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Abstract

We propose a new multivariate time series model in which we assume that each component
has a tendency to revert to the minimum of all components. Such a specification is useful to
describe phenomena where each member in a population which is subjected to random noise
mimicks the behaviour of the best performing member .

We show that the proposed dynamics generate co-integrated processes. We characterize the
model’s asymptotic properties for the case of two populations and show a stabilizing effect on
long term dynamics in simulation studies. An empirical study involving human survival data
in different countries provides an example which confirms the occurrence of the phenomenon of
reversion to the minimum in real data.

Keywords: multivariate time series, co-integrated time series, human mortality modelling,
rank-dependent drift

1 Introduction

When multivariate time series are used to describe the joint dynamics of stochastic processes, often
an a priori assumption of a stabilizing mechanism is made. We expect, for example, that many
economic variables will fluctuate randomly over time, but we do not find it plausible that they will
diverge while doing so. This is because certain long-term equilibrium relationships are assumed to
be present between such variables, despite the volatility we see in them over short time horizons.
Many economic examples are now known (see for example Engle and Granger [1987]) and other
fields in which such co-integration relationships are found include neuroscience (Østergaard et al.
[2017]) and gene differentiation in populations (Hössjer and Ryman [2014]).

A possible model feature that implements such a stabilizing mechanism in multivariate time
series is mean reversion: the tendency of all components to drift towards a constant, which has
the interpretation of the long term average of the series. Adding a mean reversion term to all
increments of a multivariate discrete random walk makes the series second-order stationary. This
also guarantees that the distance between any two components will be stationary.

In this paper we propose a different mechanism: instead of making all components tend to a
priori chosen constants, we impose that at every time step they move, in expectation, towards the
minimal value among all components. When different components in the time series signify the
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value of a certain common variable among different groups, such an assumption can be interpreted
as all groups mimicking the behaviour of the group which currently has the ’best’ value1.

If knowledge about what is beneficial or detrimental for a group to minimize a certain quanti-
tative indicator is communicated between different groups, and each group is capable of using this
knowledge to their benefit, the best practices are implemented in all groups over time. The over-
all effect would be that the group which has achieved the best (i.e. the minimal) value would be
’followed’ over time by those with worse achievements, as they ’learn’ or ’mimic’ what is beneficial.
We will show that this effect will lead to a co-integration relationship between groups but also to
an additional downward drift that no group would achieve on its own or if the minimum reversion
effect would not be present. In that sense, learning from the best performer generates improvements
for all that would not occur if individual groups were left to their own devices.

This hypothesis of ’reversion to the minimum’ in multivariate time series can be tested by spec-
ifying models with and without such an effect and applying the Bayesian Information Criterion to
compare the goodness of fit. In this paper we provide such specifications, analyse the properties
of models where it is present, and give an empirical example of a specific time series where clear
evidence for this effect is found.

There are a number of models in the literature that are related to the one we propose in this
paper. Systems of diffusion processes have been proposed in which the drift and diffusion coefficients
of an individual process depend on the rank of that process within the system. For example, Fernholz
[2002] and Banner et al. [2005] introduce the Atlas model to describe the market capitalization of
firms in equity markets, and Ichiba et al. [2013] apply their model to define optimal investment
strategies. The Atlas model is applied by Sartoretti and Hongler [2013] to describe the dynamics
of a swarm, and Ruzmaikina and Aizenman [2005] and Shkolnikov [2009] consider the evolution
of competing particle systems in discrete time and study the distribution of the gaps between the
particles. Balázsa et al. [2014] introduced a continuous time Markov jump model for interacting
particles with a jump rate which depends linearly on the distance of the particle from the center of
mass of the whole group.

In contrast to the models proposed in the literature, we consider a system of discrete time
processes under the assumption that the distribution of each component’s stochastic increments
does not depend on the rank of the component but on its distance to the minimum component.
This feature leads to multivariate time series with short term volatility and long term equilibrium
relationships, while it gives a clear interpretation of the presence of the stabilizing mechanism in the
long run.

The remainder of the paper is organised as follows. In section 2 we introduce our model and
analyse some of its theoretical properties. Section 3 provides a study in which we provide empirical
evidence that a ’minimum reversion’ effect can be found in human mortality data. Finally, we
provide some conclusions and suggestions for further research in Section 4.

2 Minimum Reversion Model

2.1 Specification

Let T = {t0, t0 + 1, ..., t1} for certain t0, t1 ∈ N with t1 > t0 and let {κt}t∈T be a multivariate time
series in RC with components κt,c with c ∈ C = {1, 2, ..., C} for a given C ∈ N \ {0, 1}. We denote

1We consider reversion to the minimum in this paper and only consider biometric variables for which low values are
deemed to be best. One could of course also apply our analysis in cases where there is a drift towards the maximum.
Our choice here is motivated by the particular empirical example we give in the last section, where we consider
multivariate time series for human mortality.
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the minimum value among the different components at time t ∈ T by

mt := min
c∈C

κt,c, (1)

and specify the following model for the dynamics of the components κt,c with c ∈ C:

κt+1,c − κt,c = µc + ζc(κt,c − κt−1,c) + σcZt+1,c + λc(mt − κt,c). (2)

The µc ∈ R, ζc ∈ [0, 1), λc ∈ [0, 1) and σc ∈ R+ are given constants. We define Zt = (Zt,1, . . . , Zt,C)
′

and assume that the {Zt}t∈T are independent and identically distributed C-dimensional random
variables with a multivariate Gaussian distribution. More precisely, we assume that

Zt,c = ρcWt,0 +
√

1− ρ2cWt,c, (3)

for independent standard Gaussian variables {Wt,c}c∈C∪{0},t∈T , which creates a correlation structure
parameterized by the C constants ρc ∈ (−1, 1).

The constant drift µc, the first order autoregression coefficient ζc and Gaussian increment
σcZt+1,c are standard features in time series modelling. Our innovation concerns the λc param-
eters which quantify the ’learning effect’. To discuss the properties of the newly proposed term in
(2) we first consider the model with µc = ζc = 0 and λc > 0. This introduces a downward drift
λc(mt − κt,c) for κc when c is not the component with the lowest current value.

The specification in (2) with µc = ζc = 0 and λc > 0 also creates a downward trend in the
minimum process mt defined in (1). To form some intuition for this result we consider the case
where ρc = 0 for all c, that is, the Zt,c are independent for any fixed t. In that case we have

P(mt+1 ≤ a | κt) = 1−
∏
c∈C

Φ

(
(1− λc)κt,c − a+ λcmt

σc

)
.

Substituting a = mt gives an expression for P(mt+1 ≤ mt | κt) and since κt,c ≥ mt for all c and
κt,c = mt for at least one c, this probability must be strictly greater than 1

2 and smaller than or
equal to 1− 2−C . This establishes that the probability of a downward movement is always greater
than 1

2 and that it is largest when all components attain the same value, that is, κt,c = mt for all
c ∈ C. The probability is increasing with the number of components C.

Individual components are thus not stationary but they turn out to be co-integrated, as the
following result shows.

Proposition 1. If all processes in (2) have a common minimum reversion parameter and a common
drift and there is no autoregressive term, so µc = µ, λc = λ > 0 and ζc = 0 for all c ∈ C, then the
processes {κ·,c}c∈C are co-integrated.

Proof. Fix a c∗ ∈ C and define κ̃t,c := κt,c − κt,c∗ for any c ∈ C. We then find for any c 6= c∗

κ̃t,c = (1− λ)(κt−1,c − κt−1,c∗) + Z̃t

= (1− λ)κ̃t−1,c + Z̃t, Z̃t = σcZt,c − σc∗Zt,c∗ .

Since 0 < λ ≤ 1 we obtain that κ̃t,c is a stationary AR(1) process for all c 6= c∗.
Furthermore, we find that mt = minc∈C(κt,c∗ + κ̃t,c) = κt,c∗ + minc∈C κ̃t,cand therefore

∆κt+1,c∗ := κt+1,c∗ − κt,c∗ = µc∗ + λ(mt − κt,c∗) + σc∗Zt+1,c∗

= λmin
c∈C

κ̃t,c + µc∗ + σc∗Zt+1,c∗ .

The first term in the last expression is a minimum over stationary processes and the other terms are
stationary too, hence ∆κt,c∗ is stationary.
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2.2 A analysis of the two dimensional case

To characterize the dynamics of minimum reversion, and to show that it induces a downward drift
even for the case where the drift parameters µc are taken to be zero, we look at the simplest non-
trivial case in two dimensions (C = 2). This means the dynamics of the time series become:

κt+1,1 − κt,1 = λ1( min
c∈{1,2}

κt,c − κt,1) + σ1Zt+1,1 + µ, (4)

κt+1,2 − κt,2 = λ2( min
c∈{1,2}

κt,c − κt,2) + σ2Zt+1,2 + µ. (5)

We take λ1 = λ2 := λ for the analysis in this section and assume that the correlation between the
i.i.d. Gaussian variables Zt+1,1 and Zt+1,2 equals ρ for all t.

We define2

mt = min
c∈{1,2}

κt,c and Mt = max
c∈{1,2}

κt,c.

Proposition 2. For the model (4)-(5) with λ1 = λ2 := λ we have that

lim
t→∞

E[Mt+1 −Mt] = lim
t→∞

E[mt+1 −mt] = µ − s
√

λ
2π(2−λ) (6)

and
lim
t→∞

E[Mt −mt] = s
√

2
λπ(2−λ) (7)

with s =
√
σ2
1 + σ2

2 − 2ρσ1σ2.

Proof. Let the indices of the minimum and maximum be denoted by it = arg minc∈{1,2} κt,c and
It = arg maxc∈{1,2} κt,c. We first determine the distribution of the minimum and maximum3. Sub-
stituting in (4)-(5) gives, for

Et = Mt + λ(mt −Mt) + σItZ
It
t+1 − (mt + σitZ

it
t+1),

that

mt+1 = mt + σitZ
it
t+1 + µ + Et1Et<0,

Mt+1 = Mt + σItZ
It
t+1 + µ+ λ(mt −Mt) − Et1Et≥0.

We find

E[mt+1|(mt,Mt)] = mt + µ+ (1− λ)(Mt −mt)P(Et < 0)

+E[(σItZ
It
t+1 − σitZ

it
t+1)1Et<0 | (mt,Mt)]

E[Mt+1|(mt,Mt)] = Mt + µ+ λ(mt −Mt)− (1− λ)(Mt −mt)P(Et > 0)

−E[(σItZ
It
t+1 − σitZ

it
t+1)1Et>0 | (mt,Mt)].

The term H := σItZ
It
t+1 − σitZ

it
t+1 is independent of (mt,Mt) and has a Gaussian distribution

with mean zero and variance s2 := σ2
it

+ σ2
It
− 2ρσitσIt = σ2

1 + σ2
2 − 2ρσ1σ2 so E[H1H<a] =

−se−(a/s)2/2/
√

2π for all a ∈ R. We thus find that E[mt+1|(mt,Mt)] equals4

mt + µ+ (1− λ)(Mt −mt)Φ(− (1−λ)(Mt−mt)
s )− se−

1
2 ((1− λ)(Mt −mt)/s)

2
/
√

2π

= mt + µ+ s( D̃tΦ(−D̃t)− e−
1
2 D̃

2
t /
√

2π ) = mt + µ+ s f(D̃t), (8)

2If κt,1 = κt,2 we let mt = κt,1 and Mt = κt,2, but this event has zero probability for all t ∈ T .
3Since the variables are Gaussian this distribution can be obtained directly as well, see Roberts [1966].
4Here and in the sequel we use Φ to denote the cumulative probability function for a standard Gaussian random

variable.

4



if we define the shorthand notation Dt = Mt−mt and D̃t = (1−λ)Dt/s. The function x→ f(x) =
xΦ(−x) − exp(−x2/2)/

√
2π increases monotonically from its minimum f(0) = −1/

√
2π = −0.3989

for x = 0 towards zero for x =∞. Likewise,

E[Mt+1|(mt,Mt)] = Mt + µ+ λ(mt −Mt)− s f(D̃t).

Since Dt+1 = Mt+1 −mt+1 = |(1− λ)Dt + sH̃| for a H̃ with the standard normal distribution, we
must have that D̃t+1 = |(1− λ)2Dt/s+ (1− λ)sH̃/s| = (1− λ) |D̃t + H̃|.

Let V (x) = |x|+ 1, and define ∆V (x) = E[V (D̃t+1)− V (D̃t) | D̃t = x], then we have for β = λ
and b = (1 − λ)E |H| that ∆V (x) ≤ −βV (x) + b which shows that the process D̃ satisfies the
geometric ergodicity conditions in Theorem 15.0.1 of Meyn et al. [2009] on the domain R+. This
proves that for any choice of D̃0 ≥ 0 the distribution function Gt of D̃t converges to a stationary
distribution G. This implies that for x ≥ 0 the function G should satisfy

G(x) = P(D̃t ≤ x) = P((1− λ) |D̃t + H̃| ≤ x) =

∫ ∞
0

[N( x
1−λ − y)−N(− x

1−λ − y)]dG(y).

The solution to this equation is G(x) = 1x≥0
∫ x
0

2 exp(− 1
2 (u/σ̃)2)/(σ̃

√
2π)du with the parameter

σ̃ = (1 − λ)/
√
λ(2− λ), i.e. the stationary distribution of D̃ is the distribution of |X| if X ∼

N(0, σ̃2). The stationary distribution of Mt −mt = Dt = sD̃t/(1− λ) is therefore the distribution
of s|X|/(1− λ), which gives (7).

Due to (8), the expected change in mt under the stationary distribution for D̃t equals µ plus
the effect of the reversion to the minimum. This effect was shown above to be sE[f(D̃t)] =
s
∫∞
0
f(x)dG(x) = s(σ̃−

√
1 + σ̃2)/

√
2π which gives the second equality in (6) after some rewriting.

The first one follows from the fact that D̃ converges to a stationary distribution.

If we choose certain parameter values, the asymptotic drifts in proposition 2 can also be estimated
by Monte Carlo simulations. We generated 105 paths to approximate the stationary distributions
and used these to estimate the limit of the expectation of the extra drift (Table 1) and the limit of
the expectation of the difference between the minimum and maximum (Table 2) for s = 1, µ = 0
and in the absence of correlation between the increments for the two time series. Simulations also
allow us to estimate the extra drift generated by the minimum reversion term in more than two
dimensions, i.e. for |C| > 2 and we show some examples Tables 1 and 2. As expected, we find that
both the drift generated by the minimum reversion and the difference between the minimum and
maximum increases with the population size C. The former increases and the latter decreases when
the strength of the reversion to the minimum, which is determined by the parameter λ, increases.

3 Evidence for a Learning Effect in Mortality Rates

In this section we use the time series model in (2) to model mortality rates in several countries.
The implicit assumption is that a population with the high mortality rate ”copies” the behaviour
of individuals in the population with low mortality. Such a model is consistent with the spread of
medical advances and changes in behaviour like a reduction in smoking prevalence.

3.1 Modelling Mortality - The Common Age Effect Model

To obtain the time series, we first fit a stochastic mortality model to observed death counts. We
assume that the number of deaths, Dxtc, in population c ∈ C at age x ∈ X in calendar year t ∈ T is

5



Table 1: Generated drift for different minimum reversion parameters λ according to (6) (second
column) and using 105 simulations (third to last column).

Exact Simulation
λ |C| = 2 |C| = 2 |C| = 3 |C| = 4 |C| = 8 |C| = 16 |C| = 32

0.0125 -0.0447 -0.0448 -0.0671 -0.0817 -0.1129 -0.1401 -0.1641
0.025 -0.0635 -0.0635 -0.0952 -0.1158 -0.1602 -0.1987 -0.2329
0.05 -0.0903 -0.0903 -0.1355 -0.1649 -0.2280 -0.2828 -0.3314
0.1 -0.1294 -0.1294 -0.1942 -0.2362 -0.3266 -0.4052 -0.4748
0.2 -0.1881 -0.1881 -0.2821 -0.3432 -0.4745 -0.5887 -0.6899
0.4 -0.2821 -0.2821 -0.4231 -0.5147 -0.7118 -0.8830 -1.0348

Table 2: Expectation of the stationary distribution for Mt − mt for different minimum reversion
parameters λ according to (7) (second column) and using 105 simulations (third to last column).

Exact Simulation
λ |C| = 2 |C| = 2 |C| = 3 |C| = 4 |C| = 8 |C| = 16 |C| = 32

0.0125 7.1589 7.1593 10.7386 13.0627 18.0644 22.4106 26.2618
0.025 5.0781 5.0774 7.6185 9.2656 12.8138 15.8962 18.6282
0.05 3.6137 3.6132 5.4202 6.5931 9.1178 11.3112 13.2565
0.1 2.5887 2.5886 3.8831 4.7229 6.5316 8.1031 9.4965
0.2 1.8806 1.8806 2.8209 3.4313 4.7454 5.8866 6.8988
0.4 1.4105 1.4104 2.1156 2.5735 3.5591 4.415 5.1742

a random variable with a Poisson distribution, that is,

Dxtc ∼ Pois (µxtcExtc) (9)

where µxtc is the hazard rate (also known as the ”force of mortality” in the literature) and Extc
refers to the central exposure to risk.

We then use a stochastic model for the force of mortality µxtc that incorporates the population-
specific time series {κt}t∈T defined in (2). As we are modelling the mortality in multiple populations
simultaneously and wish to make our model suitable for a wide age range, we use a modification of
the Lee-Carter model (Lee and Carter [1992]) with common age effects, as suggested by Kleinow
[2015]:

logµxtc = αx + βxκt,c (10)

where the age effects αx and βx do not depend on the population c. Having age effects that are
common to all populations ensures that the individual components κt,c (known as ”period effects”)
are comparable across populations as they are rescaled by a common vector β and shifted by a
common vector α. The parameters in (10) are not identifiable since

αx + βxκt,c = α̃x + β̃xκ̃t,c when α̃x = αx − K1

K2
βx, β̃x = βx

K2
, κ̃t,c = K1 +K2 κt,c.

for any real numbers K1 and K2 6= 0. To identify a unique set of parameters, we impose the following
constraints on the parameter vectors α and β:

αxr
= 0 and βxr

= 1

6
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Figure 1: Estimated values of αx (left) and βx (right) for the mortality rates of females based on
data for the period 1921–2011. We can clearly see the phenomenon known as ”age heaping”: when
people report the death of a person without knowing their exact age, they often report the age to
be a multiple of 10.

for a fixed reference age xr ∈ X . Applying those two constraints means that logµxtc = κt,c for
x = xr in every population c ∈ C. In other words, we can interpret the period effect κt,c as the fitted
log mortality rate at the reference age xr in population c. For our empirical analysis we choose the
reference age xr = 70.

We estimate the age effects α and β and the period effects κ using the maximum likelihood
method based on the Poisson model in (9) for observed deaths counts Dxtc and exposure values
Extc.

3.2 Data

The empirical death counts and exposure data have been obtained from the Human Mortality
Database (HMD), see HMD [2018]. We consider data for ages X = {0, 1, . . . , 95} and for two ranges
of calendar years: T = {1951, . . . , 2011} or T = {1921, . . . , 2011}. Table 3 shows a list of countries
included in our study together with the HMD country codes. As indicated in the table, there are
some countries for which data from 1921 are not available and those countries have been excluded
from our empirical study for that range or years.

3.3 Empirical Results

Figure 1 shows the estimated values of the age effects αx and βx obtained from data for females
based on the observation period 1921–2011. The age effects for the other data sets are not shown
since they all have a very similar shape. To illustrate our data and the effect of the minimum
reversion effect, Figure 2 shows the estimated values of κt,c for females for the years 1921–2011 in
the dataset, together with two projected scenarios based on the model in (2). On the lefthand side
the projection includes the minimum reversion effect based on the estimated parameter λ and on
the righthand side we set λ = 0.

7



Table 3: List of countries included in our study. For all countries mortality data for males and
females are considered for calendar years 1951–2011. The table also indicates which countries are
included in our study for the longer observation period 1921–2011. Note that for France and England
& Wales the total populations are considered rather than the civilian population.

Country HMD Code 1921–2011 Country HMD Code 1921–2011

The Netherlands NLD X Sweden SWE X
Denmark DNK X Belgium BEL X
Finland FIN X England & Wales GBRTENW X
France FRATNP X Switzerland CHE X
Australia AUS X Italy ITA X
Austria AUT Ireland IRL
Norway NOR X Japan JAP
Canada CAN X New Zealand NZL NP
Portugal PRT Spain ESP X
USA USA Iceland ISL X

To investigate the significance of the learning effect, we compare the Bayesian Information Cri-
terion (BIC) for models without minimum reversion (λ = 0) with the more general model in (2). If
K denotes the number of parameters and n = |C||T | is the total number of observations across all
populations and all years, the BIC value equals K log n− 2 logL, where L is the maximum value of
the likelihood function L for the model in (2). This means

2 logL = −n log |Σ| −
t1∑

t=t0+2

(∆κt − ηt−1)
′
Σ−1 (∆κt − ηt−1) + Γ,

where Γ is a constant which does not depend on the parameters that must be estimated, ∆κt and
ηt are vectors with components

∆κt,c = κt,c − κt−1,c and ηt,c = µc + ζc∆κt,c + λc(mt − κt,c),

and Σ is the covariance matrix of ∆κt so Σij = σiσjρiρj for i 6= j and Σii = σ2
i .

We determined the BIC values for different specifications in which parameter values may or may
not be constrained to be the same for all different groups in C. Based on this analysis, the parameters
σc and ρc are taken population-specific while the parameters µc = µ, λc = λ and ζc = ζ are common
to all populations. The obtained BIC values and parameter estimates5 are shown in Table 4 for four
data sets.

We notice that the BIC values always improve when λ is not restricted to be zero which shows
that the learning effect adds to the goodness of fit of the model. We also observe that the estimated
drift parameter µ̂ is reduced when minimum reversion is included in the model, from which we
conclude that some of the mortality improvements in the populations are driven by learning effects
from others who have lower mortality rates.

5We do not show the values ρc and σc for every group c in C but only report ρ̄, the average of ρc over all groups
c, and σ̄, which is defined by the requirement that σ̄2 is the average of σ2

c over all groups c. Estimated parameter
values for all countries, genders and data periods are available upon request.
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Table 4: Goodness of fit and parameter values of the model in (2) without and with minimum
reversion, estimated for different data sets.

Model logL K BIC µ̂ λ̂ ζ̂ σ̄ ρ̄
Females in calendar years 1921–2011
λ = 0 3886.16 30 -7558.49 -0.0224 -0.2998 0.0338 0.4996
λ 6= 0 3890.61 31 -7560.27 -0.0194 0.0191 -0.2895 0.0336 0.4977
Males in calendar years 1921–2011
λ = 0 4151.49 30 -8089.15 -0.0150 -0.1890 0.0297 0.5207
λ 6= 0 4155.65 31 -8090.35 -0.0131 0.0185 -0.1804 0.0295 0.5224
Females in calendar years 1951–2011
λ = 0 3854.23 42 -7411.38 -0.0210 -0.3414 0.0288 0.4717
λ 6= 0 3861.62 43 -7419.08 -0.0161 0.0177 -0.3394 0.0285 0.4641
Males in calendar years 1951–2011
λ = 0 4100.51 42 -7903.94 -0.0246 -0.3320 0.0252 0.5845
λ 6= 0 4105.98 43 -7907.81 -0.0192 0.0167 -0.3219 0.0250 0.5832

4 Conclusions and Further Research

We have shown that model specifications that include a minimum reversion term resulted in better
BIC values than specifications without such a term when they were fitted to several datasets from
the human mortality database. Visual inspection of the projections generated by the time series
with minimum reversion in 2 also shows a clear improvement. This testifies to the usefulness of the
incorporation of a ”learning effect” in the time series.

Several extensions of the proposed model are possible. In particular, the minimum in (2) could be
replaced by other rank statistics. Another possible direction of research is the study of a continuous
time version of minimum reversion, where the drift term of a diffusion process in multiple dimensions
is a function of the distance of the process to the minimum of its components. The properties of
these processes could then be compared to the rank-based diffusion processes for particle systems
mentioned in the Introduction of this paper.
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425–454, 2014.

A. D. Banner, R. Fernholz, and I. Karatzas. Atlas Model of Equity Markets. The Annals of Applied
Probability, 15(4):2296–2330, 2005.

R. F. Engle and C. W. J. Granger. Co-integration and error correction: Representation, estimation,
and testing. Econometrica, 55(2):251–276, 1987. ISSN 00129682, 14680262. URL http://www.

jstor.org/stable/1913236.

E. R. Fernholz. Stochastic Portfolio Theory. Springer, 2002.

HMD. Human Mortality Database: University of California, Berkeley (USA), and Max

9

http://www.jstor.org/stable/1913236
http://www.jstor.org/stable/1913236


Planck Institute for Demographic Research (Germany). Available at www.mortality.org or
www.humanmortality.de (data downloaded on 30 April 2018), 2018.
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Figure 2: Estimated values of κt,c for the mortality rates of females based on data for the period
1921–2011. The simulated scenarios are based on the full model in (2) (left) and the nested model
with λ = 0 (right).

11


	1 Introduction
	2 Minimum Reversion Model
	2.1 Specification 
	2.2 A analysis of the two dimensional case

	3 Evidence for a Learning Effect in Mortality Rates
	3.1 Modelling Mortality - The Common Age Effect Model
	3.2 Data
	3.3 Empirical Results

	4 Conclusions and Further Research

