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QPP data overview

11 sub-populations ordered by increasing cohort pension amount in
10% bands.

Only contains Quebec pensioners.

Age over 65-89, and year over 1991-2015. (11⇥ 25⇥ 25)
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QPP data overview (cont.)

- Males

- Females
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QPP data overview (cont.)

- Group-wise crude death rates (log-scale):
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QPP data overview (cont.)

- Comparison with England IMD (larger sample size, with groups evenly
splited)
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QPP data overview (cont.)

- Age-Standardized Mortality Rate (ASMR)

ASMR is a weighted average of the crude death rates over a defined
age range, for certain specific calender year t.
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Use of ASMR:
- comparison of mortality over di↵erent populations;
- assessment of mortality term structure;
- assessment of singal-to-noise ratio.
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QPP data overview (cont.)

- ASMR of QPP males over age 65-89:
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QPP data overview (cont.)

- (For comparison) ASMR of England IMD:
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QPP data overview (cont.)

ASMR is smoothier than the crude death rates, but still quite
volatile for QPP males.

Group 10 and 11 (larger size) are smoothier than others.

Groups with higher pension tends to have lower mortality.

QPP applies di↵erent grouping methodology (pension level) from
England IMD (deprivation index) - less powerful predictor.
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Model specification
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↵, � and  are stochastic parameters capturing age/period e↵ect.

↵ provides a form of base mortality table (while  is zero).

� determines the relative rates of mortality improvement at di↵erent
ages.
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Model specification
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Model specification (cont.)

m1 is the ’basis’ with most specified structure among all others.

All other models are simplifications of m1.

Parameters are estimated by Poisson assuption on number of deaths
with Maximum Log-likelihood Estimation (MLE).
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Parameter estimation and Model selection (cont.)

- Model m1 - estimated parameters (males)
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Parameter estimation and Model selection (cont.)

- Model m1:
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Parameter estimation and Model selection (cont.)

- Model m5 - estimated parameters (males)
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Parameter estimation and Model selection (cont.)

- Model m5:
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Parameter estimation and Model selection (cont.)

- Pattern of �1 - model m5 (common - the grey fat solid line) and m1
(group-specific)
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Parameter estimation and Model selection (cont.)

- Model m6 - estimated parameters (males)
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Parameter estimation and Model selection (cont.)

- Model m6:
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Parameter estimation and Model selection (cont.)

- Model m8 - estimated parameters (males)
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Parameter estimation and Model selection (cont.)

- Model m8:
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Parameter estimation and Model selection (cont.)

- Model selection criteria: log-likelihood and BIC: males

Bayes Information Criterion (BIC) is a statistic based on log-likelihood
that penalises over-parameterized models and is used as a purely
numerical criterion for selecting out the best model (m8).

Model log-likelihood # parameters df BIC

m1 -22,252.44 1375 1331 56,265.12
m5 -22,628.04 875 851 52,775.22
m6 -22,771.52 625 621 51,029.98
m8 -22,867.36 575 573 50,797.55
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that penalises over-parameterized models and is used as a purely
numerical criterion for selecting out the best model (m8).

Model log-likelihood # parameters df BIC

m1 -22,252.44 1375 1331 56,265.12
m5 -22,628.04 875 851 52,775.22
m6 -22,771.52 625 621 51,029.98
m8 -22,867.36 575 573 50,797.55

Jie Wen, supervised by Prof. Andrew Cairns and Dr. Torsten Kleinow Quebec Pension Plan (QPP) multi-population data analysis 25 / 41



,

Diagnostic on fitting results

m8 has fewest parameters and better BIC than other three.

More parameters improves log-likelihood but is also penalized for
over-parameterization.

Greater complexity does not necessarily improve fitting significantly.

Additional diagnostic is also required for selection.
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Diagnostic on fitting results

- Fitted mortalities (log-scale) from model m8 (males)
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Diagnostic on fitting results

- Fitted mortalities (log-scale) from model m8 (males)
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Diagnostic on fitting results

- Fitted mortalities (log-scale) from model m6 (males)
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Diagnostic on fitting results

- Standardized Residuals

Z
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Measures standardized di↵erence between crude and estimated
figures.

Not a↵ected by absolute scale of observations.

Well-fitted model is expected to have random standardized residuals.
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Diagnostic on fitting results

- Standardized residuals from m6: QPP males
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Diagnostic on fitting results

- Standardized residuals from m8: QPP males
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Diagnostic on fitting results

Both m6 and m8 have quite random standardized residuals.

There is no significant non-random cluster along x-axis (year), y-axis
(age) or diagonal (cohort).

m6 doesn’t have significant crossover in fitted mortality curves. m8
has crossovers at high ages.

m6 is selected as the most suitable model for QPP males.
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Cluster analysis on QPP data

QPP has relatively small population size.

Subpopulations are not evenly grouped.

Crude mortalities are quite volatile.

Some adjacent groups typically have quite similar levels of mortality.

We consider to re-cluster the QPP dataset.
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Cluster analysis on QPP data

- Algorithm:

1 Restructure the data by combining neighbouring groups into
clusters. Each cluster could contain 1, 2, . . . , 11 groups.

2 We obtain new restructured datasets with  11 groups.
3 There are 1, 024 di↵erent combinations in total. (

P11�1
i=0 C

i

11�1)
4 Fit underlying models to each reclustered dataset.
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Cluster analysis on QPP data

- AIC and BIC for all 1, 024 cluster combinations fitted for model m6:

BIC is 48, 694.69 under the optimized scenario (used to be 51, 029.98).
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Cluster analysis on QPP data

- Fitted mortalities (log-scale) from m6 after re-clustered into 4 groups.
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Cluster analysis on QPP data

- ASMR of QPP males after re-clustering:
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Cluster analysis on QPP data

- Conclusion from cluster analysis:

All models suggest the same optimal clustering by BIC - with 4
clusters:
- Cluster 1: group 1-5;
- Cluster 2: group 6-8;
- Cluster 3: group 9 and 10;
- Cluster 4: group 11.

Volatilities are reduced significantly.

It enables us to see more clearly the di↵erent trends of clusters.
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Summary

For volatile population, models with simpler structure fits better, i.e.
model m6 and m8 over m1.

Besides quantitative criteria, qualitative criteria like graphical
diagnostics are the same important.

Clustering improves fitting quality and signal-to-noise ratio.

Future researches: Smoothing of modelling results; More detailed
cluster analysis; Long-term mortality projection.
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ANY QUESTIONS ?
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