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Abstract 

 The approaches to liability valuation, assessment of prudential capital and 
measurement of profit for life offices are undergoing radical change. A common 
thread runs through all of these proposed changes – each change represents a move 
away from traditional actuarial approaches towards a more economically coherent, 
market-consistent approach. These changes should encourage a general 
improvement in the life industry’s risk management processes. However, they will 
come at a cost. The measurement of the economic risks generated by the complex 
guarantees written by life offices is far more difficult than applying the latest 
resilience test equity fall. This will require a step change in the sophistication of life 
offices’ risk and capital measurement and management know-how. The 
measurement of value, risk and capital will soon demand the application of 
’stochastic’ modelling tools. In this paper, we explore some of the issues raised by 
the application of these approaches to the valuation and risk management of with-
profits business.    
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1 Introduction & Background 

The proper measurement and management of risk and cost and the allocation of 
prudential capital are fundamental to the management of a life office. However, over the 
past decade life office managers have struggled with a number of risk management 
challenges. They have failed to meet the challenges posed by annuity options, with-
profits business and pensions business. This failure has led to a fundamental review – led 
by accountants and regulators – of the valuation and risk management techniques used 
by life offices. This review has set in motion huge change. In future, the new ‘realistic’ 
thinking means that actuaries must ‘mark liabilities to market’ i.e. use market prices as a 
reference point for valuation. This is the principle underlying the fair value accounting 
requirements proposed by the IAS board and the new 6-monthly realistic accounting 
requirements of the FSA. In the coming years, prudential capital will be set within the 
same framework. As a result, actuaries will need to start thinking (and acting) like the risk 
managers of a bank – quantifying and then eliminating risk exposures from the balance 
sheet. Of course, life companies are not banks. We will show that implementing this new 
thinking poses some major challenges for actuaries. 

Fair value or ‘realistic’ accounting methods are concerned with establishing the economic 
value of an insurer’s liabilities. It is important to understand that this definition of value is 
radically different to the conventional actuarial approach to valuation. Actuarial 
philosophy towards the valuation of liabilities has traditionally been based on the notion 
of funding. In other words, given a schedule of liabilities and a specified investment 
policy the funding approach will tell us what reserves and/or contributions are required 
to meet the liabilities with a given level of confidence. By contrast, the thinking behind 
the economic valuation of a liability is very different. The economic value is defined as 
the sum of money required to establish a portfolio of assets that – provided they are 
invested in a particular way – will replicate the liability as closely as possible. This special 
portfolio is called the hedge portfolio. 

In this report, we consider how the new ideas will be applied in practice. We consider 
some of the questions and issues that will arise in estimating the economic value of long-
term insurance liabilities. A valuation basis for this valuation is developed in section 2. 
Section 3 applies this basis to value a sample conventional with-profits contract. This will 
highlight how fair valuation (we use the terms fair value, realistic value, economic value 
and market-consistent value interchangeably throughout this paper) will require detailed 
assumptions not only on the asset side of the balance sheet, but on the liability side too 
(e.g. regarding smoothing, discretion, guarantees, and policyholder behaviour). 
However, the overall approach to the valuation of guarantees is generic and can be 
applied to the investment guarantees of any product. 

In discussing the issues surrounding the fair valuation of insurance liabilities, we will 
address the following broad questions: 

� How can asset models be calibrated to calculate fair values for cash guarantees? 

� What assumptions are required in terms of liability/policyholder behaviour? 
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� What size of guarantee cost might we expect for a ‘typical’ conventional with-
profits contract? 

� How might the fair value compare with statutory reserves? 

� How sensitive is this cost to the assumptions we have made regarding future 
asset and liability behaviour?  

After discussing the determination of fair values for long-term insurance liabilities, the 
remainder of the paper moves on to discuss the risk management ramifications this may 
have. We will show how the hedge portfolio for different types of cash guarantees can 
be discovered and managed (similar approaches could be applied to interest rate 
guarantees). The Black-Scholes-Merton analysis and its application to the simple case of 
a unit-linked fund guarantee are discussed in the Appendix. Through this example, the 
basic logic and techniques of dynamic hedging are developed and discussed.  

In section 4, the dynamic hedging ideas are extended to the more complex arena of with-
profits business. We revisit the cash guarantees discussed in section 3’s valuation case 
study. The complexity of with-profit guarantees makes finding the appropriate hedge 
portfolio far more difficult – the convenient formulae developed by Black-Scholes-
Merton no longer apply. However, we show how the market-consistent stochastic model 
developed for valuation can also be used to find the guarantees’ hedge portfolio.  

Section 5 takes the analysis of section 4 and applies it to the management of fair value 
profits. We start with the dynamic hedge portfolio identified in section 4, and then 
extend the analysis by identifying some alternative risk management solutions. The 
relative merits of the different solutions are compared.  

As well as considering the impact of the risk management strategies on profit volatility, 
we also analyse briefly the possible implications for capital requirements. In the past, the 
link between liability valuation (especially statutory valuation) and risk management has 
been weak. Statutory valuation rules have often been arbitrary and ad-hoc, resulting in a 
difference between the valuation and the underlying economic reality. This is 
unfortunate and it has provided life offices with incentives to pursue risk management 
solutions that provide the greatest short-term statutory relief, without necessarily being 
appropriate for the genuine long-term economic risk exposures faced by offices. 
However, future changes in regulations (as discussed in the FSA’s Consultation Papers 
136 and 143) should see future statutory capital calculations moving towards a basis that 
reflects the economic exposures. As a result, the realistic liability valuation and the 
statutory capital requirement will become intrinsically linked. In effect, the statutory 
capital requirement can be thought of as the realistic valuation plus a mis-matching 
reserve. The size of the mis-match reserve may also be calculated using a stochastic 
model. We consider the implications of the risk management strategies we develop in 
section 5 for the risk-based capital requirements of the sample with-profits policy. 

All of the above suggests that the market-consistent valuation model may be used for 
much more than ‘just’ the market-consistent valuation. It can also be an invaluable tool in 
measuring and managing risk and prudential capital. The most significant areas of 
application for the market-consistent valuation tool in the valuation, risk management 
and capital measurement processes are summarised in exhibit 1.1.  
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Exhibit 1.1: 
Applications of the market-consistent valuation model in the valuation, risk management & capital 
measurement processes 
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2 A possible fair value basis for valuing 
conventional with-profits guarantees 

This section develops the valuation basis for the market-consistent valuation of a conventional 
with-profits contract.  Before we enter into the detail and its accompanying issues, it is worth 
pausing to consider what this valuation approach entails. It can be summarised as follows: 

1. Choose a stochastic asset model that is capable of market-consistent valuation. This 
requires the model to be arbitrage-free. Calibrate the model to relevant market prices. 
That is, when the model is used to value relevant market-traded instruments, the value 
calculated by the model should be close to the market price. 

2. Make assumptions about the behaviour of the liability (e.g. bonus rates and investment 
policy), and policyholders (e.g. lapses) in each possible asset model scenario. 

3. Project the liability cashflows and discount them at the market-consistent discount 
rates. (If the asset model is set up in ‘risk-neutral’ mode, the discount rates will be the 
simulated cash roll-ups. Alternatively, state price deflators will be applied). 

4. The mean discounted value of the liability cashflows is the estimate of the market-
consistent liability value. Under suitable assumptions, it can be viewed as the cost of 
the replicating portfolio for the liability. 

This method of valuation is radically different to traditional actuarial approaches. 
However, the application of option pricing ideas to the analysis of with-profits policies is 
not new. (See, for example, Wilkie (1986) and Kemp (1997)). Indeed, when reviewing 
these papers, it is difficult for the reader not to feel rather bewildered by the lack of 
application of these ideas in managing with-profits business in recent years. 

This application of this valuation approach is not limited to with-profits business. It can 
be applied to the valuation of any financial asset with guarantees (e.g. guaranteed 
annuity options, guaranteed minimum pensions, etc.). The remainder of this section 
discusses each of the above stages in turn. 

2.1 Assets 

As for all fair valuations of insurance liabilities, we need to develop a set of assumptions 
for the asset behaviour on which the liability valuation depends. Further, these 
assumptions need to be consistent with the market prices of assets that exhibit similar 
characteristics to the liabilities. There is likely to be some debate over which assets are 
the ‘right’ target for calibration of the asset model. After all, typical life office guarantees 
are likely to crystallise at significantly longer maturities than the options traded on 
exchange markets. To obtain an estimate of market-implied levels of long-term asset 
volatility, we will therefore need to consider the use of over-the-counter (OTC) 
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derivative prices. These will be needed for each of the asset classes in which asset shares 
are invested. We will confine ourselves here to equities and government bonds1.  

Equities 
The asset model calibration process will involve trade-offs between model simplicity and 
pricing accuracy. We briefly explore these by means of an example. At the end of June 
2002, 10-year at-the-money OTC FTSE 100 options were quoted with an implied 
volatility of 23% pa. Short-term (exchange-traded) implied volatilities were slightly lower 
- 1-year options (trading on LIFFE) had an implied volatility of around 21% pa. Now, what 
model of equity behaviour should be used to recover these option prices? We should 
aim to use a model that is no more complicated than it needs to be. Our starting point 
might therefore be the standard lognormal (random walk) model. The lognormal model 
can be used to replicate the option value for any given option strike price by ensuring 
that the assumed lognormal distribution has a volatility consistent with the implied 
volatility of the option. (Note ‘implied volatility’ numbers are based on the assumption 
that the underlying asset is log-normally distributed).  So, for a given term and strike of 
guarantee, we can find the fair value by choosing a volatility parameter that is consistent 
with the Black-Scholes implied volatility of a similar, market-traded option.  

However, for a given option term , the market prices of options with different strike 
prices typically exhibit different implied volatilities. In this case, the standard lognormal 
model will not be capable of simultaneously recovering these market prices. In 
determining the fair value of a book of guarantees, we are therefore left with some 
choices:  

a) 

b) 

c) 

                                                

a more sophisticated equity model could be employed that could price all 
these different options with a single calibration. 

we could ignore this problem and simply use a volatility that was roughly 
consistent with all the observed market-implied volatilities. 

the lognormal model could be used many times, each time with a different 
calibration to value options with a particular strike price.  

The choice made here will depend on the range of ‘moneyness’ of the range of implied 
volatilities exhibited by market prices, the degree of accuracy required in the valuation 
and the guarantees on a given book of business. Note this last point implies that different 
offices/funds may use different calibrations if the ‘shape’ (i.e. term and moneyness) of 
guarantees are significantly different. As we will only consider a single example policy in 
section 3, we can conveniently side-step this issue and use the standard lognormal 
model.  

The behaviour of implied volatilities also needs to be considered in a second dimension. 
As well as considering how implied volatilities vary across strike prices for a given term, 
we also need to consider how implied volatilities vary by term. This is easier to address. 
To capture the term structure of equity volatility, we could use a deterministic (but not 
constant) volatility function in a lognormal model. That is, the volatility used in a 

 
1 This makes life a little easier. This exercise is likely to be considerably more difficult for asset classes such 
as property and corporate bonds. 
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stochastic projection would be a function of time, but would not be random. This would 
allow us to retain the simple lognormal model structure, and replicate option prices of all 
terms with a given strike price. (A similar extension to the volatility function could be 
made to capture variation in implied volatility by strike price as well as term. This would 
require modelling volatility as a deterministic function of both underlying asset price and 
time).  

Alternatively, we could use the standard lognormal model with constant volatility and 
choose a parameter that is consistent with the term of the guarantees. The example 
policy we shall use in the example set out below has a term to maturity of 10 years. We 
therefore use a volatility parameter of 23%p.a. to be consistent with 10-year equity 
option prices.  For simplicity, we assume all equity holdings are UK equities. Where a 
global portfolio of equities is held, an assumption regarding the correlations between 
(the Sterling returns of) different equity markets will be necessary. It may be difficult to 
establish a market-implied value for this correlation and some judgement is likely to be 
necessary.  

From the above brief discussion of equity modelling assumptions for the valuation of 
cash guarantees, it is clear that there may be a number of awkward issues for standard-
setters to consider. These issues lie beyond the question of whether risk-neutral pricing 
or state price deflators are the preferred implementation method. For standard-setters, 
this is really a non-issue, as both methods recover the same answer under the same 
modelling assumptions. The far bigger problem will be the determination of what does 
and does not constitute a market-consistent model calibration. 

Risk-free interest rates & bonds 
In calibrating the interest rate model2, we need to pay attention to both the level of the 
risk-free yield curve, and a market-implied level of volatility (as the volatility of bonds will 
impact on the asset share volatility and hence the value of guarantees). In calibrating to 
the risk-free yield curve, the following analysis assumes swap rates can be used as the 
reference traded risk-free asset. In measuring market-implied interest rate volatility, 
swaption (i.e. options to enter swap contracts) prices are used. In our example valuation, 
we will assume that the with-profit fund is invested in 10-year risk-free 5% coupon bonds 
(which are re-balanced every year). As a swaption can be regarded as an option on a 10-
year par bond, the term structure of implied volatilities of swaptions on 10-year swaps 
will be the relevant measure for calibration purposes. Exhibits 2.1 and 2.2 below show 
the market-implied swap rates and implied volatilities at the end of June 2002, and the 
corresponding values generated by our model calibration. 

                                                 
2 The analysis in this paper employs a 2-factor Black-Karasinski model. This can be considered as a 
lognormal specification of the 2-factor Hull-White model. See Hull & White (1994). 
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Exhibit 2.1:  
Sterling swap rates (end June 2002) 

 
Exhibit 2.2:  
Implied volatilities of 10-year Sterling swap swaptions (end June 2002) 
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From exhibit 2.1 you can see that swap rates were around 5% at the end of June 2002. 
The model and our calibration does a reasonable job of replicating these swap rates. 
Exhibit 2.2 shows that market swaption prices were implying that 10-year swap rates 
have an implied volatility of around 13%-14% p.a. at virtually all terms to maturity. Note 
this is a proportional volatility. So for a 10-year swap rate of, say, 5.5% the option prices 
imply an annual standard deviation of around 0.75% for the 10-year swap rate. 

Exhibit 2.2 suggests that the interest rate model calibration provides only a rough 
approximation to the term structure of volatility implied by interest rate option prices. An 
exact fit would require a more sophisticated interest rate model than that used in this 
analysis3. It is also worth noting that this calibration has been a best-fit to the entire 30-

                                                 
3 A more sophisticated model such as the Libor Market Model would allow the interest rate model to be 
calibrated exactly to at-the-money swaption implied volatilities. See Hull & White (2000). 
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year volatility term structure. In reality, offices may be more concerned with replicating 
prices in a narrower range of guarantee maturity. 

Finally, an assumption is required for the correlation between the equity and bond asset 
classes. It is very difficult to infer a market-consistent value for this assumption. We 
therefore prefer to use a value that is reasonable and consistent with long-term historical 
observation. We assume equity returns in excess of cash and movements in short-term 
interest rates have a correlation of -0.33. With the interest rate model employed here, 
this implies a correlation between equity returns and long bond returns of around 0.25. 

2.2 Liabilities & policyholder behaviour 

Having considered the choice of asset model and its calibration, some assumptions 
regarding the behaviour of with-profit liabilities are also required. There is, of course, 
significant discretion available to some offices regarding how with-profit liabilities are 
managed. In pricing a CWP guarantee, this discretion manifests itself in two material 
ways: bonus policy and investment policy. The estimated guarantee cost can be quite 
sensitive to assumptions regarding how both these areas of discretion are used, and in 
particular how the use of discretion interacts with asset behaviour. As it is very likely that 
decisions about both of these areas will depend on experienced investment returns, 
dynamic rules will be required to determine how bonus rates and investment policy 
relate to movements in asset share. (We will consider how sensitive the valuation is to 
the application of such rules in section 3). Naturally, any such rules will have to respect 
‘Policyholders’ Reasonable Expectations’ and the concept of fairness to policyholders. 
Determination of these rules will therefore be office-specific.  

The dynamic rules assumed in the example developed in section 3 now follow. 

A dynamic reversionary bonus policy rule 
Firstly, let us consider bonus policy. Suppose that the reversionary bonus rate is revised 
once a year, according to the following rules (and the current reversionary bonus rate is 
4% p.a. compound): 

� Set the reversionary bonus rate equal to the long gilt yield, less deductions for 
expenses (of 1% p.a.) and tax (at an assumed rate of 20%). 

� Changes in the reversionary bonus rate are restricted to a maximum of 1% in any 
one-year period. 

� Further, if the projected value of asset share at maturity (projected at long gilt 
yield less an allowance for expenses) is less than the projected guaranteed sum 
assured (based on the current bonus rate), the reversionary bonus rate is 
reduced by 1% (subject to a minimum of 0%). 
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A dynamic investment policy rule 
Suppose that investment of asset share is in equities and long gilts and the equity 
backing ratio (EBR) is revised once a year according to the following rules (and the 
current EBR is 80%): 

� If the projected asset share is less than the projected guaranteed sum assured at 
maturity, reduce EBR by 10% (subject to a minimum of 0%). 

� If the projected asset share is greater than the projected guaranteed sum assured 
at maturity, increase EBR by 10% (subject to a maximum of 80%). 

Clearly these are simplistic rules. ‘Real-life’ implementation of fair value calculations is 
likely to use much more complex codifications of discretionary behaviour. Indeed, this 
area is likely to prove a significant challenge for fair valuation of with-profits. We shall 
see later that results can be quite sensitive to these potentially subjective assumptions. 

Smoothing 
We also need to make some assumptions about how terminal bonuses are determined (unlike 
current statutory valuations, future terminal bonuses will form part of the fair valuation of 
liabilities). If we suppose that a smoothed asset share is calculated according to some specified 
rule, and the terminal bonus is paid to bring the policy payout to the greater of x% of that 
smoothed asset share and the accrued guarantees, then we can write the value of the policy 
payout as follows4 :  

Fair Value = Value [max(x%.Smoothed Asset Share, Guarantee)] 

 = Value (X%.Smoothed Asset Share) + Value [max (0, Guarantee – x%.Smoothed Asset Share) 

From above it can be seen that the value of the policy can be considered as the market-
consistent value of x% of a policy’s smoothed asset share plus a put option on x% of the 
smoothed asset share at a strike equal to the guaranteed sum assured at the time of 
termination (whether due to death, maturity, surrender, etc.). Taking this a step further: 

Fair Value  =  Asset Share  

  +  Value [x%.Smoothed Asset Share – Asset Share]  

+  Value [max (0, Guarantee – x%.Smoothed Asset Share) 

Now we can see that the value of each policy is the asset share of the policy, plus the 
market-consistent value of the difference between x% of smoothed asset share and asset 
share at termination, plus the guarantee cost (the put option on x% of smoothed asset 
share). The policyholders’ benefits can be considered to have three components:  

a) 

b) 

c) 
                                                

asset share; 

the economic value of smoothing; 

the economic value of guarantees.  
 

4 Note this does not preclude smoothed asset share being calculated differently for different decrements, 
e.g. surrender values may be smoothed to a lesser degree than maturity or death payouts, etc. Similarly, 
different guarantees may also apply for different decrements, e.g. there may be no guarantee applicable to 
policy surrenders. 
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Furthermore, the size of these three components may not be independent of each other. 
For example, suppose the office applies a smoothing policy such that the expected 
smoothed asset share is equal to the expected asset share of the policy, but is less 
volatile (and x =1 00). In this case, the guarantee cost will have been reduced by 
smoothing – as the volatility of the guarantee’s underlying asset has been reduced. But a 
smoothing cost will have been created. This may seem odd: why has a smoothing cost 
been created if the average smoothed asset share is equal to the average ‘raw’ asset 
share? Because the cost depends on a risk-adjusted (i.e. market-consistent) present 
value, and the discount rate applied to the (less volatile) smoothed asset share will be 
lower than for the ‘raw’ asset share. Put another way, the office’s smoothing policy is 
transferring some risk from the policyholder to the office, and that risk has an economic 
cost5. 

Let us consider an extremely simple example to illustrate this idea. Suppose we have a 1-
year policy, where asset share is 1, and the sum assured is 1. No reversionary bonus will 
be paid before maturity, and no one will die or lapse during the next year. The fund is 
invested in assets with an expected return of 8% p.a., with a volatility of 15% p.a. Further, 
suppose the risk-free interest rate is 5% p.a. Now, in the absence of smoothing, what is 
the fair value of the policyholder’s benefits? Using the Black-Scholes option pricing 
formula, the put option has a value of 0.085, giving a total FVPPB of 1.085.  

Now suppose smoothing is applied such that smoothed asset share at maturity is 1.08 
(i.e. the expected asset share) with certainty. In this case the guarantee term is worth 
nothing, as the guarantee will never exceed the smoothed asset share. What about the 
smoothing term? Well, as the smoothed asset share is a risk-free cashflow, it should be 
discounted at the risk-free interest rate to find its present value. Thus the present value 
of the smoothed asset share is 1.08/1.05 = 1.029. The smoothing cost is therefore 0.029, 
and the FVPPB is 1.029. So in this example, the reduction in guarantee cost is greater 
than the increase in smoothing costs and the total market-consistent policy value has 
been reduced6. Why has this happened? Well, in this case, smoothing has removed the 
upside potential for the policyholder, whilst the additional downside protection provided 
by smoothing is not so valuable given the guarantee was already providing a significant 
amount of such protection.      

Clearly smoothing is a significant complication in the appraisal of value of policyholders’ 
benefits (this will be especially so where emerging smoothing profits and losses are 
borne by adjustments to remaining policyholders’ asset shares rather than being funded 
by ‘external’ assets). In principle however, incorporating the impact of smoothing into 
the valuation is only as difficult as specifying an algorithm for the smoothing process. 
This algorithm would then be used in the modelling projections for the valuation.  For the 
sake of simplicity, the remainder of this paper will assume no smoothing is applied, and 

                                                 
5 Note that this analysis assumes smoothing really does involve risk reduction for the policyholder. If 
policyholders bear the smoothing profit/loss of earlier generations of policyholders, it is not clear that 
smoothing reduces risk for policyholders (where by risk we mean total variability of payouts). This has the 
potential to be a rather messy area for valuation. And it may also create some interesting conclusions 
regarding the effectiveness of smoothing rules in delivering smoothed returns.  
6 Of course, this will not always be the case. The extent to which this is generally true will depend on the 
‘moneyness’ of the guarantee, the volatility of the underlying asset share and the nature of the smoothing 
rule. 
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we will concentrate on the valuation of guarantees in the absence of smoothing. That is, 
we assume x =100 and smoothed asset share is equal to raw asset share for all 
decrements. 

Mortality & lapses 
Assumptions are also required with respect to mortality outcomes. As the same 
guarantee is available on death and maturity, this assumption turns out to be second-
order. In the following example, we will assume 90% of PMA92 with CMI 17 
improvements.  

Policyholder lapse rates must also be specified. High lapse rates will tend to reduce the 
guarantee cost, since surrender values are not guaranteed (and we are also supposing 
the office does not apply any smoothing). This brings us on to another interesting point – 
should lapse rates be modelled dynamically? i.e. if asset shares fall significantly, should 
we assume policyholders are less likely to lapse their now-very-valuable guarantees? For 
long-duration policies, the guarantee cost could be quite sensitive to the answer to this 
question. In our fair value basis, we will assume lapse rates are dynamic. It will be 
assumed that the ‘normal’ lapse rate is 4% p.a. However, whenever asset shares fall 
below the guaranteed sum assured, the lapse rate is assumed to be reduced by the 
following proportions: 

Exhibit 2.3: 
Dynamic lapse rate adjustments 

Ratio of Asset Share 
to Sum Assured 

Proportional Lapse 
Rate Reduction 

0.9 < AS / SA < 1 10% 

0.75 < AS / SA < 0.9 25% 
0.5 < AS / SA < 0.75 50% 

AS / SA< 0.5 75% 
 
Cross-subsidies & participation in profits 
Our assumptions are now sufficiently developed to allow us to project the cashflows and 
guarantee strains for an example policy. However, a fundamental question that remains 
to be addressed is: who actually bears the cost of the projected guarantee strains? For 
example, can it be assumed that the asset shares of other with-profit policyholders are 
reduced in the event of a guarantee shortfall emerging? If so, can credit be taken for this 
in the calculation of the fair value of the fund?  

The different answers to these questions could make a very significant impact on the fair 
value of the fund. It will also have implications for the complexity of the projection and 
the assumptions it requires – e.g. on how guarantee profits and losses are spread across 
policyholders. In the interests of brevity and simplicity, our example adopts the 
convenient assumption that all guarantee losses are borne by the office. In other words, 
other policyholders’ benefits are not reduced when the policy’s guarantees ‘bite’. 

We now have sufficient information to tackle the market-consistent valuation of with-
profit guarantees. Despite the objective nature of a market-consistent valuation, it was 
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necessary to make a number of assumptions and judgements to determine the valuation 
basis. Whilst fair valuations will necessitate a very major change in actuarial valuation 
techniques, the demand for actuarial judgement may turn out to be as great as ever. 
Section 3 takes a specimen conventional with-profits policy and examines the fair value 
of the guarantees generated by the model developed in this section. 
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3 A Valuation Case Study 

This section applies the modelling assumptions developed in section 2 to an example 
policy. In the example, we consider a 50-year old male policyholder. The policy is 
assumed to have 10 years remaining to maturity, a current asset share of £13,000 and a 
current sum assured of £16,000. The policy is assumed to be a regular premium policy 
with premiums of £800 payable annually. We assume expenses of 1% of asset share per 
annum are generated by the policy, and that these expenses are charged to the asset 
share of the policy. The sum assured is payable on death or maturity of the policy (we 
assume asset share is paid on surrender). 

3.1 The simulated distributions of guarantee strains 

Before we calculate the fair value of the death and maturity guarantees, let us first 
consider the projected distribution of cashflows generated by the guarantees (i.e. the 
additional cashflows the policyholder receives as a result of the guarantees), as implied 
by the model set-up developed in section 2. These are shown for the death and maturity 
guarantees in exhibits 3.1 and 3.2 respectively7. 

Exhibit 3.1:  
Simulated distribution of annual cashflow strains arising from death guarantee 

 
The above exhibit plots the distribution of cashflow strains resulting from the death 
guarantee each year8. For example, the simulation model suggests that the frequency of 
a death guarantee cashflow strain being more than £5 at the end of the first year of the 

                                                 
7 For these projections, an assumption regarding the size of the equity risk premium is required. We 
assume it is 4% p.a. However, as we mention below, the fair valuation does not depend on the assumed 
size of the equity risk premium. 

8 The segments in the centre of the distribution represent the middle two quartiles of the simulated 
probability distribution, the bordering segments illustrate the 25th to 5th percentiles and 75th to 95th 
percentiles, and finally, the outer segments on the extremity of the chart show the 5th to 1st percentiles 
and 95th to 99th percentiles. The mean outcome is plotted with a solid box. 
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projection is around 1%9. (Of course, in applying our mortality basis, we are assuming 
that the example is composed of a large cohort of individual policies.) The median 
cashflow strain arising from the guarantees tends quite quickly to zero, reflecting the 
reductions in the expected death strain at risk that result from the receipt of future 
regular premiums. However, despite this reduction in expected death strain, the 
downside tail of the risk continues to expand with time, reflecting the greater potential 
for significant asset under-performance as the time horizon extends. The analysis 
suggests there is a 5% chance of a strain of £7 (or more) arising from the death guarantee 
in the 5th year of the projection. Exhibit 3.2 shows the distribution of guarantee strains 
occurring at maturity of the contract. 

Exhibit 3.2:  
Simulated distribution of cashflow strains arising from maturity guarantee at year 10 

 
Exhibit 3.2 shows that, for policies that reach maturity, our asset and liability assumptions 
imply this specimen policy has a 20% chance of maturing with an asset share less than the 
final sum assured (including reversionary bonuses). We now turn our attention to the fair 
values implied by these cashflow distributions.  
 
3.2  Calculating the fair value of the guarantee 

In calculating the fair value of the guarantees described above, market-consistent 
discount rates are required to calculate the market-consistent value of the cashflow 
distributions shown above. Two approaches have been developed to make these 
valuation calculations. One possibility is to develop scenario-specific discount factors 
known as ‘state price deflators’. Alternatively, and more simply, we can employ risk-
neutral valuation methods. Risk-neutral techniques will give the same answer and require 
a little less work.  

Our application of risk-neutral pricing to the specimen policy described above estimates 
the mortality guarantee value at £19 and the maturity guarantee at £629. Recall that this 

                                                 
9 The mortality basis implies the year 1 mortality rate is approximately 0.001. At the end of the first year, 
the 99th percentile asset share is around £11,000. This implies a sum at risk on death of £5000, and a 
guarantee strain of £5000 x 0.001 = £5. 
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is the additional impact of the guarantees on the fair value of policyholders’ benefits. To 
put this into context, let us consider the total fair value of policyholders’ benefits of this 
policy, and its components.  

Exhibit 3.3:  
Fair value of policyholders’ policy benefits and expenses 

Component Fair Value 

Asset Share 13,000 

Expenses net of Expense Charges to AS10 0 

Guarantees 648 

Total 13,648 

 
Our hypothetical life office may have a number of options open to it to reduce this fair 
value deficit. It could revise its assumptions for how it intends to manage the 
discretionary features of the liability (this is discussed in section 3.5). Or, more simply, it 
could reduce current bonus rates or the equity backing ratio (EBR). Alternatively, it might 
decide to pay less than full asset share when the guarantee is not biting. This would 
reduce the asset share component of the fair value liability. A very crude calculation 
suggests that the payout would need to be reduced to around 96%11 of asset share to 
remove the fair value deficit. In actual fact, the reduction would need to be slightly 
greater than this as such an adjustment will increase the guarantee value by effectively 
reducing the underlying asset value used in the option valuation. 

3.3 A market-consistent guarantee charge 

Another means of removing the fair value deficit would be through the application of an 
annual guarantee charge, which is assumed to flow out of the with-profits fund. 
Calculating the required size of this number will be an iterative process, as the 
introduction of a guarantee charge to the asset share will increase the guarantee value as 
calculated above. Exhibit 3.4 plots the relationship between guarantee costs and 
guarantee charges. 

                                                 
10 In this example, it was assumed that the policyholder bears all the expense risk, so this item of the 
liability is zero. 
11 i.e. 1 – 648/17,165. 17,165 is the asset share + PV of future premiums less PV of future expenses. 
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Exhibit 3.4:  
Fair value of guarantee and guarantee charges 

You can see that an annual guarantee charge of almost 0.60% pa of asset share is 
required to equate the fair value of the guarantees to the fair value of these charges. This 
can be interpreted as a market-consistent charge for the guarantees (assuming no 
previous charges have been made). 

 But what does this ‘market-consistent’ tag actually mean in this context?  It represents 
the amount that needs to be invested in order to fund the guarantee costs with certainty 
(give or take some second-order effects) i.e. it is the cost of matching out the 
guarantees. This is slightly different from conventional matching in two key ways: the 
asset allocation of the asset share is not affected, the matching is done with the 
guarantee charges; the asset allocation of the guarantee charges are managed 
dynamically and are dictated by market movements. We discuss this idea more fully in 
sections 4 and 5. 

3.4 Statutory reserves 

We saw above that the fair value of policyholders’ benefits was £13,648 and the current 
asset share of the policy was £13,000. How is this likely to compare with statutory 
valuations of this policy? Naturally, such a valuation will depend on the level of prudence 
assumed in the valuation. However, given current approaches to statutory valuation, it 
would be somewhat surprising if the guarantees of the specimen policy were to result in 
a valuation in excess of the asset share of the policy. This may seem a rather odd state of 
affairs given the statutory reserve is supposed to have margins for prudence whilst the 
fair value is not. The lower size of the statutory reserve arises primarily because a 
statutory valuation ignores prospective terminal bonus, whilst the fair value will include 
it. There is likely to be very little correspondence between changes in the two valuations. 
A rise in the fair value need not imply an increased statutory valuation, or vice versa. A 
move towards a risk-based capital approach to statutory reserving is likely to result in a 
stronger relationship between the fair value and the statutory reserve (a topic we return 
to in section 5). 

 

17



0 200 400 600 800 1000 1200 1400

No lapses

Lapse rate fixed @
4% pa

Investment policy &
bonus policy static

Investment policy
static

Bonus policy static

Base case

Fair Value of guarantees (£)

 

 

3.5  Examining sensitivities 

It is worth considering the sensitivity of the above results to some of the modelling 
assumptions made in the valuation. In configuring our model, we had relatively little lee-
way in the asset calibration – our asset model needed to be consistent with market 
prices. However, a number of assumptions were made regarding the behaviour of the 
with-profit liability, especially regarding the future behaviour of bonus rates and 
investment policy. As there could be a degree of flexibility in the determination of these 
assumptions, it may be of interest to analyse the sensitivity of the above results to these 
assumptions. You will recall that, in our example, bonus rates and equity backing ratios 
were assumed to be reduced in adverse investment scenarios (where the largest 
guarantee strains would otherwise emerge). Exhibit 3.5 below shows how the total 
guarantee fair value is affected when these dynamic assumptions are ‘switched off’ – i.e. 
the bonus or investment policy is fixed irrespective of the investment returns 
experienced.  

Exhibit 3.5:  
Sensitivity of fair value of guarantee to bonus policy & investment policy 

 

Interestingly, exhibit 3.5 shows that the guarantee value of the specimen policy is very 
sensitive to these assumptions. Indeed, assuming bonus and investment policy is fixed 
almost doubles the value of the guarantees. Clearly then, the assumptions for the 
behaviour of with-profit liabilities can have a very significant impact on the value 
attached to policyholders’ benefits. The valuation tool can provide useful management 
information on the cost implications of the intended approach to the management of the 
with-profit business. Managers can explore the impact on the guarantee value when 
different dynamic management polices are put in place. For example, the guarantee 
value of £648 was calculated under the assumption that EBRs would not be changed by 
more than 10% in any single year. The following exhibit illustrates how the calculated 
guarantee value depends on this variable. 
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Exhibit 3.6:  
Fair value of guarantee and the assumed amount of investment policy flexibility 

 
A similar analysis can also be made of the sensitivity of the guarantee value to the rate at 
which bonus rates can be changed. The guarantee value of £648 assumed reversionary 
bonus rates could not be changed by more than 1% in any year. The exhibit below shows 
how the guarantee value varies with this parameter (assuming a maximum EBR change of 
10% in any single year). 

Exhibit 3.7:  
Fair value of guarantee and the assumed amount of reversionary bonus policy flexibility 
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The type of investigations presented above can help actuaries and managers understand 
the sensitivities of the costs of guarantees to the management policies applied to with-
profits business. 

The fair value of guarantees will also depend on movements in asset values and changes 
in assumed asset behaviour (i.e. market-implied levels of volatility). Exhibit 3.8 shows 
how the fair value of the guarantees of the specimen policy change for different assumed 
levels of asset share movement and implied equity volatility.  
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Exhibit 3.8:  
Sensitivity of fair value of guarantee to asset movements & changes in market-implied asset volatility 

Asset Share Movement  
-20% 0% +20% 

20% 712 511 346 
23% 848 648 478 

Equity Volatility 

26% 985 790 612 

As you might expect, the worst outcome for the guarantee valuation occurs when a 
significant asset fall is accompanied by rises in levels of option-implied volatility. This 
‘double-whammy’ results in an increase in guarantee value of over 50%.  

This brief analysis suggests that the selection of liability assumptions could be just as 
important to the pricing of with-profit guarantees as the asset model calibration (if not 
more so). However, in terms of managing the on-going variability of the fair value profit, 
the liability assumptions will only impact on fair value if and when they are changed (and 
also to the extent that actual experience diverges from that assumed in the basis). No 
such control can be exercised over the asset values or the market-consistent model 
calibration. Unless hedged, movements in asset shares and market option costs will be a 
significant source of fair value profit and loss. We examine this risk, and how it can be 
managed, in the following section. 
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4  Hedging With-Profit Guarantees 

So far, this paper has been concerned with market-consistent valuation of insurance 
liabilities, with particular attention being paid to with-profits. This section moves beyond 
the valuation exercise to consider its implications for risk management. Those readers 
unfamiliar with the Black-Scholes option pricing and hedging arguments should now read 
the Appendix, which considers how we might price and hedge ‘plain-vanilla’ guarantees. 
This demonstrates how fairly simple formulae can be applied to gain insight into how to 
hedge such guarantees. Unfortunately, the guarantees written by life offices often 
resemble no more than distant cousins of these standard guarantees. They are generally 
much more complex. In particular, the contingent, path-dependent nature of both the 
ultimate level of the guarantee and the conduct of investment policy complicate matters 
considerably. The convenient formulae of the Appendix turn out not to be very useful. 
Nonetheless, progress has still been made. There are some fundamental insights at the 
heart of the Black-Scholes-Merton analysis discussed in the Appendix that can be 
applied to virtually any form of investment guarantee.   

One of the most useful of these insights is the notion of risk-neutral valuation. You may 
note that the Black-Scholes option pricing formula discussed in the Appendix does not 
include the expected return on the underlying asset as a parameter. This is because 
option values (by which we mean the implicit cost of replicating the option payoff) do not 
depend on the risk preferences of the option buyer. Option values are determined by the 
current market price of the underlying asset, the asset’s volatility and the risk-free 
interest rate. This turns out to be a very useful insight when we set out to estimate option 
values using Monte-Carlo simulation methods. It means that – for the purpose of option 
valuation – we can assume that investors are risk-neutral, and therefore that all assets can 
be assumed to earn the risk-free interest rate. This allows us to discount all cashflows at 
the risk-free interest rate in calculating option values12.  

There is also a second important insight we can gain from the initial analysis. At any given 
point in time, the hedge portfolio for a put option/guarantee will be of the form13: 

�(t) of Underlying Asset + (Guarantee (t) - �(t) x Underlying Asset) of Risk-free Asset 

Since the guarantee cost can be calculated using risk-neutral valuation as discussed 
above, the only unknown in the composition of the hedge portfolio is the ‘delta’ (�(t)). In 
order for the above portfolio to offset changes in the guarantee value, the delta must be 
equal to the rate of change of the guarantee value with respect to the underlying asset 

                                                 
12 There is, of course, a great deal of mathematical rigour behind this result. We suggest chapters 1-3 of 
Baxter & Rennie’s Financial Calculus as an excellent introduction to interested readers. Nor is risk-neutral 
valuation the only approach to market-consistent valuation of contingent claims.  
13 Note that this hedge portfolio does not affect the investment policy of the asset share – it applies to the 
component of the realistic value that results from the guarantee only. The dependence works in the other 
direction – the investment policy of the asset share will be an important determinant of the guarantee value 
and the composition of the appropriate hedge portfolio. 
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value. So, we can use our guarantee valuation model to estimate the delta as well as the 
current guarantee value by calculating the ratio: 

    [G(S + �S) – G(S)]/�S 

where S is the current value of the underlying asset, G(S) is the value of the guarantee 
when the underlying asset is worth S, and �S is a small change in the underlying asset 
value. 

So, although the complexities of the with-profits world have robbed us of the convenient 
formulae of the Black-Scholes-Merton analysis, it is still possible to apply their insights to 
find the guarantee value and the composition of the hedge portfolio for a with-profits 
contract using Monte-Carlo simulation. We are back on track. 

4.1 The guarantee costs 

Suppose that the ideas set out above are now applied to the example with-profits policy 
discussed in section 3. You may recall that this policy is backed by a current asset share 
of £13,000 and has a guarantee valued (on an economic basis) at £648. The guarantee 
value takes account of the office’s discretion to reduce its equity content and 
reversionary bonus rates (to some extent) in times of poor asset performance. This 
discretion is a very significant factor in the guarantee valuation. Exhibit 4.1 highlights this 
further. It shows how the current guarantee value varies with asset share both with and 
without the office’s discretion to adjust investment and bonus policies. Notice that the 
non-discretion case is always more expensive than where the office retains discretion. 
Although note how the differences become smaller as the guarantee becomes less 
valuable. You can see that at current asset share (£13,000) the removal of discretion 
would nearly double the value of the guarantee. A fall in asset share to £9,000 would 
increase the value of the guarantee to just less than £1,000. 

Exhibit 4.1:  
Guarantee costs as a function of asset share 
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4.2 Finding the hedge portfolio 

Using the simulation approach described above, the current delta of the guarantee fair 
value is estimated to be -0.08. The current asset share of £13,000 and a guarantee fair 
value of £648, imply the following hedge portfolio: 

Exhibit 4.2:  
Hedge portfolio composition 

Parameter Value  

Asset mix of asset share -£1,040 (= £13,000 x -0.08) 
 Risk-free asset  £1,688 (= £648 – -£1,040) 
Total £648  

 
We now use the simulation approach described above to calculate the delta of the 
guarantee as a function of asset share (remember this is just the rate of change of the 
guarantee cost with respect to movements in the underlying asset, i.e. the gradient of 
exhibit 4.1). Exhibit 4.3 shows the results for the example with-profit policy, again with 
and without discretion being applied. 

Exhibit 4.3:  
The sensitivity of guarantee costs to asset share movements – the delta 

 
Firstly, note that the delta of the with-discretion case is almost always of smaller 
magnitude than the without-discretion case. This is intuitive. The office’s ability to limit 
the impact of very poor investment returns by reducing bonus rates and/or Ebor’s, 
reduces the sensitivity of the guarantee cost to movements in asset share. This reduced 
sensitivity translates into a smaller magnitude of delta. 

The behaviour of the delta in the without-discretion case is very similar to that of the 
Black-Scholes delta for a plain-vanilla put option. This is unsurprising as the without-
discretion guarantee is a plain-vanilla put option (at a strike of £16,000 x 1.0410 = 
£23,684) subject to the minor complication that policyholder lapse rates are dynamic 
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(policyholders are assumed to be less likely to surrender their policy when the 
guarantees are valuable).  

In the with-discretion case, the delta falls much more slowly as asset share falls. This 
reflects how the dynamic rules help to mitigate the pain caused by poor asset returns. As 
a result, asset share could fall from £20,000 to £8,000 without the delta changing very 
much (indeed, our analysis suggests the with-profit guarantee delta may actually fall in 
magnitude slightly as asset share falls from £13,000 to £9,000). However, eventually the 
dynamic rules cannot keep pace with the impact of further asset falls, and the with-
discretion delta starts to catch up with the without-discretion delta. By the time asset 
share has fallen to £2,000, all the discretion has been ‘used up’, and the with and without 
cases have very similar deltas.  

The behaviour of the with-profits hedge ratio in the presence of dynamic bonus and 
investment rules highlights the striking difference between these guarantees and 
standard plain-vanilla guarantees. If hedging programmes are going to be applied, a 
modified Black-Scholes formula is unlikely to be very helpful. A more sophisticated 
estimation technique, such as Monte-Carlo simulation, will be required.        
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5 Managing Profit Volatility And 
Capital Requirements 

Section 4 showed how to measure the sensitivity of the value of a with-profits policy 
guarantee to movements in underlying asset share. From this, we were able to identify a 
hedge portfolio for the guarantee. In this section we extend this analysis to gain insight 
into the potential profit variability of a life office which owns with-profit guarantees and 
into the potential impact of different management strategies on the level of prudential 
(risk-based) capital held. You may recall from above that this policy’s guarantees were 
valued at £648. As in the previous section, we will use a Monte-Carlo model to develop 
our analysis. Various ‘candidate’ strategies for the management of the assets backing the 
guarantee will be analysed (note this does not affect the investment policy for the asset 
shares of the with-profits policy – this is taken as an ‘input’, and we are now concerned 
with managing the assets backing the resulting guarantee cost of £648 in a way that 
minimises the risks to the office). 

5.1 Changes in the guarantee fair value  

Let us begin by reviewing the sensitivity of the guarantee value. Exhibit 5.1 shows the 
guarantee fair value at the end of the year as a function of the asset share return earned 
over that year. In this exhibit, we assume option-implied volatilities (and so the asset 
model calibration) are unchanged from the original valuation date (where the guarantee 
fair value was estimated at £648).  

Exhibit 5.1:  
End-year fair value of guarantees vs return on asset share (with discretion) 

 
As might be expected, poor asset returns result in the guarantee fair value increasing. 
The chart also illustrates that the relationship is not quite linear. The curvature relates to 
the dependence of the guarantee delta on the size of asset share. The remainder of this 
report considers how we can hedge the risks created by the guarantee fair value’s 
sensitivity to asset share movements and other factors. 
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5.2 Hedging changes in the guarantee value 

In section 4 we used the fair valuation model to derive the hedge portfolio for the 
example policy’s with-profit guarantees. You might recall from section 4 that the hedge 
portfolio consists of £1,688 of the risk-free asset and a short position of £1,040 in the 
asset mix of the underlying asset share’s asset mix. We now consider the hedged fair 
value guarantee profit, and compare this with the obvious alternatives of investing the 
assets backing the guarantee fair value in the same asset mix as asset shares or in cash. 
For ease of modelling, we have assumed that the hedge portfolio is not re-balanced over 
the course of the one-year projection14. This makes the hedging results a little poorer 
than we could otherwise expect – as is discussed in the Appendix, more frequent re-
balancing of the hedge portfolio will improve the accuracy of the hedge. On the other 
hand, we ignore the possibility that option-implied volatilities (and so the end-year 
valuation basis) may change. Dynamic hedging cannot offset the effects of such 
variability. The consequences of this failing in the hedge are examined later. In the 
following analysis, the fair value guarantee profit is defined as follows: 

Fair Value Guarantee Profit  =  [Hedge Portfolio (t+1) – Hedge Portfolio (t)]  

– [Fair Value of Guarantees (t+1) - Fair Value of Guarantees (t)] 

– Guarantee Cashflow Strain (t,t+1) 

Exhibit 5.2 shows the fair value guarantee profit emerging over the year as a function of 
the year’s asset share return where the hedge portfolio is invested in each of the asset 
mix of asset shares, cash and the dynamic hedge portfolio.  

Exhibit 5.2:  
Fair value profit as a function of return on asset share and hedging policy 

 
Let us work through each of these portfolios in turn. When the assets backing the 
guarantee are invested in cash, the only significant source of volatility in the fair value 
guarantee profit is the change in the fair value of the guarantees. As we saw in exhibit 

                                                 
14 As the delta must be calculated using simulation, to re-balance the hedge portfolio more frequently 
would require many, many thousands of simulations within each of our simulations of the one-year 
progress of the fair value guarantee profit. 
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5.1, the guarantee fair value is highly dependent on movements in asset share, and this 
dependence naturally follows through to the fair value guarantee profit. Investing the 
assets backing the guarantees in the asset mix of the asset shares adds an element of 
gearing to these profits. In this case, strong asset share returns not only reduce the fair 
value of the guarantees, they also increase the value of the assets backing them. A similar 
story applies on the downside – the backing assets fall in value just when the guarantee 
becomes more burdensome. Finally, we have the hedge portfolio. If this portfolio was re-
balanced continuously, the profits would always be zero (ignoring market jumps, 
transaction costs, etc.). The curvature that is exhibited in the hedged guarantee profits is 
a result of the simplifying assumption that the hedge portfolio is not re-balanced until the 
end of the year. As the re-balancing frequency is increased, this line would gradually 
flatten.  

Exhibit 5.3 summarises the profiles of the fair value guarantee profits emerging at the 
end of the year. You can see that, even when only re-balancing on an annual basis, the 
hedged profits are significantly less variable than investing in cash or asset share. We 
have used our model of the with-profit business to find a hedge portfolio that is 
consistent with its office-specific features. 

Exhibit 5.3:  
Fair value guarantee profit as a function of hedging policy 

 
Changes in option-implied volatility 
In the above analysis, we made the convenient assumption that the volatility parameters 
of the fair valuation asset model would remain fixed from one year to the next. 
Unfortunately, in reality this is unlikely to be the case. Option-implied volatilities tend to 
bounce around over time, reflecting changes in investors’ expectations for future asset 
volatility and the effects of supply and demand. (Few markets exhibit the infinite price 
elasticity associated with perfect markets). 

Changes in the volatility basis for the asset model will naturally impact on the fair value of 
guarantees. We now introduce a stochastic element to the end-year option-implied 
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equity volatility level15. Exhibit 5.4 shows how the simulated end-year guarantee fair 
value relates to the accompanying level of option-implied equity volatility. 

Exhibit 5.4:  
End-year guarantee fair value as a function of end-year option-implied equity volatility 

 
Exhibit 5.4 illustrates that the option-implied level of equity volatility is an important 
determinant of the fair value (although it remains second-order to the actual asset share 
return earned in the year). Exhibit 5.5 illustrates the end-year guarantee fair value’s 
dependence on both asset returns and end-year option-implied volatility. This chart 
highlights how the fair value’s dependence on volatility changes is greatest when asset 
returns have been strong (and the guarantee has moved out-the-money). 

Exhibit 5.5:  
End-year guarantee fair value as a function of asset returns and end-year option-implied equity volatility 

                                                 
15 We have assumed that the end-year equity implied volatility level is lognormally distributed with a mean 
equal to its current value of 23% and a proportional volatility of 10%. This is not an especially sophisticated 
model of implied volatility, but will suffice for these illustrative purposes. 
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It is important to understand that it will not be possible to hedge the variability arising 
from movements in option-implied volatility using a hedge portfolio comprised of the 
underlying fund and risk-free bonds. Exhibit 5.6 shows the distribution of the guarantee 
fair value profit if we allow for movements in implied volatility. 

Exhibit 5.6:  
Guarantee fair value profit (with stochastic implied volatility) 

 
Introducing variation in the end-year option-implied equity volatility has increased the 
variability of the fair value guarantee profit in all three cases considered. However, the 
impact on the performance of the hedge portfolio is the most marked. There is not a lot 
we can do about these changes in implied volatility if the hedge portfolio is restricted to 
investments in the underlying asset and risk-free assets. This is highlighted by the 
following exhibit, which shows the fair value guarantee profit arising when following the 
above hedging strategy plotted against the simulated end-year implied equity volatility. 
Whilst exhibit 5.2 showed that the dynamic hedge removed most of the fair value profit’s 
exposure to movements in underlying assets, exhibit 5.7 shows that the sensitivity to 
changes in implied-volatility remains.  
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 Exhibit 5.7:  
Guarantee fair value profit under dynamic hedge (with stochastic implied volatility) 

 
In order to hedge the impact of these volatility changes, the hedge portfolio must include 
assets whose value depends on the implied volatility of the underlying asset. The 
following section considers how, in principle, this might be achieved. 

5.3 Other risk management strategies – developing derivative-based 
solutions 

Dynamic hedging of guarantees using a portfolio of the underlying asset and the risk-free 
asset can be considered to be the ‘purest’ form of guarantee risk management. Indeed, in 
theory, it delivers the complete removal of market risk. However, as we have seen, there 
are sources of risk that basic dynamic hedging simply ignores, and there are inevitably 
assumptions underlying the approach that will not always hold in reality. The real world 
can be a more demanding environment than a computer model. Further, the practical 
demands of dynamic hedging, and its potential pitfalls, can make this strategy rather 
daunting to a life office with little or no experience of applying this type of risk 
management technique. Such offices may feel inclined to ‘sub-contract’ the dynamic 
hedging (and its costs and risks) to an investment bank by transacting some form of 
derivative trade. Of course, a bank will naturally require compensation for such a 
transaction, and the bank’s margin will be an important determinant of the attractiveness 
of such a trade. Another important consideration will be the extent to which the 
transaction addresses the office-specific features of the guarantees (exhibit 4.3 
highlights how important these features are in determining the appropriate hedging 
strategy for the example with-profits policy). 

To illustrate the possibilities in this area, we now review some example derivative 
transactions that the office might consider as a means of managing its guarantee risk. In 
all cases, we will consider how the guarantee risks identified above can be managed 
through suitably selected portfolios of ‘plain-vanilla’ options (i.e. standard options to buy 
or sell an asset with a fixed strike price, expiry date, etc.). Our analysis has shown that 
matching movements in the guarantee value requires the following characteristics of the 
hedge portfolio: 
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a) It matches the sensitivity of the guarantee value to changes in the underlying asset 
value. We have seen that this will ensure the hedge matches the change in the 
guarantee value for small changes in the asset value. (In options terminology this is 
called the option’s delta). 

b) It matches the sensitivity of the guarantee value’s delta to changes in the underlying 
asset value. This will ensure the hedge matches the change in the guarantee value for 
large changes in the asset value. (In options terminology this is called the option’s 
gamma). 

c) It matches the sensitivity of the guarantee value to changes in implied volatilities. (In 
options terminology this is called the option’s vega). 

Our aim is to find a combination of assets which exhibit all of these characteristics. Note 
that this represents a significant departure from the approach adopted above. In the 
dynamic hedging case, we effectively create the same derivative (put option) that is 
attached to the with-profits policy. Since such a complex option is unlikely to be offered 
by a bank, we will tackle the risk management problem by finding a portfolio of vanilla 
options that matches – as closely as possible – the characteristics identified above. 

A natural starting point is to confine ourselves to a plain-vanilla put option. Let us assume 
that a bank is prepared to write such an option on the current asset mix of the asset 
share16 with a maturity date equal to the date of the maturity guarantee. In this case, you 
might expect that simply buying an option with a strike that is in some way consistent 
with the expected level of the final sum assured might be the best hedging strategy. 
However, it is important to remember that the analysis of section 4 showed that the 
discretionary features of the with-profits guarantee had a significant impact on the nature 
of the guarantee and its sensitivity to changes in the value of the underlying asset share. 
So, perhaps the hedge portfolio composition should be more flexible?  

Our plain-vanilla put option portfolio has (at least) two moving parts. First, we can vary 
the number of options we buy. Second, different strike prices can be selected. Exhibit 
5.8 shows a candidate option position that has the desired delta of -0.08. 

Exhibit 5.8:  
Candidate plain-vanilla put option portfolio 

Parame er t Put 

Number of options per policy 0.84 

Strike price of option £11,644 

 
Interestingly, the strike of this option, £11,644, is around half the projected final level of 
the guaranteed sum assured (£16,000 x 1.0410 = £23,684). Further, our analysis suggests 
that holding less than one of these option contracts per policy is appropriate for the 
example policy. The differences between this strategy and simply buying one put option 
with a strike equal to the expected guarantee benefits captures the impact that the 
discretionary and dynamic features of with-profits have on the current sensitivity of the 

                                                 
16 Some offices’ with-profit fund asset mixes may make this assumption very optimistic – especially if, for 
example, there are significant direct property holdings. 
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guarantee value to movements in asset share. This option portfolio has an initial cost of 
£459.  

Exhibit 5.9 shows how the delta of the above put option portfolio compares to that of the 
fair value of the guarantees (assuming the remaining £189 of the guarantee fair value is 
invested in risk-free assets).   

Exhibit 5.9:  
Deltas of With-Profit guarantees & plain-vanilla option portfolio 

 
You can see that the plain-vanilla put option delta does not behave like the guarantee. In 
options parlance, the put option’s gamma (i.e. the rate of change of the delta with 
respect to the underlying asset) is just too big. This is especially true in the event of asset 
share falls – the discretionary adjustments of bonus rates and investment policy that 
would accompany such a fall help to keep the with-profit guarantee’s delta small (in 
magnitude), and this feature is not captured by the vanilla put option. 

So, the gamma of the option portfolio needs to be reduced. Vanilla options (both calls 
and puts) have positive gammas, so buying more options is unlikely to help. On the other 
hand, selling some options would reduce the hedge’s gamma and could produce a better 
match to the guarantee. It is therefore worth considering a “collar” portfolio. Under such 
a strategy, calls with high strikes are sold whilst puts with lower strikes are bought. In this 
illustrative example, we again suppose such options can be bought and sold on the 
current underlying asset mix of the fund (80%/20% equity/gilts).  

With the collar strategy, there are now (at least) four ‘dials’ we can turn in determining 
the composition of these option positions: 

� The number of call options sold. 

� The strike price of the options sold. 

� The number of puts bought. 

� The strike price of the puts bought. 
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Exhibit 5.10 shows a collar strategy which has the same initial delta as the guarantee fair 
value (-0.08), and a cost of £132. As there are more variables than there are constraints, 
this is not a unique collar strategy given the required initial delta. In reality, practical 
market constraints will dictate which particular strategy is most attractive. 

Exhibit 5.10:  
Candidate collar option portfolio 

Parameter Call Put 

Number of options -0.10 0.89 

Strike price £35,118 £9,770 

 
Notice that the call option position is smaller than the put position. This is unsurprising as 
the guarantees are a type of put option. However, the negative call exposure does 
reduce the gamma of the portfolio. This is illustrated in exhibit 5.11. You can see that the 
collar option portfolio provides a closer match to the delta profile of the with-profit 
guarantee.  

Exhibit 5.11:  
Deltas of With-Profit Guarantees and Collar Option Portfolio 

 
We have now identified three candidate risk management solutions – the dynamic 
hedge, a put option portfolio and a collar strategy. Let us now review the results 
produced by these strategies. Exhibit 5.12 shows the fair value guarantee profit 
produced by these strategies as a function of the return on asset share earned over the 
year. 
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Exhibit 5.12:  
Fair value profit as a function of asset share 

 
You can see that all three strategies show a reasonably similar exposure to the asset 
share return. In each case, despite initially being delta-neutral, some positive relationship 
between asset share return and fair value profits remains. This is because asset share 
movements result in the deltas of the hedge portfolio and the guarantees diverging 
slightly as asset share exposure sneaks back into the net position. However, the exhibit 
also illustrates a second feature. For a given level of asset share return, there is greatest 
variation of fair value guarantee profit under the dynamic hedge, and least variation for 
the collar portfolio. What might be driving this variation in the amount of profit emerging 
for a given asset share return? 

Exhibit 5.13 shows how the fair value profit relates to the end-period option-implied 
equity volatility.  

Exhibit 5.13:  
Fair value profit as a function of end-year option-implied equity volatility 
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Interestingly, the different strategies have different exposures to volatility changes. As 
we have seen, increases in volatility have a negative effect on the fair value guarantee 
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profits when delta hedging. This is natural as the asset portfolio value does not depend 
on volatility, whereas the guarantee fair value does – higher volatility means higher 
guarantee fair value. With the put option portfolio, an opposite relationship is observed. 
In this case, the put option is more sensitive to changes in volatility than the guarantee 
fair value. On the other hand, the net position under the plain-vanilla put strategy has a 
positive exposure to volatility movements. The collar strategy has less sensitivity to 
volatility changes than the put strategy as the collar strategy involves selling some 
options. As a result, the net position under the collar strategy has the least sensitivity to 
movements in volatility. 

You can see from exhibit 5.14 that the three strategies do fairly similar jobs of managing 
the one-year fair value profit. The collar strategy does a slightly better job than the put 
option, and also has less downside risk than the dynamic hedge (although our treatment 
of the dynamic hedge is perhaps a little harsh as we have not re-balanced the portfolio 
over the course of the year).     

Exhibit 5.14:  
Guarantee fair value profit for various risk management strategies 

 
Exhibit 5.15 summarises the delta, gamma and vega exposures of the liability and the 
three hedges considered above. In managing the office’s risk exposures, the aim of the 
risk manager will be to ensure that the characteristics of the hedge portfolio match those 
of the liability as closely as possible (all other things – cost in particular – remaining 
equal). You can see that in our example, the collar hedge does the best job of replicating 
the ‘greeks’ of the with-profit guarantee.  
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Exhibit 5.15:  
The greeks of the liability and candidate hedge portfolios 

 Liability  Asset: Candidate hedges 

 WP 
Guarantee 

 Dynamic 
Hedge 

Put Option Collar 

     Long Put Short Call Net Collar 

Delta -0.08  -0.08 -0.08 -0.05 -0.03 -0.08 
Gamma 0  0 ++ ++ - + 
Vega +  0 ++ ++ - + 

 
Before we conclude this section, there are a couple of caveats that should be attached: 

� The derivative contracts we have analysed are not readily available. The term and 
strike of the options (as well as the size likely to be useful to a life office) are not easily 
available from the financial markets. In practice, banks may be willing to offer such 
instruments on an “over-the-counter” basis. However, such trades are likely to incur 
significant trading costs. The margin taken by the bank could be a vital factor in 
appraising the attractiveness of these derivative strategies. Nonetheless, many of the 
benefits of the above strategies could be gained through trading appropriate portfolios 
of exchange-traded options only. 

� Further, we have considered the performance of these strategies over one year only. It 
is likely that the option strategies would need to be revised at the end of the year – as 
delta positions move out of shape and the asset mix of asset share is changed. If 
trading OTC derivatives is costly, this could become problematic. 

However, we can still claim to have made some interesting progress in the development 
of risk management solutions for with-profit guarantees. This analysis highlights how a 
valuation model for with-profit guarantees can be used for a lot more than ‘merely’ 
estimating a market-consistent value for the liability. It can be used as a risk management 
tool, allowing the actuary to understand the dynamic characteristics of liabilities and the 
types of instruments which might be used to limit those exposures. As well as estimating 
the accuracy of candidate solutions, the residual risks that remain (and their sources) can 
be analysed.    

Nonetheless, we should not get carried away. The model can be an invaluable tool in 
determining the appropriate composition of candidate hedge portfolios. Ultimately, 
however, the choice of which strategy will depend on a number of issues of judgement 
that lie outwith the jurisdiction of a modelling tool.  
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5.4 Implications for risk-based capital requirements 

The FSA have made it clear that, in the coming years, the regulatory capital regime for 
insurers will move from the current resilience test basis towards a market-consistent, risk-
based approach17. The details of this remain sketchy. However, irrespective of the finer 
points of this regime, under a risk-based approach, hedging should significantly reduce 
regulatory capital requirements. As an illustrative example, let us suppose that the 
minimum regulatory capital requirement is defined as the capital sufficient to fund the 
end-of-year realistic guarantee value with 99% probability18. 
  
We can de-compose such a capital requirement into the current realistic value and a mis-
match reserve. In the theoretical limit, the perfect hedge will reduce the need for any 
mis-match reserve and the regulatory capital required would simply be the current 
realistic value. On the other hand, investing the assets backing the guarantee in equities 
will create the need for a considerable mis-match reserve. Exhibit 5.16 plots the 
hypothetical regulatory capital requirements under the above assumptions for the 
specimen CWP policy considered throughout this report. We consider three cases for 
the investment of the assets backing the realistic guarantee value – the asset mix of asset 
share, cash and the collar hedge discussed in section 5.3. You can see that, even relative 
to holding cash, implementing the hedge reduces the capital strain in excess of asset 
share by almost one third. 
 
Exhibit 5.16:  
Risk-based capital requirements example for the example CWP policy 

                                                 
17 See, for example, the FSA’s Consultation Papers 136 and 143.  
18 This is slightly different to a more natural actuarial approach of defining capital requirements in terms of 
the capital required to fund a given percentile of ultimate losses arising from running off the business. The 
two approaches are actually more similar than they first appear, although they are answering slightly 
different questions. The run-off approach assumes the current ‘hedging’ strategy is applied until the 
business is run-off. The approach we have used assumes it is applied for the next year – the capital is 
designed to fund the replicating portfolio cost at the end of the year. The differences between these two 
approaches will be greatest when the assets backing the guarantees represent a significant mis-matched 
position. In this case, our approach recognises management’s flexibility to change this strategy (to the 
replicating strategy) at the end of the year, whereas the run-off approach assumes capital must be provided 
to fund this mis-match position indefinitely.     
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6  Summary & Conclusions 

The findings and conclusions of this report can be considered in two parts: those relating 
to the determination of the fair values, and those relating to their risk management 
ramifications. The following points summarise the major conclusion from our discussion 
of fair valuation for with-profit business:  

� Asset model calibration for the valuation of long-term guarantees can raise a 
number of potentially messy issues. There is a lack of liquid, transparent market 
instruments to which models can be calibrated. Stochastic models will need to be 
fairly complex if they are to accurately replicate all relevant market prices. A 
trade-off will therefore arise between model simplicity and pricing accuracy. 

� Detailed assumptions will also be required for the behaviour of with-profit 
liabilities. The fair value of with-profit guarantees could be very sensitive to these 
assumptions. Indeed, the fair value could be significantly more sensitive to these 
assumptions than to differences in the ‘fine-tuning’ of market-consistent asset 
calibrations. 

� The valuation of a specimen conventional with-profits contract was fairly 
sensitive to the wide range of modelling assumptions required for the behaviour 
of assets and liabilities and their interaction. 

� The fair value of a with-profits liability could conceivably exceed its statutory 
valuation. The lack of consistency between the two approaches makes it very 
difficult to make general statements. For example, a year-on-year increase in one 
of the valuations need not imply an increase in the other. However, the key 
difference in the treatment of prospective terminal bonus payments is likely to 
mean fair values often exceed statutory reserves. 

This paper has also discussed approaches to the management of the financial risks 
created by writing cash guarantees. The basic ideas underlying dynamic hedging are 
discussed in the Appendix. There we see that a replicating portfolio can be found for a 
vanilla put option, and examine its properties in different scenarios. Further, by the 
principle of no-arbitrage, we know the cost of the replicating portfolio must also be the 
price of the option.  

Section 4 extended these ideas to the example CWP policy that was valued in section 3. 
It turns out that the complexity of with-profit guarantees means that the hedge portfolio 
cannot be identified through the application of a simple formula. However, using the 
insights developed by Black-Scholes-Merton, we were able to use a market-consistent 
valuation model to find the required hedge portfolio. This showed that the dynamic 
features of with-profits can significantly reduce the exposure of the guarantee value to 
movements in asset values. As a result, the sensitivity of the hedge portfolio to changes 
in asset share was significantly lower than for a vanilla guarantee (put option). In effect, 
the dynamic nature of with-profits does part of the hedging automatically. The valuation 
model can be used to understand how much risk has been removed by the office’s ability 
to apply discretion and how much market exposure remains with the office.  

Section 5 considered the performance of the hedge portfolio identified in section 4 for 
the CWP guarantee over a one-year period. Whilst the hedge portfolio removed the bulk 
of the guarantee profit’s exposure to asset movements, it could offer no protection 
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against movements (increases) in the option-implied volatility of the underlying assets. 
The analysis was then extended to consider other candidate risk management strategies, 
in particular some derivative trades. Having gained an understanding of the nature of the 
with-profit guarantees using the valuation model, we were then able to identify suitable 
candidate (plain-vanilla) derivative positions for hedging the guarantee. Over a one-year 
period, we were able to find derivative positions that did a comparable job of hedging 
the market risk of the guarantee, whilst potentially reducing the exposure to changes in 
option-implied volatility. Finally, as we demonstrated, as well as reducing profit volatility 
and its exposure to asset movements, implementation of these types of risk management 
strategies could also have significant implications for the size of an office’s risk-based 
capital. However, the analysis should have the attaching caveats that the derivative 
positions identified may be expensive and/or incur substantial transaction costs in 
trading. Further, such positions are likely to require annual revision as asset values move 
and with-profit investment policies change.  

Nonetheless, we have developed powerful techniques for evaluating the effectiveness of 
hedging approaches for with-profit guarantees. As the regulatory and accounting 
regimes move inexorably towards a market-consistent framework, such arrangements 
will surely be worthy of life offices’ consideration. After all, effective hedging will help to 
manage profit volatility, solvency risk and capital requirements. The next challenge is for 
the life industry and actuarial profession to fully embrace this more rigorous, market-
based approach to financial risk management.  We hope this paper can make a 
contribution to this process.  
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Appendix: An introduction to dynamic 
hedging 

The pricing of guarantees is not a new idea. The major breakthrough in the valuation of 
options was made in the early 1970’s with the seminal work of Black, Scholes and Merton 
(BSM). They showed how options could be valued and how a replicating (‘hedge’) 
portfolio of assets could be found which (if correctly adjusted over time) produced the 
same contingent payoffs as the option. Academic research in the area has continued 
ceaselessly for the last three decades. Practical implementation (primarily by investment 
banks) has developed contemporaneously. This section introduces some of the basic 
principles that are applied in this area. In particular, we consider how a basic cash 
guarantee on a portfolio invested in a risky asset can be valued and the insights the 
analysis gives into the composition of the hedge portfolio. The cost of the guarantee is 
determined by finding the portfolio of assets that will replicate the guarantee pay-off. 
Under the replicating cost argument, the value of the hedge portfolio and the cost of the 
guarantee are one and the same thing. 

A.1 The Black-Scholes-Merton analysis 

The classic Black-Scholes-Merton analysis showed that, under a suitable set of 
assumptions, option payoffs could be replicated by managing a dynamically re-balanced 
portfolio of the underlying asset and the risk-free asset. This insight is central to the 
pricing and hedging of derivatives.    

Using this approach, Black-Scholes found the value of a European put option on a stock 
to be: 

where: 

N (.)  is the cumulative standard Normal density function 

St  is the price of the underlying asset at time t 

X  is the strike price of the option 

T  is the maturity date 

t is the current date 

r  is the continuously-compounded risk-free interest rate (net of dividends) 

�  is the annualised volatility of the underlying asset.  
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The most significant assumptions in the derivation of this formula are discussed in 
section 2.3. The above formula, as well as providing a means for pricing guarantees and 
other options, also provides an insight into how changes in the value of the option can 
be hedged. Look at the formula. It contains two terms. The first is a term in e-r (T-t) i.e. a 
quantity of risk-free asset. The second is a term in St i.e. a quantity of the underlying 
risky asset. If we hold a portfolio consisting of -N (-d1) of the underlying asset and hold  
N (-d2)Xe-r(T-t) in cash, then the changes in the option price will be matched by changes 
in this portfolio. This special portfolio is the hedge portfolio, and the proportion of the 
underlying asset held in the hedge portfolio, –N (-d1), is referred to as the ‘delta’ of the 
option (i.e. delta measures the sensitivity of the option value to changes in the 
underlying asset price). Dynamically re-balancing the hedge portfolio (to keep the asset 
exposure in line with the option’s changing delta) is often referred to as delta-hedging. 

So long as the appropriate hedge portfolio is held throughout the life of an option (i.e. 
delta of the underlying asset with the remainder in cash) then – providing BSM’s other 
assumptions hold – the value of the portfolio at the maturity of the option will be equal to 
the option payoff. For a life office hedging, say, a unit-linked maturity guarantee, 
changes in the value of the hedge portfolio will exactly offset changes in the fair/realistic 
value of the guarantee. The office will have removed the fair value profit volatility that 
arises from writing the guarantee.  

Note that the appropriate holdings of the underlying asset and cash will change 
continuously over time. In order to perfectly replicate the option payoff, it is necessary to 
continuously re-balance the hedge portfolio. Common sense tells us that this is not 
feasible. The practical challenges that must be faced in any real-world implementation of 
a dynamic hedging strategy are discussed below.  

These insights can be used to create a rule for the management of the hedge portfolio, as 
follows: 

� At time t, make a guarantee charge of PutOption (t), and establish the hedge 
portfolio by holding  –N (-d1) of the underlying asset, and N (-d2)Xe-r (T-t) of cash. 

� At time t+ �t, re-balance the hedge portfolio to reflect the changes in N (-d1) 
and N (-d2) which will result from changes in the underlying asset value and 
the term to maturity. 

� Repeat the second step for each subsequent time period of length �t until the 
option reaches maturity. 

Let us illustrate these ideas by considering two example Monte-Carlo simulations for the 
risky asset and hedge portfolio. In these examples, let us assume that we are aiming to 
hedge a 10-year money-back guarantee (i.e. a plain vanilla put option) on a unit-linked 
fund. Re-balancing of the hedge portfolio will take place on a daily basis. For both 
simulations we start with a fund of 1 unit of currency, and there is a guarantee of 1 after 
10 years. Under our assumptions, this implies a put option price of around 0.075 and an 
initial delta of around –0.18. The initial composition of the hedge portfolio is therefore -
0.18*1 of the underlying risky fund, and 0.075 + 0.18 = 0.255 in the risk-free asset.     
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Exhibit A.1:  
Example Monte-Carlo projection (1) 

 
In the example projection illustrated in exhibit A.1, the underlying asset experience has 
delivered strong growth over the first four years of the contract’s term. This is then 
followed by long-term poor performance, with the asset value more than halving 
between its peak and the maturity of the contract. Now consider the behaviour of the 
delta over this simulation. After four years of the contract’s term, the delta has fallen (in 
magnitude) from its initial value of -0.18 to -0.05 as a result of the fund’s strong 
performance. However, the poor performance of the fund over the second half of its 
term results in the guarantee moving from being very undemanding to being very 
valuable. This drives the delta to a higher magnitude, increasing the exposure to the 
underlying asset as it becomes more likely that the option will mature in-the-money. This 
increased (negative) exposure to the poorly-performing underlying asset ensures the 
hedge portfolio appreciates strongly in value over the final years of the contract. The 
value of the hedge portfolio increases from close to zero after 4 years to 0.58 at maturity. 
Notice that – since the final fund value is 0.42 – the hedge portfolio value neatly offsets 
the shortfall and ensures that the guarantee can be matched.    

Exhibit A.2:  
Example Monte-Carlo projection (2) 
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In the second example projection, the underlying fund performs poorly over the first 
couple of years of the contract’s life. This results in the delta of the hedge portfolio 
increasing in magnitude from -0.18 to -0.64. However, very strong asset performance 
over the remaining term of the contract means that the guarantee expires worthless. The 
delta of the option falls to virtually zero as it becomes less likely that the option will 
expire in-the-money, and the hedge portfolio’s value is wiped out by strong underlying 
asset growth (which the hedge portfolio has negative exposure to). Again we have a net 
position of no profit or loss. The option written by the product provider has been 
matched. 

A.2 A contrast with the funding approach 

Dynamic hedging is one possible way of using an option premium. It is interesting to 
review the conventional (life office) approach to the management of guarantees by 
extending the analysis. We will use Monte-Carlo projections to compare the impact of 
different hedging strategies on the profit/loss arising at the maturity of the contract (i.e. 
the difference between the final hedge portfolio value and the guarantee cost. Exhibits 
A.3 and A.4 list the parameters assumed in this analysis. 

Exhibit A.3:  
Assumed option parameters 

Parameter Value 

Strike price 1.0 
Underlying Asset 1.0 
Risk-free interest rate 5% 
Dividend Yield 0% 
Volatility 20% 
AMC 1% 

 
Exhibit A.4:  
Assumed asset model parameters 

Parameter Value 

EBR 80% 
Risk-free interest rate 5% 
Equity Risk Premium 3.5% 
Long Bond Risk Premium 1% 
Equity Volatility 24% 
Long Bond Volatility 11% 
Equity/Bond Correlation 0.3 
Transaction Costs 0.00% 

 
The above parameters imply a portfolio volatility of 20%. We assume that portfolio 
returns are lognormally distributed.  

In order to assess the adequacy of the hedge, it is necessary to consider the various 
strategies open to the hedger in managing risk. One approach would be to set aside the 
option-based hedging strategy and simply invest the charge made for the guarantee in 
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the underlying asset. (It could be argued that this has historically been the typical life 
office’s strategy, where the free estate is invested in the same asset mix as the underlying 
asset shares). Exhibit A.5 shows the profit/loss profile faced by the hedger as a function 
of the underlying asset value at the maturity date of the policy. 

Exhibit A.5: 
Profit & Loss at maturity with guarantee charge invested in underlying fund 

 
Exhibit A.5 shows that this is an inherently risky strategy. In this case, the hedger has a 
geared exposure to the underlying asset – the hedge portfolio simply moves in line with 
underlying asset values. This means that the net loss increases at a faster rate than the 
fall in the underlying asset. Writing guarantees under this strategy means accepting a 
geared position on the future performance of the underlying asset.  

Now suppose that the guarantee writer chooses to invest the guarantee charge in the 
dynamic hedge portfolio discussed above. Further, suppose that the hedge portfolio is 
re-balanced daily as in the example projections shown in exhibits A.1 and A.2. Exhibit 
A.6 shows how the hedge portfolio compares with the guarantee shortfall at maturity 
plotted as a function of the final underlying asset value. 
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Exhibit A.6:  
Profit & Loss at maturity with daily re-balancing of the hedge portfolio 

 
You can see that daily re-balancing results in the hedge portfolio providing a very close 
match to the actual guarantee shortfall (under the assumptions described in exhibits A.3 
and A.4 and the assumption of a lognormally distributed underlying asset return).  

You may recall that the above analysis has ignored the transaction costs that would be 
incurred in re-balancing a real-world hedge portfolio. The existence of transaction costs 
will naturally constrain the frequency with which the hedger will wish to re-balance.  

Exhibit A.7 shows how the accuracy of the hedge deteriorates as the period between re-
balancing is increased from daily to monthly19. It can be seen that monthly re-balancing 
still creates a fairly accurate hedge for the guarantee shortfall by comparison with the 
static strategy shown in exhibit A.5. 

Exhibit A.7:  
P/L at maturity, monthly re-balancing of hedge portfolio 
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19 It should be noted that when the re-balancing frequency of the hedge portfolio is changed, a small 
adjustment to the delta should be made in order to maximise the accuracy of the hedge. See Wilmott 
(1998). 
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Exhibit A.8 plots the distribution of the maturity profit/loss under various re-balancing 
frequencies, as well as the strategy of investing the guarantee charge in the underlying 
fund. In this exhibit, the red segments represent the two central quartiles of the 
distributions and the solid box signifies the mean. The pink segments represent the 5th to 
25th and 75th to 95th percentiles, whilst the salmon pink segments show the 1st to 5th and 
95th and 99th percentiles. 

Exhibit A.8:  
Comparison of profit & loss distributions 

 
As might be expected, increasing the re-balancing frequency increases the accuracy of 
the hedge and therefore reduces the volatility of the profit/loss arising. Investing the 
guarantee charge in the underlying asset results in a positive expected payoff, although 
this can only be achieved through exposure to significant downside risk. It is simply the 
profit/loss profile of a geared equity investment. 

A.3 Some caveats 

Section A.1 explored how an option can be dynamically hedged in a world that conforms 
to the assumptions made in the Black-Scholes analysis. Whilst this can give valuable 
insights into how to hedge financial guarantees, it is important to be aware that some of 
these assumptions will not hold in reality.  

The most significant assumptions in the derivation of the above formula are: 

� The underlying asset is lognormally distributed20. This assumption itself is not very 
important - the insights from Black-Scholes-Merton allow us to apply their 
methodology to other stochastic processes for the stock. However, the assumption 
that the underlying asset follows a continuous process is theoretically necessary in 
order to construct the replicating portfolio. Gaps in the underlying asset price cannot 
be dynamically hedged. 

� The volatility of the underlying asset is constant. This assumption can be relaxed to 
allow for deterministic changes in volatility over time. However, the replicating 

                                                 
20 This is just a continuous-time version of a random walk. It implies that the underlying asset is lognormally 
distributed, i.e. continuously-compounded returns are normally distributed.  
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portfolio cannot be extended to cover stochastic volatility – unexpected changes in the 
volatility of the underlying asset cannot be hedged by a portfolio of the underlying 
asset and cash. 

� Markets are frictionless. In other words, the replicating portfolio can be re-balanced 
continuously without incurring any transaction costs. This is fundamental to the BSM 
pricing formula. In practice, hedgers do face significant transaction costs. It turns out 
that simple adjustments can be made to the formula that captures the impact of the 
transaction costs of re-balancing on the replicating cost21. 

Each of these assumptions can have a significant impact on the effectiveness of dynamic 
hedging. Real-world hedging will therefore demand the management of a set of trade-
offs between risk and cost, and even the most rigorous dynamic hedging process will still 
inevitably leave some residual risk. 

 

                                                 
21 The Black-Scholes formula can be adjusted for transaction costs. See Wilmott (1998). 
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