

Probability and Regression in Python and R

Steven Rimmer Programming for Actuarial Work Working Party

R input

RGui (64-bit) - [R Console] -		🗐 intro_slide.R - Notepad — 🗆 🗙
🙀 File Edit View Misc Packages Windows Help	- 8 ×	File Edit Format View Help
2 1 . b c c		a <- 3^2
<pre>R version 3.5.1 (2018-07-02) "Feather Spray" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > 1+2 [1] 3 > rnorm(10,0,1) [1] 0.17379525 -1.75712294 -1.12552527 0.03907947 0.04217234 [6] -0.07170750 0.53504154 0.30017181 -1.11476397 0.65511269 > setwd("C:\\Users\\srimmer") > source("intro_slide.R")</pre>		 R syntax can by read directly at the command-line interface, or from a separate text file, using source More sophisticated integrated development environments (IDEs) are also available, such as RStudio. https://www.rstudio.com/
https://www.r.proje	et erg/	
nttps://www.r-proje	cloig/	and Faculty
N	2.	

```
white init
                <- 10
black init
                <- 15
ndraws
                <- 5
range
                <- 0:ndraws
                <- 1e6
ns
tot white
                <- array(dim=c(ns))
for (s in 1:ns) \{
        white = white init
        black = black init
        for (d in 1:ndraws) {
                if (runif(1, 0, 1) < white/(white+black)) {</pre>
                    white = white - 1
                        } else {
                    black = black - 1
        tot_white[s] = white_init-white
```

- Simulate drawing black and white balls without replacement
- Allocate specific numbers to parameters (<-)
- Initialize an array with a specific dimension (dim)
- Repeat a calculation over an index (for)
- Perform a chunk of code when a condition is met (if...else)

library(tibble) simulation <- tibble(sim = 1:ns, count_drawn = tot_white)

- Call a library which helps store information in a table (tibble)
- Define a column which labels each simulation (1:ns)
- Define a column which stores the output from each simulation (tot white)

> simulation									
# A t:	ibble:	1,000,0	x 000	2					
sim count_drawn									
<i1< td=""><td>nt></td><td><db.< td=""><td>1></td><td></td></db.<></td></i1<>	nt>	<db.< td=""><td>1></td><td></td></db.<>	1>						
1	1		1						
2	2		2						
3	3		3						
4	4		1						
5	5		2						
6	6		3						
7	7		1						
8	8		3						
9	9		2						
10	10		1						
#	with	999,990	more	rows					

library(ggplot2) plot <- ggplot()+ geom_bar(data=simulation,aes(x=count_drawn))

- Call a library which supports data visualization (ggplot2)
- Make a bar chart (geom_bar), plotting the count of white balls drawn on the horizontal axis (aes (x=...))

• To the original plot, add points (geom_point), plotting the theoretical result taken from the in-built hypergeometric distribution (dhyper)

- - -

	white_init	<- 100
	black_init	<- 150
	ndraws	<- 50
	range	<- 0:ndraws
	ns	<- 1e6
	tot_white	<- array(dim=c(ns))
#		

• Re-run with different parameters

#be be	ta0 < ta1 <	10 - 0.5
si	gma <	- 8
n	<	- 15
#		
x	<	- sort(runif(n, min=0, 100))
e	<	- rnorm(n, mean = 0, sd = sigma)
У	<	- beta0 + beta1*x + e
#		

- Define a linear model: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ where: $\epsilon_i \sim N(0, \sigma^2)$
- Generate n values from the uniform distribution (runif), order then from low to high (sort) and store (<-) them as x
- Generate n values from the normal distribution (rnorm) with zero mean and standard deviation, σ , then store them as e
- Generate **y** based on the defined model

- Gather the n pairs of x and y into a table (tibble), called data_points adding a new variable (sim) to label this as the first simulation.
- Plot the data (ggplot) as a scatterplot (geom_point) showing x on the horizontal axis and y on the vertical axis.
- The tibble and ggplot packages are part of a collection called the tidyverse, which is called into the before use.

> di	ata po	ints		
# A	tibbl	.e: 15	x 3	
	sim	x	У	
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
1	1	9.96	-8.72	
2	1	12.8	-17.8	
3	1	13.7	-1.38	
4	1	19.5	1.07	
5	1	20.6	-14.3	
6	1	25.4	-8.19	
7	1	27.7	10.6	
8	1	29.5	1.79	
9	1	33.8	5.05	
10	1	37.5	11.7	
11	1	39.6	26.7	
12	1	46.3	6.86	
13	1	67.3	25.9	
14	1	95.4	34.3	
15	1	97.6	48.4	

- Fit a linear model (lm) with x as a linear covariate for the response y and store the results in an object called fit
- Add a column labelled fitted to data_points, which stores the resulting values from the linear fit (fit\$fitted.values)
- Plot the fitted values as a line (geom_line) showing x on the horizontal axis and fitted on the vertical axis.

> data points # A tibble: 15 x 4 <db1> <db1> -9.20 -8.721 12.8 -17.8-7.481 13.7 -1.38-6.941 19.5 1.07 -3.421 20.6 -14.3-2.701 25.4 -8.190.191 1 27.7 10.6 1.58 1 29.5 1.79 2.67 9 1 33.8 5.05 5.32 10 1 37.5 11.7 7.59 11 1 39.6 26.7 8.86 12 1 46.3 6.86 12.9 13 1 67.3 25.9 25.7 14 1 95.4 34.3 42.8 15 1 97.6 48.4 44.1

Properties of **fit** object

- The results of fitting the linear model were stored in an object called fit
- This object has a number of attributes which are referenced via the \$ symbol
- On the previous slide the fitted values were added to data_points using the fit\$fitted.values attribute
- Using the fit\$coefficients attribute, the estimated intercept and slope can be referenced.
- The fit\$residuals attribute provides the difference between the actual and fitted result.

> fit

```
Call:
lm(formula = v \sim x)
Coefficients:
(Intercept)
                         х
   -15.2578
                   0.6085
> attributes(fit)
$`names
 [1] "coefficients"
                       "residuals"
     "fitted.values"
                      "assign'
                                         "ar"
 [9] "xlevels"
                       "call"
Sclass
[1] "lm"
```

```
> fit$coefficients
(Intercept)
```

```
-15.2578233 0.6084606
```


"rank" "df.residual" "model"

Output from summary(fit)

- 1. Reports the model which was used
- 2. Reports the estimated intercept and coefficient of each covariate (the slope)
- 3. The estimated standard error around that estimate
- 4. The t-value
- 5. The corresponding p-value
- 6. Significant factors highlighted using '***'
- 7. The residual standard error
- 8. R-squared
- 9. The F-statistic

> summary(fit)

```
(1) Call:
    lm(formula = y ~ x)
```

```
Residuals:
        Min
                       Median
                                             Max
   -11.5772 -7.2249
                       0.2478
                                4.3755
                                        17.8711
                   (2)
                             (3)
                                                (5)
                                      (4)
   Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
   (Intercept) -15.25782
                            3.77101 -4.046 0.00139 ** (6)
                 0.60846
                            0.08044
   х
                  0 ****' 0.001 ***' 0.01 **' 0.05 *.' 0.1 * ' 1
   Signif, codes:
(7
   Residual standard error: 8.358 on 13 degrees of freedom
(8) Multiple R-squared: 0.8149, Adjusted R-squared: 0.8006
```

(9) F-statistic: 57.22 on 1 and 13 DF, p-value: 4.105e-06

```
Institute
and Faculty
of Actuaries
```

beta0_hat	<- fit\$coefficients[1]	
beta1_hat	<- fit\$coefficients[2]	
data_points	<- add_column(data_points,	
	fitted_check	<pre>= beta0_hat+beta1_hat*data_points\$x,</pre>
	true_model	= beta0+beta1*data_points\$x
) _	

- Using the fit\$coefficients attribute, can confirm that the output matches the fit\$fitted.values attribute
- In addition, the values associated with the true underlying model can be added to the data_points table

	-	
No.	data	nointe
	uaca	pornea
	_	

# 2	A tibbl	le: 15	x 6			
	sim	x	У	fitted	fitted_check	true_model
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl:< th=""></dbl:<>
1	1	9.96	-8.72	-9.20	-9.20	-5.02
2	1	12.8	-17.8	-7.48	-7.48	-3.61
3	1	13.7	-1.38	-6.94	-6.94	-3.17
4	1	19.5	1.07	-3.42	-3.42	-0.27
5	1	20.6	-14.3	-2.70	-2.70	0.320
6	1	25.4	-8.19	0.191	0.191	2.70
7	1	27.7	10.6	1.58	1.58	3.84
8	1	29.5	1.79	2.67	2.67	4.73
9	1	33.8	5.05	5.32	5.32	6.91
10	1	37.5	11.7	7.59	7.59	8.77
11	1	39.6	26.7	8.86	8.86	9.82
12	1	46.3	6.86	12.9	12.9	13.2
13	1	67.3	25.9	25.7	25.7	23.7
14	1	95.4	34.3	42.8	42.8	37.7
15	1	97.6	48.4	44.1	44.1	38.8

• Plot the true model (in **black**) alongside the fit for this particular realization (in red)

- Plot the true model (in **black**) alongside the fit for this particular realization (in red)
- Add multiple realizations from the same model (in colours)


```
for (i in 1:ns) {
        e = rnorm(n,mean = 0, sd = sigma)
        y = beta0 + beta1*x + e
        fit = lm(v \sim x)
        beta0 hat[i]
                                 <- summary(fit)$coefficients[1,1]
        se beta0 hat[i]
                                 <- summary(fit)$coefficients[1,2]
        beta1 hat[i]
                                 <- summary(fit)$coefficients[2,1]
        se beta1 hat[i]
                                 <- summary(fit)$coefficients[2,2]
data sim <- tibble(sim = 1:ns,</pre>
                beta0 hat,
                 se beta0 hat,
                beta1 hat,
                 se beta1 hat)
```

> data sim # A tibble: 10,001 x 5 sim beta0 hat se beta0 hat betal hat se betal hat <int> <dbl> <dbl> <dbl> <dbl> 1 -12.41.79 0.560 0.0357 2 -15.03.01 0.571 0.0600 3 -10.1 2.65 0.488 0.0528 4 -12.3 3.94 0.472 0.0785 -1.243.38 0.338 0.0673 -5.403.58 0.486 0.0712 -13.2 4.05 0.542 0.0806 8 8 -2.762.62 0.393 0.0521 9 9 -13.9 3.92 0.524 0.0781 10 10 -7.093.32 0.461 0.0660 # ... with 9,991 more rows

- Iterate a large number (ns) of times to generate a distribution of estimates for $\hat{\beta}_0$ (beta0_hat) and $\hat{\beta}_1$ (beta1_hat)
- Also store the estimate of the associated standard errors for each fit (se_beta0_hat, se_beta1_hat)

- Plot the fitted $\hat{\beta}_0$ (beta0_hat) as a histogram (geom_histogram), splitting into 200 bins
- Add a line (stat_function) which shows the normal distribution (dnorm) with mean equal to the mean beta0_hat and standard deviation equal to the mean se_beta0_hat

- Plot the fitted $\hat{\beta}_0$ (beta1_hat) as a histogram (geom_histogram), splitting into 200 bins
- Add a line (stat_function) which shows the normal distribution (dnorm) with mean equal to the mean beta1_hat and standard deviation equal to the mean se_beta1_hat

and Faculty of Actuaries

```
for (i in 1:ns) {
        e = rnorm(n,mean = 0, sd = sigma)
        y = beta0 + beta1*x + e
        fit = lm(y \sim x)
        beta0 t[i]
                                 <- summary(fit)$coefficients[1,3]
        beta0 p[i]
                                 <- summary(fit)$coefficients[1,4]
        beta1 t[i]
                                 <- summary(fit)$coefficients[2,3]
        beta1 p[i]
                                 <- summary(fit)$coefficients[2,4]
data tests
                 <- tibble(sim = 1:ns,
                                 beta0 t
                                 beta0 p,
                                 beta0 t
                                 beta1 p)
sim beta0 p dist <- ggplot(data=data tests,aes(x=beta0 p))+</pre>
                                 geom histogram(aes(y=..density..),
                                                          bins=100)+
                                 xlim(0,0.3)
```

Store the estimated a values for each fit (bet a 0

- Store the estimated p-values for each fit (beta0_p, beta1_p)
- Plot the estimated p-values for $\hat{\beta}_0$ (beta0_p) as a histogram (geom_histogram), splitting into 100 bins, limiting the horizontal axis (xlim)


```
for (i in 1:ns)
        e = rnorm(n,mean = 0, sd = sigma)
        y = beta0 + beta1*x + e
        fit = lm(y \sim x)
        beta0 t[i]
                                 <- summary(fit)$coefficients[1,3]
        beta0 p[i]
                                 <- summary(fit)$coefficients[1,4]
        beta1 t[i]
                                 <- summary(fit)$coefficients[2,3]
        beta1 p[i]
                                 <- summary(fit)$coefficients[2,4]
data tests
                 <- tibble(sim = 1:ns,
                                 beta0 t
                                 beta0 p,
                                 beta0 t
                                 beta1 p)
sim beta0 p dist <- ggplot(data=data tests,aes(x=beta0 p))+</pre>
                                 geom histogram(aes(y=..density..),
                                                          bins=100)+
                                 xlim(0, 0.3)
```

- Generate ns simulations of the null hypothesis
- Plot the estimated p-values for $\hat{\beta}_{0,null}$ (beta0_p_n) as a histogram (geom_histogram), splitting into 100 bins, limiting the horizontal axis (xlim)

sims_beta0_t_dist	<- ggplot(data=data_tests)+	0.5 -
	geom_histogram(aes(x=beta0_t_n,	
	y=density,	
	alpha=0.5,colour="lightsalmon1"),	
	bins=1000)+	0.4 -
	geom_histogram(aes(x=beta0_t,	
	y=density,	
	alpha=0.5,colour="skyblue1"),	
	bins=1000)+	0.2-
	stat function(fun=dt,	0.3 -
	args=list(df=n-2),	ĭt
	colour="red",lwd=1.5)+	qens
	stat function(fun=dt,	Ŭ
	args=list(df=n-2,	0.2 -
	ncp=mean(beta0 hat)/mean(se beta0 hat)),	
	colour="blue".lwd=1.5)+	
	theme(legend.position = "none")	
		0.1 -

• Plot the estimated t-values for $\hat{\beta}_0$ and $\hat{\beta}_{0,null}$ (beta0_t, beta0_t_n) as a histogram (geom_histogram) and overlay the t-distribution (fun=dt)

of Actuaries

sims_beta0_t_dist_data beta0_n_density	<- ggplot_build(sims_beta0_t_dist) <- sims_beta0_t_dist_data\$data[[1]]\$density*(
	sims_beta0_t_dist_data\$data[[1]]\$xmax sims beta0 t dist data\$data[[1]]\$xmin]
beta0_density	<- sims_beta0_t_dist_data\$data[[2]]\$density*(sims_beta0_t_dist_data\$data[[2]]\$xmax- sims_beta0_t_dist_data\$data[[2]]\$xmin)
#	

• Using the ggplot_build command to values which build up the histogram (or any plot) can be accessed.

> head(sims beta0 t dist data\$data[[1]])

	alpha	colour	У	count	х	xmin	xmax	density
1	0.55	#F8766D	0	0	-14.36850	-14.37818	-14.35882	0
2	0.55	#F8766D	0	0	-14.34914	-14.35882	-14.33946	0
3	0.55	#F8766D	0	0	-14.32977	-14.33946	-14.32009	0
4	0.55	#F8766D	0	0	-14.31041	-14.32009	-14.30073	0
5	0.55	#F8766D	0	0	-14.29104	-14.30073	-14.28136	0
6	0.55	#F8766D	0	0	-14.27168	-14.28136	-14.26200	0

 Determining the approximate area under the null distribution curve c (cumsum) and the probability density of the observed distribution the distribution of p-values seen before can be estimated.

Wide range of libraries: Generalized linear model

$$\vec{Y} = g^{-1} \left(\underline{X} \cdot \vec{\beta} + \vec{\xi} \right) + \vec{\varepsilon}$$

$$\begin{pmatrix} D_{1} \\ D_{2} \\ D_{3} \\ \vdots \end{pmatrix} = \exp \left\{ \begin{pmatrix} 1 & 1 & 0 & \dots \\ 1 & 2 & 0 & \dots \\ 1 & 3 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \beta_{0} \\ \beta_{X} \\ \beta_{A} \\ \vdots \end{pmatrix} + \begin{pmatrix} \log(E_{1}) \\ \log(E_{2}) \\ \log(E_{3}) \\ \vdots \end{pmatrix} \right\} + \begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \vdots \end{pmatrix} \right\}$$

$$= \frac{1}{1 - 1} \sum_{\substack{b \in 1 \\ b \in 1 \\ b \in 1 \\ b \in 1 \\ c \in 1 \\$$

- Initialize a dummy population, defined by factors, X, A and B.
 - X runs from 1 to 31 (eg an age index)
 - A and B are categorical (eg gender, high pension v low pension)
- Define systematic component to depend on X and A, but not B.
- Simulate poisson events (eg deaths) from the library (rpois)

Wide range of libraries: Generalized linear model

• Running the simulation to generate a large number of data points, the estimated $\hat{\beta}$ match the input parameters

> summary(Model)

```
Call:
```

```
glm(formula = Data_sim$Dth ~ Data_sim$X + A.F + B.F + offset(log(Data_sim$ETR)),
    family = poisson(link = "log"))
```

```
Deviance Residuals:
```

Min	10	Median	3Q	Max
-2.2484	-0.7158	0.1572	0.7198	2.3445

```
Coefficients:
```

	Estimate	otd. Error	z value	Pr(> z)	
(Intercept)	-3.914e+00	1.901e-03	-2058.811	<2e-16	***
Data_sim\$X	1.506e-02	9.415e-05	159.919	<2e-16	***
A.Fl	8.039e-02	1.227e-03	65.531	<2e-16	***
B.F1	1.407e-03	1.226e-03	1.148	0.251	
Signif. cod	es: 0 '***/	0.001 ***	0.01 ***	0.05 '.'	0.1 ''

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 30053.37 on 123 degrees of freedom Residual deviance: 142.83 on 120 degrees of freedom AIC: 1587.3

Number of Fisher Scoring iterations: 3

The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [*or authors, in the case of non-IFoA research*].

