Modelling the Liquidity Premium on Corporate Bonds

Paul van Loon (*), Andrew J.G. Cairns, Alex McNeil

Heriot-Watt University

& The Actuarial Research Centre (ARC) (**)

Alex Veys

Partnership

Acknowledgements: (*) PhD funding from Partnership and the ARC. (**) The ARC is funded by the

Institute & Faculty of Actuaries and by industry co-sponsors including Partnership.

Plan

- The problem
- Stylised decomposition of bond prices and spreads
- Modelling the Bid-Ask Spread
- Modelling the Credit Spread
- Discussion

The problem

- How to decompose the credit spread on a corporate bond?
 - Expected default and rerating losses
 - Risk premium for default/rerating risk
 - Illiquidity premium
 - Other factors
- Hold to maturity versus sell before maturity
- Impact on liability valuation

Equivalent Bond Yields

Corporate Bond Yields (Stylised!)

Illiquidity Premium (LQP)

Corporate Bond Yields (Stylised!)

Data

Markit: GBP investment grade corporate bonds

- ullet Daily from 2003 to 2013 ($\approx 2500 \times 1000 \times 50 = 125$ million items)
- Contractual data:
 - e.g. coupon rate, maturity, issuer, seniority etc.
- Unpredictable, time dependent data
 - Bid and Ask prices (quotes not transactions!)
 - Credit rating
 - Credit spread
 - etc.

Modelling Summary

Stage 1:

- Model the Bid-Ask spread as a function of various inputs
- Output: Relative Bid-Ask Spread for each bond (RBAS)

Stage 2:

Model the Credit-Spread as a function of various inputs

Stage 3:

- Estimate the price of each bond as if it was perfectly liquid
- Difference in yield = illiquidity premium

$$BAS(i,r,t) \ = \ (\text{Ask Price} - \text{Bid Price}) / \text{Bid Price}$$

$$I_X(i,t) \ = \ \text{characteristic X indicator: 0 or 1}$$

$$\log BAS(i,r,t) \ = \ c(r,t)$$

$$+ \beta_{1,F}(r,t) \times \log \text{duration}(i,t) \times I_{Fin}(i)$$

$$+ \beta_{1,NF}(r,t) \times \log \text{duration}(i,t) \times I_{NF}(i)$$

$$+ \beta_2(r,t) \times \log \text{notional}(i,t)$$

$$+ \sum_k \beta_k(r,t) \times I_k(i,t)$$

$$+ \log RBAS(i,t) \quad \text{(residual)}.$$

Indicators: Financials; Sovereign; Senior; Collateralised; Bond age ...

x-axis: e.g. "2008" means 1 January 2008

e.g. $RBAS=2\Rightarrow BAS$ is $2\times$ the predicted BAS $RBAS=0\Rightarrow BAS=0$; perfectly liquid

RBAS uncorrelated with inputs

Credit Spreads

$$\begin{split} \log CS(i,r,t) &= d(r,t) \\ &+ \gamma_1(r,t) \times \log \operatorname{duration}(i,t) \\ &+ \gamma_2(r,t) \times \operatorname{RBAS}(i,t) \\ &+ \gamma_3(r,t) \times I \ (\operatorname{bond age}(i,t) < 1) \\ &+ \gamma_4(r,t) \times \operatorname{coupon}(i,t) \\ &+ \sum_k \gamma_k(r,t) \times I_k(i,t) \\ &+ \epsilon(i,t) \qquad \text{(residual)}. \end{split}$$

Indicators: Financials; Senior; Collateralised;...

Observations

- Method applies to all quoted bonds on individual basis
- Objectivity: Method requires no subjective inputs
- Parameter estimates are robust
- Parameter dynamics consistent with market events
- Illiquidity premium (LQP) as a percentage of credit spread
 - Varies considerably: between bonds; over time; rating
 - e.g. A-rated bonds during 2011:
 - Median $LQP \approx 40\%$; 10% quantile $\approx 32\%$; 90% $\approx 55\%$
 - More generally: LQP ranges from 20% to >70%
 - Exception: much lower just before Northern Rock collapse

Discussion: Holding Time

Discussion and Future Work

- Markit data: quotes, not actual transactions
- Ongoing work:

Compare *hold-to-maturity* with *sell-on-BB-downgrade*:

How much of the Illiquidity premium do we sacrifice?