

Population Structure: Impact on Asset Values

Stephen Bonnar, Lori Curtis, Kate Rybzynski, Mark Zhou - uWaterloo Miguel Leon-Ledesma, Jaideep Oberoi -University of Kent

Motivation

- Baby boomers entering retirement
 - concerns about diminished returns, compromised pensions
- Higher old-age dependency ratio may lead to
 - less saving (dissaving) and investment
 - shift of individuals' asset allocations toward low risk / low return assets
 - reduced labour force growth
- All with implications for asset returns and retirement outcomes

Model Framework

- Overlapping Generations Model (OLG) with
 - aggregate uncertainty
 - two asset classes (risky and risk-free)
 - multi-pillar pension systems (savings, pay-go, earnings based)
 - endogenous labour supply
- Generates standard age-specific labour, consumption, asset holdings, and portfolio allocation qualitatively consistent with the data
- Older population ———— moderately lower asset returns

Demographics

- Overlapping generations, $j \in \{1, 2, \dots 20\}$, ages 18 97
- Five life stages: YW, MW, W, SR, R
- Intra-cohort heterogeneity, $i \in \{1,2\}$, baseline i = 1
- Fertility rate: n
- Survival probability: $\phi_j^i \in [0,1), \phi_J^i = 0$

$$\begin{split} N_{j,t}^{\ \ i} &= (1+n) \mathbf{X}^i N_{0,t-1}, & \text{if } j = 1 \\ N_{j,t}^{\ \ i} &= \phi_{j-1}^i \mathbf{X}^i N_{j-1,t-1}, & \text{if } 1 < j \leq J \end{split}$$

Household Time Endowment

$$H_j = H(1 - FC_j - FE_j), \qquad j \in \{YW, MW\},$$

 $H_j = H, \qquad j \in \{W, SR, R\}.$

- Fixed constant H units of time
- Education (FE) and child rearing (FC)
- SR can work maximum of $\iota_p H$

Household Preferences

• Periodic utility from Consumption and Leisure

$$u^{i}(c,h) = \frac{c^{1-\gamma_{c}}}{1-\gamma_{c}} + \Psi \frac{(H_{j}-h)^{1-\gamma_{h}}}{1-\gamma_{h}}$$

- Coefficient of relative risk aversion: γ_c
- Parameter that regulates the Frisch elasticity of labour supply: γ_h
- Utility weight of leisure relative to consumption: Ψ

Assets

• Total asset holdings: $\boldsymbol{ heta}^i_{j,t}$

Risk Free Bonds

- Return in period t+1: $\overline{r_t}$
- Share of total assets in risk free: $\eta^i_{i,t}$
- Zero net supply: $\sum_{j} \sum_{i} \eta_{j,t}^{i} \theta_{j,t}^{i} N_{j,t}^{i} = 0$

Risky Capital

- Return in period t+1: r_{t+1}
- Share of total assets: $1 \eta_{i,t}^{i}$
- Total capital: $K_t = \sum_j \sum_i (1 \eta_{j,t}^i) \theta_{j,t-1}^i N_{j,t-1}^i$

Production

•
$$Y_t = z_t K_t^{\alpha} H_t^{1-\alpha}$$
 and $K_{t+1} = (1-\delta)K_t + q_t I_t$

 $\ln(z_t) = \rho \ln(z_{t-1}) + V_t \text{ where } V_t \sim N(0, \sigma_z^2)$ $\ln(q_t) = \rho_q \ln(q_{t-1}) + V_{q,t} \text{ where } V_{q,t} \sim N(0, \sigma_q^2)$ $corr(\sigma_q^2, \sigma_z^2) = 0$

- Aggregate efficient labour is: $H_t = \sum_i \sum_i \epsilon_i^i h_{i,t}^i N_{i,t}^i$
- Baseline: $\epsilon_j^i = 1$ \longrightarrow no age or type-specific labour productivity

Pay-as-you-go Pension

• Pay-as-you-go proportional pension scheme

$$p_{j,t} = 0, \qquad \text{if} \qquad j \in \{YW, MW, W\},$$
$$p_{j,t} = \frac{\tau_s w_t H_t}{\sum_{j \in \{SR, R\}} \sum_i N_{j,t}^i} \qquad \text{if} \qquad j \in \{SR, R\}.$$

• Fixed tax, τ_s , on labour income uniformly distributed to retirees

Partially Funded Pension

• Partially funded, employment earnings based pension

$$p_{j,t}^{G} = 0, \qquad \text{if} \qquad j \in \{YW, MW, W\},$$

$$p_{j,t}^{G} = \kappa_{j} \left(\frac{w_{ss} \Sigma_{i} \epsilon_{SR-1}^{i} h_{SR-1,SS}^{i} N_{SR-1,SS}^{i}}{\Sigma_{i} N_{SR-1,SS}^{i}} \right) \qquad \text{if} \qquad j \in \{SR, R\}.$$

• Government taxes working cohorts at rate, τ_s^G , and pays out a fraction, κ_j , of pre-retirement income

Government Budget

• In the two pillar model:

$$\Sigma_{j=SR}^{W} p_{j}^{G} N_{j,t}^{i} = [\eta_{G} (1 + (1 - \tau_{r})\overline{r_{t-1}}) + (1 - \eta_{G})(1 + (1 - \tau_{r})r_{t})]\theta_{G}$$
$$+ \tau_{s}^{G} w_{t} H_{t} + B_{t}^{G}$$

In the three pillar model:

$$\Sigma_{j}\Sigma_{i}\eta_{j,t}^{i}\theta_{j,t}^{i}N_{j,t}^{i} + \eta_{G}\theta_{G} = B_{t}^{G}$$
$$K_{t} = \Sigma_{j}\Sigma_{i}(1-\eta_{j,t}^{i})\theta_{j,t-1}^{i}N_{j,t-1}^{i} + (1-\eta_{G})\theta_{G}$$

• Government holds a pool of assets, θ_G , with proportion, η_G , in risk-free bonds, and issues bonds, B_t^G , to balance the budget.

Taxes and Bequests

- Taxes
 - Consumption tax: τ_c
 - Labour income tax: τ_h
 - Investment income tax: τ_r •
 - Tax on pension income: τ_p
 - Tax for pay-go pension and social security: au_{c} and au_{c}^{G}
- Bequests

 - Base model has accidental bequests only Bequest motive utility from leaving bequest $v(X) = \Gamma \frac{X^{1-\gamma_b}}{1-\gamma_b}$ •

Household Decision

•
$$V_{j}^{i}(s_{t};z_{t}) = \max\left[c_{j,t}^{i},h_{j,t}^{i},\theta_{j,t}^{i},\eta_{j,t}^{i}\right]\left\{u^{i}(c_{j,t}^{i},h_{j,t}^{i}) + \beta\phi_{j}^{i}E_{t}\left[V_{j+1}^{i}(s_{t+1};z_{t+1})\right]\right\}$$

subject to
 $(1 + \tau_{c})c_{j,t}^{i} + \theta_{j,t}^{i} \leq \left\{(1 - \tau_{s} - \tau_{s}^{G} - \tau_{h})w_{t}\epsilon_{j}^{i}h_{j,t}^{i} + x_{j,t}^{i} + (1 - \tau_{p})(p_{j,t} + p_{j}^{G}) + \xi_{t} - HC\right\}$
where
 $h_{j,t}^{i} \leq H_{j}^{c} = H_{j}$ if $j \in \{YW, MW, W\}$
 $= \iota_{p}H_{j}$ if $j \in \{SR\}$
 $= 0$ if $j \in \{R\}$
 $HC_{j} = 0$ if $j \in \{YW, MW, W\}$
 $HC_{j} = 0.2 \exp\left(\frac{4(j-12)}{J-12} - 4\right)$ $j \in \{SR, R\}$

Household Decision - Oldest Generation

•
$$V_J^i(s_t; z_t) = \max \left[c_{j,t}^i, \theta_{j,t}^i, \eta_{j,t}^i \right] \left\{ u^i(c_{J,t}^i, 0) + \beta E_t \left[v^i(X_{J+1,t+1}^i) \right] \right\}$$

where

$$X_{J+1,t+1}^{i} = \left[\eta_{J,t}^{i}(1+(1-\tau_{r})\overline{r_{t}}) + (1-\eta_{J,t}^{i})(1+(1-\tau_{r})r_{t+1})\right]\theta_{J,t}^{i}$$

and

$$v(X) = \Gamma \frac{X^{1-\gamma_b}}{1-\gamma_b}$$

Firm Decision

• Firm maximizes profits, resulting in:

$$r_t = \alpha z_t K_t^{\alpha - 1} H_t^{1 - \alpha} - \delta$$
$$w_t = (1 - \alpha) z_t K_t^{\alpha} H_t^{-\alpha}$$

where $\delta \in [0,1]$

Recursive Competitive Equilibrium

- Value functions
- Household policy functions for consumption, labour supply, total saving, and share of savings invested in risk-free bonds
- Inputs (capital and hours of labour) for the representative firm
- Government policy for pensions and bond issuance
- Rates of return for risk-free bonds and risk capital, and wages

Such that in each period, the:

- household problems are solved,
- the competitive firm maximizes profits, and
- all markets clear.

Lifecycle Consumption, Labour, Assets

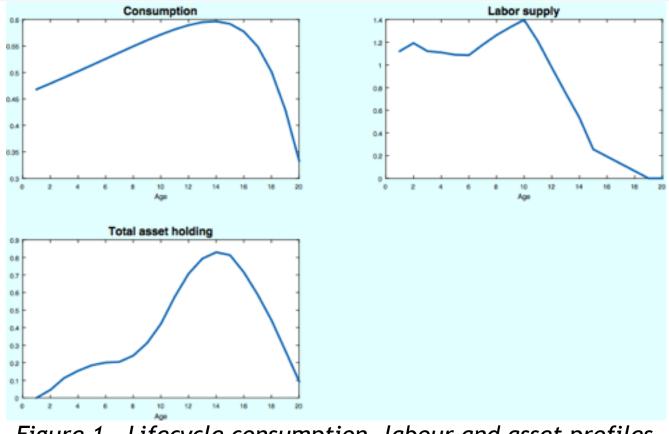


Figure 1 - Lifecycle consumption, labour and asset profiles

Observed Age-Specific Portfolio Allocation

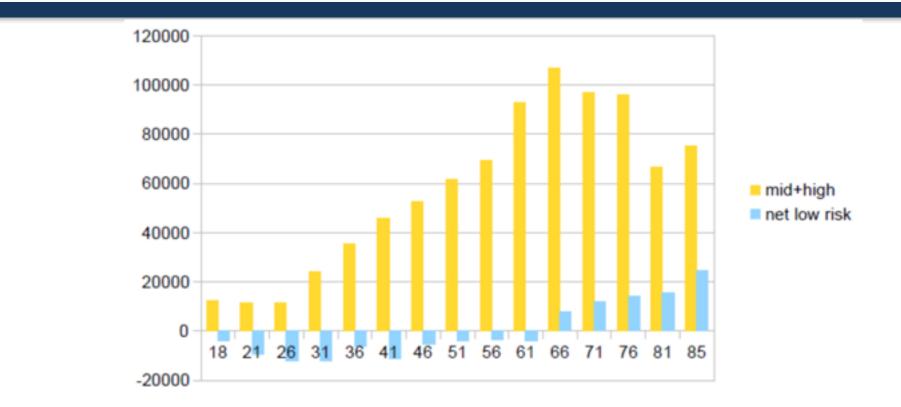


Figure 2 - Portfolio allocation by age: risky vs net low-risk financial assets

Portfolio Allocation – 2 Pillar Pension Model

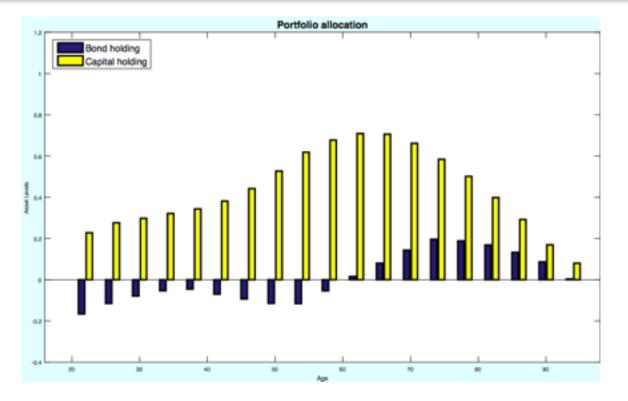


Figure 3 - Portfolio allocation in 2 pillar model

Portfolio Allocation 3 Pillar Pension Model – Baseline

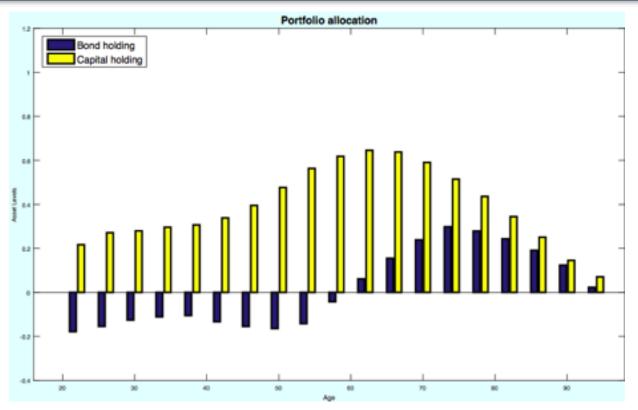


Figure 4 - Portfolio allocation in 3 pillar model

3-Pillar Model Results under Alternative Demographic Structures

Variable	Base-3 Pillar	+10%	+20%	-10%	-20%
$E_t(r_{t+1})$	0.2855	0.2788	0.2735	0.2919	0.2965
$\overline{r_t}$	0.2851	0.2784	0.2730	0.2915	0.2961
Priv. risky assets / GDP	0.5223	0.5233	0.5362	0.5214	0.5206
<i>C</i> _{20,<i>t</i>}	0.3327	0.3771	0.4183	0.2984	0.2512

Portfolio Allocation 3 Pillar + Health Costs + Bequests

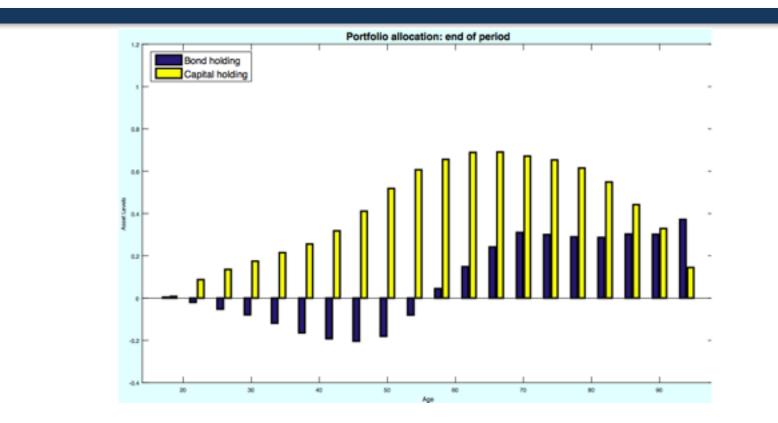


Figure 5 - Portfolio allocation 3 pillar + health costs + bequests

Discussion and Next Steps

- Asset prices are moderately lower with older population: Higher survival probability for age 65+ (max 20% at j=J)
 approximately 4% lower returns on capital and on bonds
- Higher replacement ratio lower asset accumulation

Next Steps:

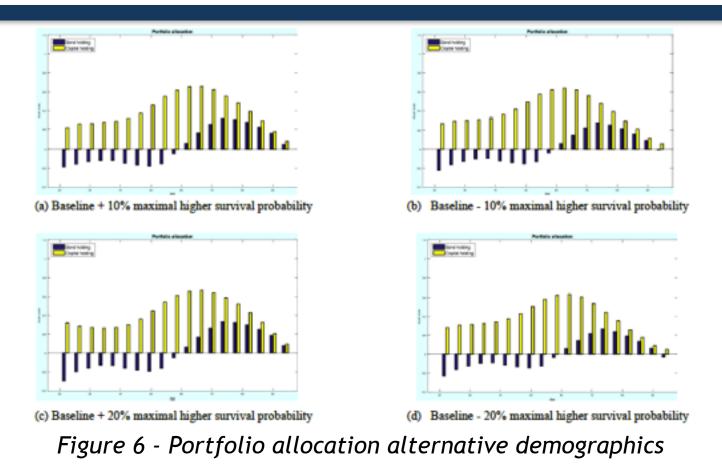
- Improve portfolio allocation match
 - consumption saturation
 - intra-cohort heterogeneity
- Explore further intra-cohort heterogeneity models

Appendix

Parameterization

Parameter	Value	Description	
н	4	Time available to household (one period represents 4 yrs)	
β	0.8515	Discount factor (0.95 annual)	
α	0.3	Capital's share of production	
ρz	0.4401	Autocorrelation coefficient for TFP	
σz	0.0305	Std. Deviation of error for TFP process	
ρq	0.4401	Autocorrelation coefficient for IST	
σq	0.1221	Std. Deviation of error for IST process	
δ	0.192	Depreciation Rate	
n	0.0489	Population Growth rate	
γc	2.0	Relative risk aversion – consumption	
Уъ	2.0	Relative risk aversion - bequest	
γι	3.0	Inverse of intertemporal elasticity of substitution of non-market time	
Ψ	21.833	Utility weight of non-market time relative to consumption	
τ_c, τ_r, τ_p	0.123, 0.167, 0.167	Tax rates on consumption, investment income, pension,	
$\tau_h + \tau_s + \tau_s^G$	0.167	Tax on labour income	
ratios	1.0	Proportion of labour tax to social security	
tp	0.08	Labour constraint for SR	

Portfolio Allocation under Alternative Demographic Structures



THANK YOU FOR YOUR ATTENTION!