

IFoA ICAT: Scenario Modelling Workstream Introduction to Reproductive Number (R) & Its Calculation

Haedeh Nazari

March 2021

Reproductive Number

- Basic Reproductive Number
 - Average number of secondary cases per primary case in a completely susceptible population
- Effective Reproductive Number
 - The expected number of secondary cases per primary case at time t, considering intervention measures in place
- Instantaneous Reproductive Number
 - the average number of secondary cases that each infected individual at time t would infect, if the conditions remained as they were at time t

Serial Number

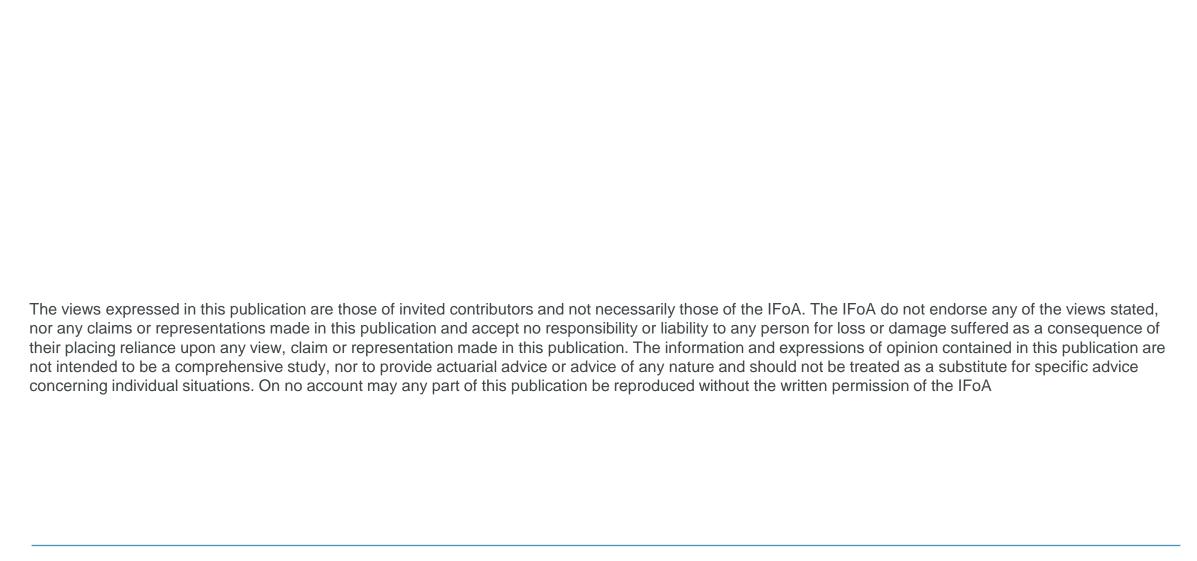
- Generational Number
 - The time between primary case exposure and secondary case exposure
- Serial Number
 - The time between onset of symptoms in the primary case and onset of symptoms in secondary case

Assume β is the infectious contact rate, γ is the recovery/removal rate, y_t is the number of cases at time t and (g_1, \ldots, g_M) is the probability density for serial number, then

Formulas

Basic Reproductive Number

$$R_0 = N \frac{\beta}{\gamma}$$


• Effective Reproductive Number

$$y_t = R_e(t-1)g_1y_{t-1} + \dots + R_e(t-M)g_My_{t-M} = \sum_{i=1}^{M} R_e(t-i)g_iy_{t-i}$$

• Instantaneous Reproductive number

$$\widehat{R}(t) = \frac{y_t}{\sum_{s=1}^t g_s \cdot y_{t-s}}$$

