Cigarette Consumption, a
standardised measure of lifetime cigarette consumption, shown in

units of 100,000
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2.7 The subject of initial damage done to an individual’s DNA is also a
key topic. Gavrilov & Gavrilova (2001) have developed a simple, yet elegant,
theory of human ageing in engineering terms: the progressive failure of
redundancy as the driver for the shape of the curve of human mortality rates.
Gavrilov & Gavrilova (2004) further show the theoretical effects of high
initial damage load (HIDL) and the idea of an initial virtual age as a means
of explaining how some individuals are born further into the ageing process
than others. This idea is immediately familiar to actuaries as the long-
established practice of rating lives by treating them as being younger or older
than their chronological age for the purposes of pricing and reserving.
Gavrilov & Gavrilova not only developed the reliability theory of ageing, but
also identified precise stages at which the initial damage can occur: from

Source: Doll et al. (2004)

Figure 2(c). Cohort survival rates for lifelong non-smokers among British
male doctors; clear differences exist between the survival rates of lifelong
non-smokers, suggesting that the cohort effect is driven by more than just

personal smoking habits
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conception (Gavrilov et al., 1997; Gavrilov & Gavrilova, 2000); through to
inter-uterine conditions (Gavrilova et al., 2002; Gavrilov & Gavrilova, 2003);
and even the process of birth itself, which causes hypoxia and consequent
DNA damage.
2.8 Year of birth is therefore a potentially powerful combined proxy for

fœtal and gestational conditions, early-life disease load and lifetime patterns
of health behaviours. This paper is concerned with measuring the extent to
which year-of-birth effects explain observed mortality improvement patterns
in U.K. males. Willets (2004) gives further references and discussion of year-
of-birth effects in the U.K. We note that there are other, more significant
rating factors for mortality ö most obviously socio-economic group ö but
we do not have the data to consider their impact. The relative importance of
various rating factors in annuities and pensions business is explored in more
detail in Richards & Jones (2004).

â. Estimating Year-of-Birth Effects using Moving Averages

3.1 The Government Actuary’s Department (GAD) calculates mortality
rates and life tables based on data on numbers of deaths and population
estimates produced by the Registrars General of England and Wales,
Scotland and Northern Ireland. The GAD has two data sets. The first is in
the form of interim life tables, which cover individual ages from zero to 100,
and separately cover the four territories of the U.K. (England, Wales,
Scotland and Northern Ireland). An interim life table is based on the
experience of a triennium, the most recent available being the calendar years
2001 - 2003. Interim life tables are publicly available from the GAD website
for triennia from 1980 onwards.

3.2 The second GAD data set differs from the first in that it is not
publicly available, only covers England and Wales combined, and only covers
individual ages from 20 to 89. However, this second data set has two
important advantages: it is annual, not triennial, data; and the data stretch
back to 1961, rather than to 1980.
3.3 Both sets of data give the central exposure to risk, so we are

handling central rates of mortality (mx), not probabilities (qx). For the
purposes of this paper, we will use both data sets: the triennial data for
illustrative, one-dimensional work; and the annual data for the main, two-
dimensional work. The data are made available by attained age and year of
observation, but we will present our results by year of birth and year of
observation to compare and contrast the two. Figure 3 shows the
transformation of the data that is necessary for cohort-orientated work, and
the resultant incomplete information which results for the earlier and later
cohorts.

3.4 As championed by Willets (1999) and used in CMIB (2002), rather
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than use the central mortality rates mx;t, we will work with the mortality
improvements Dmx;t, where:

Dmx;t ¼ 1ÿ
mx;t

mx;tÿ1

where x is the attained age and t is calendar time. To see underlying
patterns, it is necessary to remove the effects of random variation. This we
can achieve by smoothing, and Figure 4 shows how one-dimensional
smoothing uses information at adjacent ages to both damp down random
variation and to ‘borrow’ adjacent information in determining underlying
patterns. The left panel in Figure 4 shows the raw, unsmoothed
improvements, while the right panel shows the resulting smoothed values
after using a simple moving average. The effectiveness of the smoothing
function can be seen quite clearly, as it picks out consistent year-of-birth
patterns for two quite different triennia, separated by nearly two decades.
One must bear in mind that comparability is between lines, not necessarily
within the lines themselves; the year-of-birth figures for 1930 are for an age
ten years older than the figures for 1940.

3.5 The right panel in Figure 4 contains several useful pieces of
information. Firstly, we can clearly see the much documented ‘cohort effect’,
whereby very strong mortality improvements are exhibited by the
generations born around 1931 (Willets, 2004). Secondly, mortality
improvements appear to increase with advancing age; the line of
improvements during 2001 is uniformly higher than the line a decade earlier

Figure 3. Transformation of data layout from year of observation against
age (left) to year of observation against birth cohort (right); the four

numbers show how a given mortality rate for age and year of observation
relocates when restructuring the data on a cohort basis
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for all but the extremely elderly (although this could simply be a period
effect, say, due to the milder winters of 2000 - 2002). Thirdly, a second
cohort with strong mortality improvements is also clearly visible for those
males born just before 1945.

3.6 Despite the caveat about not comparing intra-line patterns, there is,
nevertheless, something about those born around 1939 that gives them
materially lower mortality improvements than the generations both before
and after them. Note, however, the distinction between low relative mortality
improvements and worsening mortality; it is only when mortality
improvements are negative that mortality is actually worsening from
generation to generation. The generation of 1939 may have lower relative
improvements than the generation of 1931, but the former will still live
longer. A generation ‘banks’ all the improvements of the generations which
precede it. A cohort with low-but-positive improvements still has lower
mortality rates than the cohort which precedes it.

3.7 A broadly similar pattern exists for females, but with two notable
exceptions (not shown). Firstly, the gap between the triennial improvements
is much smaller. Secondly, the dip for the cohort born around 1939 is much

Source: Own calculations using GAD data

Figure 4. Unsmoothed (left) and smoothed (right) mortality improvements
for males in the U.K.; triennium-to-triennium improvements for 1980 - 82
to 1981 - 83 and 1999 - 2001 to 2000 - 2002 (labelled 1982 and 2001 after
the mid-point of the later triennium in each case); mortality improvements
are smoothed using a simple (1, 2, 3, 2, 1) moving average centred on each
year of birth, divided by nine to normalise the smoothed values; this simple

moving average function was chosen for its fit by eye, rather than by a
fitting procedure; similar patterns exist for females (not shown), as

discussed in Richards & Jones (2004)
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less pronounced, so much so that it appears non-existent for the 2001 curve
(the 2000 - 2002 triennium). Gavrilova et al. (2002) discuss the biological
basis for females being less susceptible than males to adverse conditions. If
variations in adverse life-course conditions drive cohort effects even partly,
then the strength of cohort effects will be greater for males.
3.8 Smoothing works by damping down random variation and borrowing

information from adjacent points. Working simultaneously in two dimensions
will, therefore, give greater insight into patterns of mortality improvement;
instead of two adjacent points from which to borrow information, there are
eight. Figure 5 shows the result of such two-dimensional smoothing.

3.9 The highest improvement rates are white and the lowest improvement
rates are black, with various scales of grey in between. If you think in terms
of mountains, the snow covered peaks are the high improvement rates and
the dark valleys are the low improvement rates. The block-like pattern is an
artefact of the moving average smoothing. The white triangles at the top left
and bottom right are artefacts of the data set: data are not consistently

Source: Own calculations using GAD data

Figure 5. Smoothed male mortality improvements in England and Wales,
displayed using five grey scale levels; year-on-year improvements for

individual years; the dashed line connects improvements at age 65, which
has been the U.K. state pension age for males throughout; note the missing

triangles of data caused by the transformation in Figure 3
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available above age 84 (causing missing data in top left); nor were they
available for this work under age 20 (causing missing data in the bottom
right). The weights for the two-dimensional moving average used in Figure 5
are given below. In order to avoid edge effects, smoothed values are not
attempted where any necessary surrounding data point is missing:

1
81

1 2 3 2 1
2 4 6 4 2
3 6 9 6 3
2 4 6 4 2
1 2 3 2 1

0BBBB@
1CCCCA:

3.10 Interestingly, it is a smaller number of grey scale levels which best
brings out the broad sweep of underlying pattern; year-of-birth effects
(vertical patterns) appear more dominant than year-of-observation effects
(horizontal patterns). The low and negative improvements around year of
birth 1950 are both stark and persistent across the 20-year period covered.
Using a larger number of grey scale levels allows the identification of much
narrower year-of-birth patterns, however. This topic of ‘tuning’ the
smoothing will be returned to in the following sections on kernel and
penalised spline smoothing.

3.11 One other feature suggested by Figure 5 was first hinted at in
Figure 4; the acceleration of mortality improvements with advancing age.
This is best illustrated for birth years up to around 1940; there is an apparent
tendency for mortality improvements to be higher (lighter colours) as
calendar time and age increase.

3.12 Revealing though these graphs are, there are some fundamental
limitations of the moving-average approach which must be noted. Firstly,
although the moving average has revealed the possible existence of strong
year-of-birth (cohort) effects, it does not provide a framework for testing this
statistically.

3.13 Secondly, the smoothing function used applies only to points which
are co-incident with the data. This yields the block-like effect in the two-
dimensional graph. To get intermediate smoothed values, we would require a
separate set of smoothing functions, and thus different weights to those in
{3.9. A regression method is needed for continuous smoothed values.

3.14 Thirdly, although the moving-average approach could be extended
to provide future projections, it is clumsy. It also cannot provide a cohesive
statistical framework with confidence intervals for those projections. While a
projection method could be conceived of, it would not be integrated with
the smoothing function, i.e. the projection parameters would not be set with
reference to any kind of regression model underlying the smoothing.

3.15 Finally, the weights used here were set ‘by eye’, but could have
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been set less arbitrarily, e.g. with some variant of the ‘least squares’
approach. However, this would not have a statistical framework, and
therefore would not have yielded any formal statistical badness-of-fit test for
the smoothing.

ª. Estimating Year-of-Birth Effects using Kernel Smoothing

4.1 Although moving averages are fine for initial exploration, we can
improve our work by using kernel smoothing. Here, smoothed values for
Dmx;y;t are calculated from a weighted average of the data values Dmxi;yi;ti

,
where i indexes the available data points, x is the attained age, y is the birth
cohort and t is calendar time. The relative mortality improvement is defined

as Dmx;y;t ¼ 1ÿ
mx;y;t

mx;yÿ1;tÿ1
. The weights for the averaging process are given by

Figure 6. Some kernel functions; kernel efficiency is measured relative to
the Epanechnikov kernel, the most efficient with f ðxÞ ¼ 3

4 1ÿ x2ÿ �
;ÿ1 � x � 1,

otherwise zero; the Normal (or Gaussian) kernel, for example, has an
efficiency within five per cent of the maximum; even the uniform kernel is
only seven per cent lower than maximum, confirming the dominant role of

the bandwidth parameter in kernel smoothing
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the kernel function f , which returns a weight based on the distance of the
data point from the fitting point. Kernel smoothing takes place over an
arbitrarily fine grid. Together with a function delivering continuously varying
weights based on distance, kernel smoothing can eliminate the distracting
block-like patterns of Figure 5.

4.2 Some sample one-dimensional kernel functions are given in Figure 6.
Kernel functions are symmetric about zero and integrate to unity. It is usual
for the function maximum to occur at zero, with values decaying
monotonically for values progressively further from zero (one exception is
the little-used uniform kernel in Figure 6). Kernel functions vary in their
efficiency, which is measured as the asymptotic mean integrated squared
error (AMISE). Kernel efficiency is expressed relative to the AMISE of the
Epanechnikov kernel, since this kernel minimises the AMISE, and is
therefore optimal. More details on kernels, their efficiency and their
computation, can be found in Wand & Jones (1995).

4.3 The kernel function supplies weights to apply to nearby data points,
based on their distance from the central smoothing point. This distance is

Source: Own calculations using GAD data

Figure 7. Male mortality improvement rates by year of birth in the U.K.
from triennium 1999 - 2001 to triennium 2000 - 2002 with kernel-smoothed

trend lines (Nadaraya-Watson kernel smoother with Gaussian kernel
function and the bandwidth parameters shown)
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adjusted by the bandwidth parameter l, which can be thought of as the
degree of smoothing strength; the higher the value of l, the stronger the
smoothing being applied. The choice of kernel function is less important, as it
is the bandwidth parameter l which makes the greatest difference, as
demonstrated later in Figure 7, and again later in Figure 9.

4.4 By way of illustration, the smoothing in Figures 7 and 8 is one-
dimensional across year of birth. Each smoothed value Dms

x;y;t is a weighted
combination of the data points Dmxi;yi;ti

. The weight for each Dmxi;yi;ti
is

f
yÿ yi

l

� �
.

4.5 A kernel function can be extended to two dimensions by rotating the
shapes in Figure 6 around the axis x ¼ 0. The two-dimensional kernel
smoothed weights for calculating Dms

x;y;t in Figures 9, 10 and 11, are calculated

using weights from f
yÿ yi

l
;
tÿ ti

l

� �
applied to Dmxi;yi;ti

. Further details on

kernel smoothing can be found in Wand & Jones (1995).

Source: Own calculations using GAD data

Figure 8. Kernel smoothed male mortality improvement rates by year of
birth in the U.K. for three triennia centred on 1982, 1991 and 2001

(Nadaraya-Watson kernel smoother with Gaussian kernel function and with
a bandwidth parameter of four)
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4.6 As it happens, a moving average is simply a special case of kernel
smoothing where the smoothing grid exactly coincides with the data, i.e. with
no intermediate points. The one-dimensional moving average used for
Figure 4 is essentially a discrete triangular kernel, while the two-dimensional
moving average used for Figure 5 is essentially a discrete pyramidal kernel.

4.7 We have used the Nadaraya-Watson kernel smoother (Nadaraya,
1964; Watson, 1964). In addition to the choice of kernel and bandwidth
parameter, we must also select a grid over which the kernel smoothing takes
place. It is desirable to choose a grid with more points than data in order to
avoid the distracting blocks which arise with moving averages, as in Figure 5.
For the two-dimensional smoothing in this paper, we have used a square
grid of 512 points on each side.

4.8 The full power of the bandwidth parameter becomes evident in the
two-dimensional case in Figure 9. A narrow bandwidth picks up very specific
year-of-birth effects in the top left panel. Progressively wider bandwidths

Source: Own calculations using GAD data

Figure 9. Smoothed male mortality improvements in England and Wales;
year-on-year improvements for individual years, smoothing using

Nadaraya-Watson two-dimensional kernel smoother and Gaussian kernel
function with given bandwidth parameter l; the dashed line connects age 65
in each case; common colour break levels are set as marked in the lower left
graph; the pure white areas in the top two graphs represent improvements

in excess of 4% p.a.
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fail to pick very narrow year-of-birth effects, but become much better able
at identifying the broad sweep of trends. Note that the kernel smoother
knows nothing of age, year of birth or year of observation. The fact that the
patterns revealed are primarily vertical year-of-birth ones suggests that this
is dominant over the year of observation.

4.9 Kernel smoothing gives us a more continuous form of the moving
average. In fact, kernel smoothing can be used to fill in missing values;
contrast Figure 9 with the moving-average results in Figure 5 and their
missing triangles. The kernel smoother has automatically filled in the area of
missing data with sensible values. This approach can be extended; by
treating the future as a set of missing values, the kernel-smoothing approach
can be made to give simple projections, as in Figure 10.

4.10 However, just how stable are these projections? Figure 11 shows
how the projected patterns of mortality improvement differ for three equally
spaced years of birth. In each of the four panels, a different starting point

Source: Own calculations using GAD data

Figure 10. Smoothed male mortality improvements in England and Wales
with projection; year-on-year improvements for individual years, smoothed
using the Nadaraya-Watson two-dimensional kernel smoother with the
Gaussian kernel function and a bandwidth parameter l ¼ 3:0; the dashed

line represents age 65
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has been used. The top left panel shows the projection which would have
been obtained with the data available up to and including 1996, with
projections from 1998 onwards. Successive panels have two years’ further
data. If this projection method were stable, we would see similar
extrapolations. We do not, and this instability would have a major financial
consequence. For example, using each projected improvement basis, we can
calculate a 16-year temporary annuity for the 1931 cohort, starting from the
triennial experience in 1999 - 2001. We can compare the weakest and
strongest of the above four bases with a basis with no improvements, as in
Table 1. The reason for using a temporary annuity is that the data are only
given up to age 89, and we do not want to muddy the comparison by making
further assumptions about mortality at ages where we have no data.

4.11 The basis for future mortality improvements is critical for the
correct reserving for both annuities and pensions. What Table 1 suggests is
that the instability of these projected improvements can be half as important

Source: Own calculations using GAD data

Figure 11. Smoothed male mortality improvements in England and Wales
with projections for three birth cohorts using full data; year-on-year

improvements for individual years, smoothed using the Nadaraya-Watson
two-dimensional kernel smoother with the Gaussian kernel function and a

bandwidth parameter l ¼ 4:5
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again, even at relatively high interest rates. Reserve increases of this
magnitude are significant for both annuity portfolios and pension schemes.
Table 1 shows, not only the financial significance of future improvements,
but also the financial significance of the uncertainty surrounding those future
improvements. We will return to the subject of the financial impact of such
uncertainty in the next section. The topic of uncertainty inmortality projections
is explored in greater detail in CMIB (2005).
4.12 Kernel smoothing improves on moving averages, because it can

give a more continuous fitted model. We can also get projections of a sort.
Furthermore, although the smoothing here was done ‘by eye’, there is a
formal framework in kernel smoothing to select the optimal bandwidth
parameter. However, kernel smoothing is still not a proper statistical model
of the underlying stochastic process, and we would prefer such a statistical
framework for both testing the fit and producing confidence intervals.

ä. Estimating Year-of-Birth Effects using Penalised Splines

5.1 The smoothing methods which we have presented so far, moving
averages and kernel smoothing, make no attempt to build a statistical model
of the observed numbers of deaths. We compute the raw mortality
improvements Dmx;t, and then treat these values as the ‘data’ for our
smoothing methods. The raw mortality rates are computed from very large
amounts of data, so ignoring the different exposures which give rise to the
different Dmx;t is unlikely to cause difficulties. However, the lack of a model
causes difficulties for: (a) the calculation of confidence intervals; and (b) the
choice of the level of smoothing. Our level of smoothing is chosen ‘by eye’,
and this gives pleasing graphs, but how do we really know whether we have
over-smoothed, i.e. removed some genuine features; or under-smoothed, i.e.
left in some feature that is consistent with random variation?

5.2 We let Dx;t be the random variable denoting the number of deaths at
age x and year of birth t. We assume that Dx;t has a Poisson distribution with
mean Ec

x;tmx;t, where Ec
x;t is the central exposed to risk and mx;t is the force of

mortality. If dx;t is the observed value of Dx;t, then the raw force of mortality is

Table 1. Increase in temporary annuity factor over basis without future
mortality improvements; male single-life temporary annuities for 16 years

from age 74, population mortality of 2003
Interest Projection from
rate p.a. 1998 2000 2002 2004

0% 2.8% 3.9% 2.5% 3.5%
3% 2.6% 3.5% 2.2% 3.1%
6% 2.3% 3.1% 2.0% 2.7%
9% 2.0% 2.8% 1.8% 2.4%
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m̂x;t ¼ dx;t=E
c
x;t. We must smooth the m̂x;t. Once smooth values of m̂x;t are

obtained we can convert to smooth values of m̂x;t, and hence to smooth
mortality improvement rates.

5.3 We illustrate smoothing with penalised B-splines by considering
some data on male assured lives at age 65; these data were supplied by the
CMIB for years of observation from 1947 to 1999. It is convenient to model
the force of mortality on the log scale (since the ratio of mortality at older
ages to mortality at younger ages is very large). Our model is:

Dt � PðE
c
tmtÞ log mt ¼

XK

k¼1

BkðtÞyk ð1Þ

where the notation is as above, but where x ¼ 65 and has been omitted for
ease of presentation. This is a regression-type model, with the set of B-splines
fB1ðtÞ; . . . ;BKðtÞg providing the regression basis (instead of the more familiar
powers of t in a traditional polynomial regression). The regression coefficients
are denoted by y1; . . . ; yK. The left panel of Figure 12 shows a single cubic
B-spline. A cubic B-spline consists of cubic polynomial pieces bolted together
at points known as knots; in the diagram the knots are equally spaced in
calendar time at 1957.4, 1967.8, 1978.2, 1988.6 and 1999.0, and the B-spline
is zero to the left of 1957.4 and to the right of 1999. The B-spline pieces are
continuous, and have continuous first and second derivatives at the join
points, shown � in the left panel of Figure 12. The right panel in Figure 12
shows a basis of B-splines with K ¼ 8. See de Boor (2001) for some actuarial
references to smoothing mortality data with splines.

5.4 This model can be fitted with standard software, since the Poisson
distribution together with the linear structure for log mt defines a generalised
linear model (see McCullagh & Nelder, 1989; Renshaw, 1991); the regression
coefficients yk are chosen by maximum likelihood. The left panel in
Figure 13 shows the result of fitting the regression with a basis of K ¼ 23
B-splines. It is clear that if we had been smoothing by eye then we would
not have been satisfied with the fit. The problem is that we have too many
B-splines in our basis, and the resulting fit seems too flexible. In the 1970s
and 1980s much effort went into the determination of the optimal number of
B-splines, i.e. the number of B-splines that provides an optimal level of
smoothing. Eilers & Marx (1996) proposed a different strategy. In Figure 13
the regression coefficients yk are plotted at the maximum value of BkðtÞ.
Eilers & Marx observed that the sort of under-smoothing evident in the left
panel of Figure 13 (the saw-tooth effect in the � plot) was a result of the
erratic behaviour of the yk, and they proposed penalising this erratic
behaviour by placing a difference penalty on adjacent yk, as in:

PðyÞ ¼ ðy1 ÿ 2y2 þ y3Þ
2
þ . . .þ ðyKÿ2 ÿ 2yKÿ1 þ yKÞ

2: ð2Þ
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5.5 This defines a quadratic penalty; linear and cubic penalty functions
are also possible. The penalty function is incorporated into the log-likelihood
function L ðyÞ, to give the penalised log-likelihood function PL ðyÞ:

PL ðyÞ ¼ L ðyÞ ÿ
1
2
lPðyÞ: ð3Þ

5.6 This method is known as penalised B-spline regression, or P-splines

Figure 12. Left panel: a single cubic B-spline, B5ðtÞ, with knot positions, �
and smooth joints, �; right panel: a basis of K ¼ 8 cubic B-splines with knot
positions; a set of equally spaced knots is used for all splines in the basis,

with each B-spline being zero-valued except on a finite interval
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for short. The parameter l is the tuning constant, and plays exactly the
same role as the bandwidth parameter of the kernel method. As with kernel
smoothing, the larger the value of l the stronger the smoothing. For a given
value of l, the regression coefficients are chosen by maximising PL ðyÞ. One
advantage of our statistical model is that we can use some statistical criterion
to select the tuning constant l; possibilities include the Akaike Information
Criterion (AIC) (Akaike, 1987), the Bayesian Information Criterion (BIC)
(Schwartz, 1978) or generalised cross-validation (GCV) (Craven & Wahba,
1979). These criteria balance (a) the closeness of fit of the observations to the
fitted values with (b) the complexity of the fitted model.

5.7 The right panel of Figure 13 shows the result of smoothing with
K ¼ 23 cubic B-splines in the regression basis, but this time a quadratic
penalty is used to smooth the regression coefficients; the tuning constant was
chosen with BIC (l ¼ 3900). We need less smoothing with fewer B-splines in
the basis. For example, with K ¼ 13 we find l ¼ 310; the resulting fit is

Figure 13. Smooth assured lives mortality with regression coefficients, �;
left panel: B-spline regression; right panel: P-spline regression (B-spline with

structure penalty on regression coefficients)
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indistinguishable from the right panel of Figure 13, and is omitted. Thus,
the use of the BIC adjusts automatically for the number of B-splines in the
basis by choosing the appropriate level of smoothing.

5.8 The method of P-splines has some similarities with moving averages
and kernel smoothing. In view of Figure 13, we can interpret the coefficients
yk as pseudo-observations; fitted values at year t are weighted averages of
these pseudo-observations, where the weights are equal to the values of the
non-zero B-splines at year t. For example, with the basis in the right panel of
Figure 12, the estimate of log m1970 is:

0:0817� ŷ3 þ 0:6267� ŷ4 þ 0:2901� ŷ5 þ 0:0016� ŷ6 ð4Þ

where these weights are given by the intersection of the dashed line in
Figure 12 with the labelled B-splines B3ðtÞ, B4ðtÞ, B5ðtÞ and B6ðtÞ. Notice that
at most four of the weights are non-zero at any year, and that the weights in
equation 4 sum to unity. Thus, the B-spline weights move across the years
from 1947 to 1999 in much the same way as the weights in moving average or
kernel smoothing.

5.9 We use P-splines to estimate the triennium-to-triennium mortality
improvements from 1980 - 82 to 1981 - 83 and from 1999 - 2001 to 2000 - 02.
We estimated mt for each triennium from the deaths and the (central)
exposures aggregated over the triennium. We then converted to mortality
rates, qt rates, and hence to mortality improvement rates. Figure 14 shows
the results. The use of P-splines has resulted in much greater smoothing than
moving averages gave in Figure 4, an example of a general property of
smoothing methods which, like P-splines, choose the level of smoothing by
balancing the fit to data with the complexity of the fitted curve. The main
cohort effect for those born around 1931 is again identified. However, the
subsidiary effects for the 1917 and 1945 cohorts are only found for the 2001
triennium.

5.10 We now turn to the problem of modelling mortality in terms of
both age x and a second dimension t. We leave open, for the moment,
whether to use calendar year or year of birth in t, as this is a model decision
which we will illustrate later. For the purpose of presentation here, we will
assume that t represents year of birth. The method of P-splines can be
extended to cover the two-dimensional case as follows. First, we construct a
pair of one-dimensional cubic B-spline bases, one for age, fBa

1ðxÞ; . . . ;Ba
L ðxÞg,

and one for year of birth fBy

1ðtÞ; . . . ;B
y
KðtÞg, as in Figure 12. Then, corresponding

to equation 1, our model is:

Dx;t � PðE
c
x;t mx;tÞ log mx;t ¼

XL

l¼1

XK

k¼1

Ba
l ðxÞB

y

kðtÞyl;k ð5Þ
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where Dx;t is the number of deaths and Ec
x;t is the exposure at age x and

year of birth t. There are a number of helpful analogies with one-dimensional
B-splines and with moving averages. Just as Figure 12 shows the K functions
in a one-dimensional B-spline basis, Figure 15 shows the KL functions in a
(small) two-dimensional basis. In practice, we would have a large number
of such hills; for example, with L ¼ 20 and K ¼ 10 we would have 200
overlapping hills, and these provide a flexible basis for two-dimensional
regression.

5.11 The KL regression coefficients can be thought of as pseudo-
observations located at the peaks of the hills, with the non-zero Ba

l ðxÞB
y

kðtÞ in
the vicinity of ðx; tÞ providing the appropriate weights. Finally, we note that
the product form of the weights in equation 5 corresponds with the product
form of the moving average weights which we used in {3.9.

5.12 Equation 5 defines a generalised linear model in exactly the same

Source: Own calculations using GAD data

Figure 14. Male mortality improvement rates by year of birth in the U.K.
for two triennia centred on 1982 and 2001 (P-spline smoothing)
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way as equation 1, and so can be fitted with standard software. Similarly,
the resulting fit will suffer from the same non-smoothness as is evident in the
left panel of Figure 13. We force smoothness on the fitted surface by
penalising the regression coefficients along both the age and the year-of-birth
axes. The penalised log likelihood has the form:

PL ðyÞ ¼ L ðyÞ ÿ
1
2
laPaðyÞ ÿ

1
2
lyPyðyÞ ð6Þ

where there are now two tuning constants: la in age and ly in year of birth.
As in the one-dimensional case, the regression coefficients are chosen by
maximising equation 6 for given joint values of the tuning constants la and
ly; the values of these tuning constants are, in turn, chosen by minimising
BIC. We refer to this model with the data classified by age of death and year
of birth as the age-cohort model.

5.13 We can also apply two-dimensional P-spline smoothing to
mortality data classified by age and by year of observation (the age-period
model), but it is important to realise that this is not equivalent to the age-

Figure 15. An example two-dimensional B-spline basis
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cohort model. In the age-cohort model, the penalties are applied along the
age and year-of-birth axes, whereas in the age-time model they are applied
along the age and year-of-observation axes. Figure 16 shows the result of
applying the method to the GAD data classified in both ways. The cohort
effect centred on 1931 is clearly seen in both panels; the right panel also
suggests a second cohort effect centred on 1945. The BIC criterion can also
be used to choose between different classes of models, and here the age-
cohort model is preferred to the age-time model. We conclude that year of
birth gives a stronger signal than year of observation in a model of mortality.
Certainly, the age-cohort model is more effective at showing the presence of
cohort effects. The dominance of cohort effects over period effects echoes the
findings of Kermack et al. (1934).
5.14 Figure 16 can be contrasted with Figure 9. In the terminology of

kernel smoothing, the P-spline model has selected the optimum bandwidth by
a selection criterion (in this case optimising the Bayesian information
criterion). The resulting fitted model optimally balances broader year-of-

Source: Own calculations using GAD data

Figure 16. Smoothed male mortality improvements in England and Wales
using penalised splines; the left panel shows the results of a model based on
age and year of observation (age-period, BIC¼ 10569.97); the right panel
shows the results of a better fitting alternative model based on age and year

of birth (age-cohort, BIC¼ 10469.84); a cohort-period model was also
considered, but gave a much poorer fit, due to the strength of the age signal
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birth patterns against sharper, more pronounced effects for certain
individual years of birth. The goodness of fit of these models is demonstrated
by local inspection, such as demonstrated in the right panel of Figure 13.

å. Forecasting Mortality using Penalised Splines

6.1 Forecasting is a natural consequence of the penalty function. We
sketch the argument in one dimension. Suppose we want to forecast log
mortality at age 65, as shown in the right panel of Figure 13, up to, say,
2050, say. We obtained Figure 13 by defining a basis of K ¼ 23 cubic B-
splines over the period 1947 to 1999. To forecast, we extend the basis to
cover the years up to 2050; this gives a basis with K ¼ 43. In equation 3, the
log-likelihood function L ðyÞ remains the same as before, since we have no
additional data; in particular, L ðyÞ depends only on y1; . . . ; y23. However, the
penalty function PðyÞ contains all 43 coefficients. We will maximise the
forecast PL ðyÞ by choosing the same values of y1; . . . ; y23 as before, if the
value of the penalty PðyÞ is unaltered; this is achieved by linear extrapolation
on y22 and y23, since the additional penalty in equation 2 is zero, as is
readily checked.

6.2 It is important to appreciate the role of the penalty function in
forecasting. We have used a quadratic penalty in equation 2, and this leads to
linear extrapolation. Different choices are possible, and this choice has little
effect on the fit to data. However, the effect on the forecast is dramatic. With
a linear penalty, the forecast log mortality is constant, while, with a cubic
penalty, it is quadratic. Thus, the choice of penalty function corresponds to a
decision on the future course of mortality. A linear penality would project
no further mortality improvements, which is not consistent with past trends.
We feel that the quadratic penalty, and hence a linear forecast on a log scale,
sits comfortably with Figure 13 and similar plots for other ages.

6.3 We use the same method in two dimensions. We extend the one-
dimensional basis for the calendar year to 2050, say, and this, in turn, extends
the two-dimensional basis; Figure 15 helps to visualise the new basis. We
then maximise the penalised log-likelihood in equation 6. For any given age
the extrapolations are no longer exactly linear on a log scale, since the age
penalty tends to maintain the age structure across ages. This tension between
the age and year penalties results in a consistent, two-dimensional forecast of
the whole mortality table. Figure 17 shows the projected mortality rates at
selected ages which result from this.

6.4 Ages between 70 and 80 are key for annuity pricing and reserving,
including both deferred and immediate annuities. Deferred annuities, in
particular, are heavily dependent on long-term mortality projections. A
portfolio of deferred annuities will often include ages as young as 30. The
mortality projections in Figure 17 have mortality at age 70 falling by three-
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quarters over the next 40 years, an equivalent average mortality improvement
of around 3 1

2%p.a.
6.5 However, deferred annuities do not have quite as long an average

term as this; the amounts-weighted average age in a portfolio of deferred
annuities is usually higher, mainly due to the age-related value of accrued
benefits. Nevertheless, even relatively short-term projections for deferred
annuities are eye opening; the projections above have mortality at age 80
falling by more than half over the next 20 years, again an equivalent
average mortality improvement of 3 1

2%p.a. If you prefer, the above
projection has 80-year-olds experiencing the same mortality rates in 2040 as
60-year-olds did in the mid 1970s.

6.6 Thus, some of the greatest implications of continued cohort mortality

Source: Own calculations using GAD data

Figure 17. Logarithm of smoothed mortality rates for male experience in
England and Wales with projections for key ages using penalised splines
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improvements arise for deferred annuities, be they on life assurers’ balance
sheets or, more commonly, in defined benefit pension schemes. Of course, no
projection is worth anything without some measure of the uncertainty
surrounding it, and Figure 18 shows the projections at ages 70 and 80, together
with 95% confidence intervals. As can be seen, not only do these ages have very
strong projected mortality improvements, but considerable uncertainty as well.
Note that these confidence intervals critically assume that the assumed model
is the appropriate one. What they do not allow for is model risk, which is to
say that the choice of a given model is itself subject to the risk that there are
other, possibly more appropriate, possibly yet unknown models. As such,
these confidence intervals should be viewed as guides to uncertainty
appropriate to these projections, and not absolutist statements that mortality
trajectories are 95% certain to lie within them. The topic of model risk in
the context of mortality projections is discussed extensively in CMIB (2005).

æ. Conclusion

7.1 Moving averages are fine for initial exploratory work in mortality
improvements. However, greater insights into mortality improvements can be
gained from kernel smoothing and P-splines. Both kernel smoothing and

Source: Own calculations using GAD data

Figure 18. Logarithm of smoothed mortality rates for male experience in
England and Wales with projections for ages 70 and 80 using penalised

splines and 95% confidence intervals
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P-splines give intermediate smoothed values, i.e. a smoothed continuous
surface is created. Also, in contrast to moving averages, both kernel smoothing
and P-splines can cope easily with missing data points. Since future values
are, by definition, ‘missing data points’, both methods can therefore provide
projections of existing trends by simply treating the future as ‘missing data’.

7.2 A key further benefit of P-splines is that the smoothing results from
a statistical fitting procedure. This procedure not only gives a statistical test
of badness of fit, but it also enables confidence intervals to be placed on the
future projections. This formal statistical framework enables the testing of
the relative strength of effects due to year of observation and year of birth.
Applied to this data set, we find that male mortality improvements amongst
the population of England and Wales are more strongly driven by year-of-
birth effects than they are by year-of-observation effects.
7.3 We have shown that a model for mortality patterns can be made to

fit better by using year of birth as a rating factor, and we have shown why
year of birth can be a useful combined proxy for both early-life conditions
and lifetime effects. There are other, more significant rating factors, but the
penalised-spline approach can be extended to include these other rating
factors if the data are available. Examples of this extension can be found in
Currie et al. (2004b).

Acknowledgments

The authors thank Adrian Gallop and the Government Actuary’s
Department (GAD) for providing the data and useful suggestions. The
authors thank the late Professor Sir Richard Doll and Dr Jillian Boreham for
providing data from their smoking survey. Finally, the authors thank David
Robinson, Keith Miller and Richard Willets and two anonymous scrutineers
for their helpful comments.

The work of I. D. Currie was supported by a grant from the Actuarial
Research Fund. The work of J. G. Kirkby was supported by an Engineering
and Physical Sciences Research Council studentship, with further support
from the CMIB.

Data manipulation was carried out using simple C programs and R, an
open-source statistics package available free of charge at
http://www.r-project.org

References

The following list includes, not only the works referred to in the paper,
but other publications that might prove helpful by way of further background.

Akaike, H. (1987). Factor analysis and AIC. Psychometrica, 52, 317-333.
Ames, B. N. (1998). Micro-nutrients prevent cancer and delay ageing. Toxicology Letters, 102-

103, 5-18.

The Importance of Year of Birth in Two-Dimensional Mortality Data 29



Bengtsson, T. & Lindstrom, M. (2000). Childhood misery and disease in later life. Population
Studies (Camb.), 54(3), 263-277.

de Boor, C. (2001). A practical guide to splines (Revised edition). Applied Mathematical
Sciences, 27.

CMIB (Continuous Mortality Investigation Bureau) (1999). Report number 17. Institute
and Faculty of Actuaries.

CMIB (Mortality Sub-Committee) (2002). An interim basis for adjusting the 92 Series
mortality projections for cohort effects. Working paper No. 1.

CMIB (Mortality Sub-Committee) (2005). Projecting future mortality: towards a proposal
for a stochastic methodology. Working paper No. 15.

Craven, P. & Wahba, G. (1979). Smoothing noisy data with spline functions. Numerische
Mathematik, 31, 377-390.

Currie, I.D., Durban, M. & Eilers, P.H.C. (2003). Using P-splines to extrapolate two-
dimensional Poisson data, Proceedings of 18th International Workshop on Statistical
Modelling, Leuven, Belgium, 97-102.

Currie, I.D., Durban, M. & Eilers, P.H.C. (2004a). Array regression: an approach to
smoothing data on arrays. Unpublished paper.

Currie, I.D., Durban, M. & Eilers, P.H.C. (2004b). Smoothing and forecasting mortality
rates. Statistical Modelling, 4, 279-298.

Doblhammer, G. & Vaupel, J.W. (2001). Lifespan depends on month of birth. Proceedings of
the National Academy of Sciences of the United States of America, 98, 5, 2934-2939.

Doll, R. & Hill, A.B. (1954). The mortality of doctors in relation to their smoking habits: a
preliminary report. British Medical Journal, 1954, ii, 1451-1455.

Doll, R., Peto, R., Boreham, J. & Sutherland, I. (2004). Mortality in relation to smoking:
50 years’ observations on male British doctors. British Medical Journal, 2004, 328, 1519-.

Durban, M., Currie, I.D. & Eilers, P.H.C. (2002). Using P-splines to smooth two-
dimensional Poisson data. Proceedings of 17th International Workshop on Statistical
Modelling, Chania, Crete, 207-214.

Eilers, P.H.C. & Marx, B.D. (1996). Flexible smoothing with B-splines and penalties.
Statistical Science, 11, 89-121.

Finch, C.E. & Crimmins, E.M. (2004). Inflammatory exposure and historical changes in
human life-spans. Science, 17 September 2004, 305.

Forey, B.A., Lee, P.N. & Fry, J.S. (1993). Updating U.K. estimates of age, sex and period
specific cumulative constant tar cigarette consumption per adult. Thorax, 53, 875-878.

GAD (Government Actuary’s Department) (2003). Interim life tables. http://
www.gad.gov.uk

Gavrilov, L.A., Gavrilova, N.S., Semenova, V.G., Evdokushkina, G.N., Krut’ko,

V.N., Gavrilova, A.L., Evdokushkina, N.N. & Lapshin, E.V. (1997). Maternal age
and lifespan of offspring. Doklady Akademii Nauk, 354, 4.

Gavrilov, L.A. & Gavrilova, N.S. (1999). Season of birth and human longevity. Journal of
Anti-Aging Medicine, 2(4), 365-366.

Gavrilov, L.A. & Gavrilova, N.S. (2000). Human longevity and parental age at conception.
In (Robine et al., eds.) Sex and longevity: sexuality, gender, reproduction, parenthood.
Springer-Verlag, Berlin, Heidelberg.

Gavrilov, L.A. & Gavrilova, N.S. (2001). The reliability theory of aging and longevity.
Journal of Theoretical Biology, 213, 527-545.

Gavrilova, N.S., Gavrilov, L.A., Evdokushkina, G.N. & Semyonova, V.G. (2002). Early
life conditions and later sex differences in adult lifespan. Paper presented at 2002 annual
meeting of Population Association of America, May 9-11 2002, Atlanta.

Gavrilov, L.A. & Gavrilova, N.S. (2003). Early-life factors modulating lifespan, In (Rattan,
S.I.S., ed.) Modulating aging and longevity. Kluwer Academic Publishers, Dordrecht, The
Netherlands.

Gavrilov, L.A. & Gavrilova, N.S. (2004). Early-life programming of aging and longevity:

30 The Importance of Year of Birth in Two-Dimensional Mortality Data



the idea of high initial damage load (the HIDL hypothesis). Annals of the New York
Academy of Sciences, 1019, 496-501.

Gluckman, P.D. & Hanson, M.A. (2004). Living with the past: evolution, development, and
patterns of disease. Science, 17 September 2004, 305.

Izumoto, Y., Inoue, S. & Yasuda, N. (1999). Schizophrenia and the influenza epidemics of
1957 in Japan. Biological Psychiatry, 46, 1, 119-124.

Kermack, W.O., McKendrick, A.G. & McKinley, P.L. (1934). Death rates in Britain and
Sweden: some regularities and their significance. Lancet, 698-703. (Reprinted in
International Journal of Epidemiology, 2001, 30, 678-683).

Lee, P.N., Fry, J.S. & Forey, B.A. (1990). Trends in lung cancer, chronic obstructive lung
disease, and emphysema death rates for England and Wales 1941-85 and their relation to
trends in cigarette smoking. Thorax, 45, 657-665.

Liestol, K. (1981). A note on the influence of factors early in development on later
reproductive function. Annals of Human Biology, 8(6), 559-565.

Madjid, M., Aboshady, I., Awan, I., Litovsky, S. & Ward Casscells, S. (2004).
Influenza and cardiovascular disease: is there a causal relationship? Texas Heart Institute
Journal, 31.

McCarron, P., Okasha, M., McEwan, J. & Smith, G.D. (2002). Height in young
adulthood and risk of death from cardio-respiratory disease. American Journal of
Epidemiology, 155(8), 683-687.

McCullagh, P. & Nelder, J.A. (1989). Generalized linear models, 2nd ed. Chapman and
Hall, London.

Nadaraya, E.A. (1964). On estimating regression. Theory of Probability and Applications, 9.
Peltonen, M. & Asplund, K. (1996). Age-period-cohort effects on stroke mortality in

Sweden from 1969-1993 and forecasts up to the year 2003. Stroke, 27(11), 1981-1985.
R Development Core Team (2004). R: a language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.r-project.org

Reinert-Azambuja, M.I. (2004). Spanish flu and early 20th-century expansion of a coronary
heart disease-prone subpopulation. Texas Heart Institute Journal, 31.

Renshaw, A.E. (1991). Actuarial graduation practice and generalised linear and non-linear
models. Journal of the Institute of Actuaries, 118, 295-312.

Richards, S.J. & Jones, G.L. (2004). Financial aspects of longevity risk. Paper presented to
the Staple Inn Actuarial Society.

Rosebloom, T.J., van der Meulen, J.H., Osmond, C., Barker, D.J., Ravelli, A.C. &
Bleker, O.P. (2001). Adult survival after prenatal exposure to the Dutch famine of
1944-45. Paediatric Perinatal Epidemiology, 15(3), 220-225.

Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 462-464.
Selten, J.P., Brown, A.S., Moons, K.G., Slaets, J.P., Susser, E.S. & Kahn, R.S. (1999).

Prenatal exposure to influenza as a risk factor for adult schizophrenia. Schizophrenia
Research, 38(2-3), 85-91.

Stanner, S.A., Bulmer, K., Andres, C., Lantseva, O.E., Borodina, V., Poteen, V.V. &
Yudkin, J.S. (1997). Does malnutrition in utero determine diabetes and coronary heart
disease in adulthood? Results from the Leningrad siege study. British Medical Journal,
315, 1342-1348.

Todd, G.F., Lee, P.N. & Wilson, M.J. (1976). Cohort analysis of cigarette smoking and of
mortality from four associated diseases. Occasional paper 3, Tobacco Research Council,
London.

Vijayakumar, M., Fall, C.H., Osmond, C. & Barker, D.J. (1995). Birth weight, weight at
one year, and left ventricular mass in adult life. British Heart Journal, 73(4), 363-367.

Wand, M.P. & Jones, C.M. (1995). Kernel smoothing, Monographs on Statistics and Applied
Probability, Chapman and Hall.

Watson, G.S. (1964). Smooth regression analysis. Sankhya, Series A.

The Importance of Year of Birth in Two-Dimensional Mortality Data 31



Willets, R.C. (1999). Mortality in the next millennium. Paper presented to the Staple Inn
Actuarial Society.

Willets, R.C. (2004). The cohort effect: insights and explanations. British Actuarial Journal,
10, 833-877.

32 The Importance of Year of Birth in Two-Dimensional Mortality Data



APPENDIX

PROJECTION BASES IN CURRENT ACTUARIAL USE

A.1 Figure 19 shows four projection bases in common use by U.K. life
offices for annuity business at the time of writing. Most major U.K. life
offices currently use the mid-intensity (or medium) cohort projection (bottom
left panel), or some modification thereof, for reserving for male annuitants.
Figure 19 shows how the CMIB Projections Working Party (2002)
superimposed the three recent cohort projection bases on top of the older
CMIR17 basis, which is clearly shown to be an age-based improvement basis
only.

A.2 The CMIB makes no recommendation as to the suitability of these

Source: Own calculations using data in CMIB (1999, 2002)

Figure 19. Recent CMIB mortality improvement projections; in Z-layout
from top left: original CMIR17 projection, then short, medium and long-
cohort projections; the contour bands are labelled on the medium-cohort

projection in the bottom left, the projection in most common use at the time
of writing; the dashed line on each panel connects age 65
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projections for any particular purpose, leaving it up to the individual
actuary to decide. An actuary can make a case for not using these particular
cohort projections for financial work related to annuities: (i) they are derived
from lives-based, not amounts-based patterns of improvement; (ii) they are
derived from male experience only; (iii) they are derived from the assured
population (endowments), not the annuitant population; and (iv) they are
derived from the experience of a relatively small population (assured lives are
few above age 65). Nevertheless, as this paper shows, some sort of cohort-
based mortality projection is required for longevity risks in the U.K. Figure
20 shows the mortality improvements implied by the P-spline model with
age-cohort penalties in exactly the same format as Figure 19.

A.3 One thing which is not clear is the extent to which defined benefit
pension schemes reserve adequately for future mortality improvements
arising from the cohort effect. Without routine disclosure of mortality bases,
it is impossible to be sure, but, in the words of Richards & Jones (2004):
“some of the greatest future surprises from longevity risk may come from
companies with large defined benefit pension schemes.’’

Figure 20. Mortality improvement projections according to P-spline model
with penalties across age and cohort. The projection is based on the ONS
data for the male population of England & Wales. The dashed line connect

age 65
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