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Abstract 

This paper examines in details six overlooked facts of using generalized linear models (GLMs) for 
non-life pricing and discusses whether the use of GLMs is still fit for purpose in a competitive market.  
The six facts of GLMs discussed are 

1. Either zero or full credibility is given to the data and there is no way to do blending 

2. Prediction of a risk depends on data in other completely independent segments 

3. Model predictions depend on the mixture of rating factors in the data 

4. Maximum likelihood estimate of prediction is lower than mean of prediction distribution 

5. Link function could bias the model prediction and significantly change the lower and upper bound of 
prediction 

6. Model diagnostics is only relevant in the segments where the model is used 

These facts indicate GLMs’ technical limitations in pricing practice, particularly in a competitive market. 
It is critically important to understand these limitations when apply GLMs in pricing. 
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Generalized linear models (GLMs), non-life pricing, credibility theory, dependency, maximum 
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1 Introduction 

1.1 The working party and membership 

The GIRO Advanced Pricing Techniques (APT) Working Party was created in Oct 2012 and its 
membership was growing over time.  As at 14th May 2013, members of the working party are 

Ji Yao (Chair) 
Shamim Ashraf 
Zhen Chen 
Jacky Cheung 
Alberto Chierici 
Rebecca Evans 
Pulkit Gupta 
Peter Jones 
Dani Katz 
Jeremy Keating 
Jing Li 
Xavier Lo 
Aldo Monteforte 
Vickraaz Narrayen   
Elena Papadopoulou 
Nick Porter 
Tim Rourke 
Mark Schaffer 
Tom Taverner 
Simon Yeung  
Simon Young 

The working party works in three parallel work streams, and this report is an output from one of the 
work streams.  So its findings and views might not represent the view member of the working party.   

1.2 Background 

Generalized linear models (GLMs) have been widely used as the main pricing technique in the 
insurance industry for more than a decade in the UK.  The approach of using GLMs to set price is well 
established and standardised [1] [2].  However, the market has changed rapidly recently and in 
particular price comparison websites have changed the distribution dynamic of the market and have 
increased competition.  The fierce competition in the market raises the question of whether the 
current pricing technique is still fit for purpose.   

Another key feature of insurance pricing is the uncertainty of production costs.  Changes in claims 
procedures, legal systems, regulatory requirements and even pure randomness contribute to the 
pricing uncertainty.  So arguably, motor insurance in the UK is the only market in the world which is 
close to a perfect competitive market and where the production costs, i.e. costs to pay claim, are 
hugely uncertain.  The combination of competitiveness and uncertainty is a unique challenge, which 
requires robust pricing techniques.  

There are also some evidences in the market that the GLMs pricing technique does not work in 
certain circumstance.  For example, although insurance companies use similar GLMs approach, the 
key output from models – quoted premiums – are significantly different between companies.   Even 
for an ordinary risk, the quoted premium could range from £200 to £1000+, as shown in Figure 1.  
There are many other factors that affect the quoted premiums, however, as the technique drives the 
main component of quoted premium, GLMs worth investigating. 
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Figure 1: Quotes for a 40 year old married female with a clean license held for 15 years for a 59 diesel Golf GTD 
2.0L 3 door hatchback.  Car is kept at home and parked on a driveway for social use only, approx 7000 miles.  

Quotes were made in early June 2013. 

1.3 Objectives 

This paper aims to provide evidence for discussion about whether the use of GLMs is still fit for 
purpose for non-life pricing in the current competitive market.  Details of the technical facts relating to 
GLMs, which have been largely overlooked so far, and their implications will be discussed. 

1.4 Disclaimer 

While this paper is the product of a GIRO working party, its findings do not represent the official view 
of the Institute and Faculty of Actuaries, or that of the employers of the working party’s members.  

1.5 Acknowledgement 

A number of people have helped the working party members produce this paper. These include Lee 
Harris, Jan Iwanik, Chris Pointon and Jenny Xu. The working party would like to thank all of these 
people for the help and support that they gave to the working party.  

A thank you is also made to Rob Barritt for coordinating the working party with the profession. 

1.6 Outline 

The remainder of the paper proceeds as follows. Section 2 will discuss key feature of the current 
market, which is dominated by price comparison websites.  Section 3 – 8 will examine six facts of 
GLMs in turn.  Each section will start with a discussion of the fact, followed by numerical examples to 
illustrate the idea, and closed by implications and possible solutions.  To simplify the calculation and 
illustrate the idea clearly, one of key features of this paper is that all numerical examples are based on 
a simple dataset and can be reproduced easily in SAS.  Section 9 will summarise the facts of GLMs 
and conclude the paper. 

Throughout the paper, if a notation is not explicitly defined, the notation in [1] is used. 
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2 Features of price comparison market  

With the introduction of price comparison websites in the UK, the motor insurance market in the UK is 
essentially very close to a perfect competitive market.  Some of its features are: 

- Large number of buyers and sellers 

- Homogeneous products 

- Perfect knowledge about the market  

- Absence of transport cost 

- No attachment between the buyers and sellers 

As a result of these features, the following observations can be made:  

- Quoted premium has to be among the cheapest 5-10, although not necessarily the cheapest, 
in order to convert 

- Over-priced quotes are almost never converted.  This is different from traditional channels, 
where over-priced premium can be used to offset losses made from under-priced premium 

- Overall conversion rate of a company is very low at around 0.1%, which indicates that 

 - Company quotes for the whole market, but converting only a small segment 

- Mixture of sales is different from mixture of quotes 

 - Conversion modelling is difficult due to lack of sales  

- The huge volume of traffic on price aggregator websites means that sales volume can pick 
up very quickly.  This may happen when  

 - An error is made in a company’s own pricing structure 

 - Major competitors change pricing structure 

- Written business can concentrate in small segments where price is very competitive, which 
creates concentration risk.  These segments could be due to a combination of multiple rating 
factors and therefore hard to be picked up by any management information (MI) reports. 

These features and observations mean more sophisticated pricing techniques are required. If over-
priced, there will be no sales at all.  If under-priced, a lot of loss-making business will be acquired.  So 
the traditional approach to offset under-priced business with over-priced business no longer works. 
Furthermore, pricing need to be responsive to market change in a specific segment.  It is important to 
bear these features and observations in mind in the following discussion on GLMs.  
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3 Either zero or full credibility is given to the data and there is no 
way to do blending 

3.1 Discussion of fact 

When choosing factors in the GLM, the standard practice is to test all available factors in the data by 
fitting a factor into the model and using statistical measure to decide whether such a factor is 
statistically significant or not.  If it is, the factor will be kept in the model; otherwise, the factor will be 
excluded from the model.  In making this decision, a significant level is usually arbitrarily chosen.  
When a factor is considered as significant and kept in the model, full credibility will be given to the 
estimated parameter of that factor. 

However, the confidence level could never be 100%. Even if a confidence level of 99% is chosen, 
statistical significance means that there is still 1% chance that the factor is the same as the base level.  
So the estimated parameter should not be given full credibility. 

On the other hand, if a factor does not pass the significance test, the estimated parameter still contain 
some information in the data and therefore should not be discarded completely from the model.  This 
could happen when modelling a small segment, for example left hand drive, or factors with many 
levels, for example postcode, vehicle type and occupation, as the limited volume reduce the 
significance of the results.  

3.2 Examples 

Consider the following problem: there is a bag of blue and red balls, each has a number on it.  After 
sample 6 balls from the bag with 3 for each colour, you are asked to guess the average number on 
blue and red balls in the bag, respectively.  The sample balls are 

Table 1. List of colour and number of balls 

colour number 

Blue 2 
Blue 3 
Blue 4 
Red 1 
Red 2 
Red 3 

In a standard GLMs approach, after testing the ‘colour’ factor in a GLM (normal distribution with 
identical link function), it shows that Blue is not significantly different from Red at 95% confidence 
level and therefore ‘colour’ factor should not be kept in the model.  SAS output is shown in Table 2.  
So the estimated average number of blue and red balls is 2.5, the average of the all observations. 

Table 2. SAS output 

Parameter Level1 DF Estimate StdErr Lower 
WaldCL 

Upper 
WaldCL 

ChiSq ProbChiSq

Intercept   1 2 0.4714 1.0761 2.9239 18 <.0001 
colour Blue 1 1 0.6667 -0.3066 2.3066 2.25 0.1336 
colour Red 0 0 0 0 0 . . 
Scale   1 0.8165 0.2357 0.4637 1.4377 _ _ 

If another 6 balls with exactly same number are sampled, i.e. 12 balls in total, the same analysis could 
be done. 
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Table 3. List of colour and number of balls 

colour number 

Blue 2 
Blue 2 
Blue 3 
Blue 3 
Blue 4 
Blue 4 
Red 1 
Red 1 
Red 2 
Red 2 
Red 3 
Red 3 

As shown in Table 4, testing the ‘colour’ factor in a GLM shows that Blue is significantly different from 
Red at 95% confidence level and therefore ‘colour’ factor is kept in the model.  So the average 
number for Red ball is estimated to be 2, and that for Blue ball is 3, which is the average of the 
observation of each segment. 

Table 4. SAS output 

Parameter Level1 DF Estimate StdErr Lower 
WaldCL 

Upper 
WaldCL 

ChiSq ProbChiSq

Intercept   1 2 0.3333 1.3467 2.6533 36 <.0001 
colour Blue 1 1 0.4714 0.0761 1.9239 4.5 0.0339 
colour Red 0 0 0 0 0 . . 
Scale   1 0.8165 0.1667 0.5473 1.2182 _ _ 

So GLMs take an approach that using either the total average or the segment average. The prediction 
has been changed suddenly just because of six extra sample balls.  Intuitively, it makes sense to 
blend the total average and the segment average.  Taking a Bayesian view, without any prior 
knowledge that blue ball is different from red one (i.e. non-informative prior), some credibility should 
always be given to the total average to take full advantage of all available information.  Mathematically, 

a blended prediction iy  for the ith segment takes the form of 

  1i t iy w y w y       

where ty  is the total average, iy  is the ith segment average and w  is weight.  w  could depend on 

the size of segment, size of total portfolio, volatility of experience etc.  A method to calculate w  is 

suggested in Section 3.4.   

3.3 Key implications 

The blended prediction iy  is always between the total average ty  and the segment average iy , in 

other word, ty  is further away from ty  than iy .  This ‘mean aversion’ behaviour means that GLM 

tends to push prediction toward extreme level, either upward or downward. For example, as in the 12 
blue/red balls example in Section 3.2, the blended prediction for blue ball is 2.87 (how this is 
calculated will be discussed in Section 3.4).  If the ‘colour’ factor is chosen in the model, the prediction 
will be 3.  Similarly for red ball, the blended prediction is 2.13 and the GLM prediction is 2.  So GLM 
prediction tends to be more extreme, i.e. more policies are priced at lower and higher end.  Figure 2 
shows a comparison of typical distribution of model prediction from two models. 
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In a competitive market, only cheap quote can be converted to sales and over-price policies never get 
converted.  So GLMs prediction leads to lower overall written premium. 

 

Figure 2. Comparison of typical distribution of model prediction from GLM and GLMM.  The mean prediction is 
0.3, but GLM has more prediction to the left tail, and GLMM has more prediction around 0.3.  

3.4 Possible solutions 

It is possible to apply credibility theory with GLM by using standard deviation of estimate [3] [4], but 
Generalized Linear Mixed Model (GLMM) provides a convenient and standard way to implement it [4] 
[5].  In this section, GLMM is briefly introduced and the focus is to compare GLMM with GLM in a 
numerical example to show how GLMM could reduce the volatility of prediction.  More technical 
details of GLMM are available in [5] [6]. 

GLMM is an extension of GLM to mixed model.  The key difference between them is a random effect 
component in the linear predictor   for GLMM, i.e. 

   X Z   

where X  is a design matrix of fixed-effect predictor variables,   is fixed-effect coefficients, Ζ  is a 

design matrix of random effect and   is random effect coefficients.  The random effects are assumed 

to be normally distributed with mean zero and variance matrix G , that is 

  0, G . 

By this normality assumption, random effect coefficient estimated is automatically blending with base 
level. 

Other components of GLMM, such as link function and error structure, are same as that of GLM.  The 

major outputs from GLMM are the estimate of   and G .  GLMM can also provide prediction 

,ˆGLMM i  for the i th row. 

One of main measures to quantify the difference between prediction and the true values of the 
quantity being estimated is mean square error (MSE).  MSE can be calculated for every row, i.e. 

  2

, ,ˆGLMM i GLMM i iMSE E    
 
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 ,GLMM GLMM i
i

MSE MSE  

                                  2

,ˆGLMM i i
i

E    
   

The same calculation could be done for GLM model, GLMMSE , and compared it with GLMMMSE . 

3.4.1 Numerical examples 

A dataset was created by repeating the data in Table 5 by 50 times, i.e. a dataset with 1000 rows, to 
illustrate the idea in Section 3.4. 

Table 5. Data for GLMM 

ID Age NCD Yr Claim 3 Yrs R_Age R_NCD R_Claim 
i  

1 Young 0 1 2 1 1.5 0.3 

2 Young 0 1 2 1 1.5 0.3 

3 Young 1 0 2 0.9 1 0.18 

4 Young 1 1 2 0.9 1.5 0.27 

5 Young 2 1 2 0.8 1.5 0.24 

6 Young 2 0 2 0.8 1 0.16 

7 Old 0 2 1 1 2 0.2 

8 Old 1 1 1 0.9 1.5 0.135 

9 Old 2 1 1 0.8 1.5 0.12 

10 Old 3 0 1 0.7 1 0.07 

11 Old 3 1 1 0.7 1.5 0.105 

12 Old 4 0 1 0.5 1 0.05 

13 Old 4 1 1 0.5 1.5 0.075 

14 Old 5 1 1 0.3 1.5 0.045 

15 Old 5 1 1 0.3 1.5 0.045 

16 Old 5 0 1 0.3 1 0.03 

17 Old 5 0 1 0.3 1 0.03 

18 Old 5 0 1 0.3 1 0.03 

19 Old 5 0 1 0.3 1 0.03 

20 Old 5 0 1 0.3 1 0.03 

Column ‘Age’, ‘NCD Yr’ and ‘Claim 3 Yr’ are rating factors.  Column ‘R_Age’, ‘R_NCD’ and ‘R_Claim’ 

are the relativities of these rating factors, and column i  is the true claim frequency, which is the 

production of relativity and a base frequency 0.1.   

The following steps were taken to compare the GLM and GLMM predictions: 

1) Simulate claim number for each row by Poisson distribution with parameter i ; 

2) Build GLM and GLMM, and calculate the prediction for each row.  In GLMM, all rating factors 
are modelled as a random effect; 

3) Repeat step 1) and 2) 10000 times; 
4) Calculate the mean and MSE of prediction for each row; 
5) Calculate the total MSE. 

GLMM is available in SAS as proc glimmix.  The SAS code to run GLMM is 
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proc glimmix data=data4; 
 class age ncd claim; 
 model NClaim=/dist=p solution; 
 random age ncd claim/solution; 
 output out=temp1 pred(ilink)=pred; 

run;  

More details about proc glimmix are available in [5]. 

Figure 3 shows the MSE of each ID and average MSE.  Figure shows that GLMM reduce SME 
significantly for segments where GLM result is highly uncertainty (i.e. high SME) and increase SME 
slightly for segment where GLM result is stable.  And on average SME of GLMM is lower than that of 
GLM by about 10%. 

 

 

Figure 3. Comparison of MSE between GLM and GLMM. 
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4 Prediction of a risk depends on data in other completely 
independent segments 

4.1 Discussion of fact 

Linear predictor   X  is a key assumption in GLMs.  It is assumed that the effect of any factor in 

the model is independent of other factors in the model (interactive term is considered as one factor).  
This independency was considered as an advantage of GLMs, because this technique can be used to 
extrapolate model to segments with limited historical data.  

For example, if a company wants to develop into a new market of ‘young driver with low license year’, 
it can use its historical experience of ‘old driver with low license year’ and a loading of young driver.  
This ‘young driver’ loading can be derived by comparing ‘young driver with high license year’ with ‘old 
driver with high license year’. 

Table 6. Illustration of segments.  The black-out segment has limited historical exposure. 

Age\License Year Low High 

Young     

Old     

This extrapolation is particularly useful and almost essential for current personal line pricing.  With 
dozens of rating factors and each rating factor with 2-100s possible values, it is impossible to have all 
combination of rating factors in historical data.  Pricing has to extrapolate from experience of existing 
combination of rating factors.  Particularly for personal motor insurance, as there are thousands of 
millions of possible combination, extrapolation is essentially used in pricing for most risks, if not all.   

However, a side effect of this extrapolation is that any risk in the portfolio affects the model predictions 
of other risks in the portfolio, or in other words, the model prediction of any specific risk depends on 
the whole dataset, not just risk with relevant rating factors.  Mathematically, it is 

 
ˆ

0i

jy





 

where ˆi  is model prediction    1 1 ˆˆˆi i ig g X      for the i th risk and jy  is the observed data 

of the j th risk. 

It works in a subtle way as explained in the following example.  Consider a personal motor portfolio.  
One of the insured is Mr. Drivelikeaboy, who is a young student living in Great London with a second-
hand old car.  If Mr. Drivelikeaboy has one more claim and claim experiences of all the others keep 
same, GLMs will increase the relativities of levels of rating factors that relevant to Mr. Drivelikeaboy, 
such as ‘age - young’, ‘area – Great London’ and ‘car age – old’.  Because claim experiences of all 
the others keep same, other levels of these rating factors will change (most will decrease), which in 
turn changes predictions of other risks.     

4.2 Examples 

Consider a simple regression model on claim frequency using age and car age as explanatory factors. 
There are four possible type of risk and associated observed claim frequency are shown in Table 7. 
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Table 7. Initial data 

age carage claim

Old Old 0.2 

Old New 0.3 

Young Old 0.4 

Young New 0.7 

By using Poisson distribution and log link function, the model prediction is 

Table 8. GLM prediction of initial data 

age carage claim pred 

Old Old 0.2 0.1875

Old New 0.3 0.3125

Young Old 0.4 0.4125

Young New 0.7 0.6875

If claim of the risk of ‘old –old’ increase from 0.2 to 0.25, the model prediction will change, which is 
shown in Table 9.  It shows that the model prediction of risk ‘Young – New’ reduces 0.02083.  This 
risk is completely irrelevant with the risk ‘Old – Old’, of which the claim experience changes. 

Table 9. GLM prediction of updated data 

Age carage claim pred Change 

Old Old 0.25 0.21667 0.02917 

Old New 0.3 0.33333 0.02083 

Young Old 0.4 0.43333 0.02083 

Young New 0.7 0.66667 -0.02083 

This is a very simple example of two factors with two levels each, but same result could be observed 
when the model is much more complicated.  Model predictions of almost every risks are subtly 
affected by claim experience of many irrelevant policies.      

4.3 Key implications 

While it makes sense to price using similar but not exactly same risk type, e.g. price ‘Young – New’ 
using experience of “Young – Old’ and ‘Old – New’ risks in the previous example, it is surprising (at 
least to customer) that price depends on completely irrelevant risks.  This might have some 
implication to customer and regulator about treating customer fairly (TCF). 

To company, the dependency essentially introduce unwanted noise into pricing.  Although at portfolio 
level, underestimation and overestimate might be cancelled out, it would not be cancelled out in 
written business.  This is because customers are more likely to buy when price is underestimated, 
and overestimated price might never be converted.  This is particularly relevant in a competitive 
market, where price is the key drive of decision. 

4.4 Possible solutions 

Linear predictor is a basic assumption of linear model, so to solve this problem fundamentally, new 
model structure, such as non-linear model or credibility approach, need to be explored.   

Adding more interactive term might partly solve the problem, as it makes the model prediction less 
dependent between segments.  However, it is difficult to manage many interactive terms in GLMs.  
Building segmented models is another approach.  It is easier to manage the set of models, but it is 
difficult to find an appropriate segmentation of portfolio. 
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Another consideration is to understand how strong this dependency 
ˆi

jy




 is.  Sensitivity test provide a 

possible approach.  By change the claim experience slightly, sensitivity test helps to find how this 
affect other segment and by how much.   
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5 Model predictions depend on the mixture of rating factors in the 
data 

5.1 Discussion of fact 

Estimating parameters in GLMs is like a battle between of all data points.  Every data point tries to 
drag the parameter towards the outcome that fits itself best.  

If the model structure perfectly reflects all underlying drivers of the data, all data points will share the 
same ‘best’ outcome, the true parameters.  The mixture of rating factors in data doesn’t matter and 
the model prediction is always the same.  The more the data, the closer the estimated parameter to 
the truth.   

However, if the model structure is not perfect, every data point has its own version of ‘best’ outcome, 
which is an approximation to the truth.  Adding more data into a segment will drag the estimated 
parameters towards the ‘best’ outcome represent that segment’s ‘interest’. 

5.2 Examples 

Consider another simple regression model on claim frequency using age and car age as explanatory 
factors.  As shown in Table 10, there are four possible type of risk and associated observed claim 
frequency 

Table 10. Initial data 

age carage claim

Old Old 0.2 
Old New 0.3 
Young Old 0.4 
Young New 0.6 

If we use the perfect model structure of log link function and Poisson distribution, the output 
parameters of GLMs are shown in Table 11. 

Table 11. GLM output of initial data 

Parameter Level1 Estimate StdErr 

Intercept   -0.9163 1.4142
age Old -0.6931 1.7321
age Young 0 0 
carage New 0.4055 1.6667
carage Old 0 0 
Scale   1 0 

Adding more data into any of these four segments won’t change the parameter estimation, but will 
only reduce the standard deviance of the estimation.  For example, if the ‘Old/Old’ combination 
appears twice, the data will become 

Table 12. Updated data 

age carage claim

Old Old 0.2 
Old Old 0.2 
Old New 0.3 
Young Old 0.4 
Young New 0.6 

and the estimated parameters are 
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Table 13. GLM output of updated data 

Parameter Level1 Estimate StdErr 

Intercept   -0.9163 1.3693
age Old -0.6931 1.5811
age Young 0 0 
carage New 0.4055 1.559 
carage Old 0 0 
Scale   1 0 

However, if a non-perfect model structure is used, say identity link function and Poisson distribution, 
the result will be different.  Table 14 shows the estimated parameters for initial four data points 

Table 14. GLM output of initial data – identity link 

Parameter Level1 Estimate StdErr 

Intercept   0.4286 0.565 
age Old -0.2411 0.6061
age Young 0 0 
carage New 0.1339 0.5836
carage Old 0 0 
Scale   1 0 

and estimated parameters for updated five data points are 

Table 15. GLM output of updated data – identity link 

Parameter Level1 Estimate StdErr 

Intercept   0.4305 0.5594
age Old -0.2374 0.5827
age Young 0 0 
carage New 0.1297 0.552 
carage Old 0 0 
Scale   1 0 

The predicted values from the two models are different as well.  For the first model it is 

Table 16. GLM prediction of initial data – identity link 

age carage claim prediction

Old Old 0.2 0.1875 
Old New 0.3 0.32143 
Young Old 0.4 0.42857 
Young New 0.6 0.5625 

and for the second mode, it is 

Table 17. GLM prediction of updated data – identity link 

age carage claim prediction

Old Old 0.2 0.19315 
Old Old 0.2 0.19315 
Old New 0.3 0.3229 
Young Old 0.4 0.43053 
Young New 0.6 0.56027 

Because there are more ‘Old/Old’ combination in the updated data, the model is dragged closer to the 
‘Old/Old’ observed claim frequency from 0.1875 to 0.19315.  However, the fit deteriorates for the rest 
of the data. 
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So this example show that how the model results could be different just because the mixture of rating 
factor in data is different, and the difference could quite material. 

5.3 Key implications and possible solutions 

GLMs should be trained on expected future mixture of portfolio, rather than historical portfolio.  
Current practice is to train GLMs on previous 2-4 years of claim experience with no adjustment to the 
exposure.  So the results that are best fit to the historical portfolio and the large segments in the 
history.  However, because of change of market condition, the sale actually made in the future could 
be in those smaller segments in history where the model fit is poorer. 

An iterative modelling approach can be taken.  It might work in following steps: 

1) Build GLMs using all historical claim experience data 
2) Build conversion model by using GLMs’ output and current market condition 
3) Score a conversion rate to every historical data 
4) Re-build GLMs using all historical claim experience data and the scored conversion rate as a 

weight 
5) If GLMs in step 4) is similar to the model in step 1), then finish, otherwise go to step 2) to 

update the conversion model by the GLMs in step 4) 
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6 Maximum likelihood estimate of prediction is lower than mean of 
prediction distribution 

6.1 Discussion of fact 

6.1.1 Uncertainty of estimates 

Usually GLMs use maximum likelihood (ML) to estimate the parameters i  in the model.  ML gives a 

point estimation of the parameter, denoted as î , which is just one single value.  The predicted mean 

of each row, which is  1 ˆg  X , is also a ML estimate, because of the functional invariant property of 

ML estimate. 

However, other values could still be the true parameter because data observed is just one sample of 
the true distributions, i.e. there is uncertainty over the ML estimate.  Likelihood of the other values can 
be calculated, which should be lower than that of the ML estimate.  All these possible values with 
associated likelihood will define a probability distribution: the distribution of estimate.  The ML 

estimate î  is the mode of the estimator distribution.  Except for Normal distribution, generally the 

mode does not equal to the mean or median of the distribution.  

6.1.2 Calculation of distribution of estimate 

Bayesian and Frequentist have different way to reflect this uncertainty of parameter.  From a 
Bayesian point of view, the distribution of estimate is essentially a posterior distribution of the 
parameter.  So the standard Bayesian approach could be used to calculate the estimator distribution.  
However, typically the posterior distribution does not have a close-form solution and need a numerical 
solution, such as Markov Chain Monte Carlo (MCMC) method.  An assumption of prior distribution is 
also required in this calculation. 

From a Frequentist point of view, this uncertainty over estimator is reflected in the standard error or 
confidence interval of estimate, and the estimator distribution is essentially a sampling distribution, i.e.   
how much would the estimate change if data is re-sampled?  Usually the sampling distribution is an 
unknown distribution and approximation has to be made to calculate it.  Because there is a large 
sample theory for MLE that the estimate is asymptotically normal distributed, one common 
assumption is that the estimate is normal distributed with ML estimate of mean and standard deviation.  

However, convergence of the sampling distribution to Normal distribution varies significantly. 

Particularly, when the link function is not identical function, the linear predictor ˆX  and the prediction 

 1 ˆg  X  cannot both be normal distributed.  For example, when log link is used, if ˆX  is Normal 

distributed,  1 ˆg  X  will be log-Normal distributed. 

6.2 Examples 

A dataset of claim number is created to illustrate the idea.  It consists of 13 policies of 0 claim, 6 of 1 
claim and 1 of 2 claims: 
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Table 18. Data for calculation of distribution of estimate 

# of claims ( iy ) # of policies ( in ) 

0 13 

1 6 

2 1 

Total 20 

Consider a GLM using Poisson distribution and log link function with only one intercept parameter, i.e. 
a blank model.   

   expY Poisson   

With this simplification, it is much easier to calculate the Bayesian approach posterior distribution to 
illustrate the idea. 

By definition, the posterior distribution of   is 

      | |p p p   y y  

By assuming data iy ’s are independent to each other and using a non-informative prior distribution, 

which assigns equal probabilities to all possibilities, the posterior distribution becomes  

   | |i
i

p p y y  

                                exp expi
i

y      

                                   exp expi
i

y      
 
  

                                  exp expi
i

y n     
 
  

where the second step use definition of Poisson distribution and ignore the term  1 !iy  as it is a 

constant. 

The model prediction is calculated through the link function    1 expg  X .  Its posterior 

distribution can be derived as 

   | |i
i

p p y y  

                          exp lni
i

y     

                         exp lni
i

y      
  

                       exp ln i
i

y n     
  
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The results are shown in Figure 4 and 5.  On both figures, the result of GLM’s approximation is also 

plotted.  GLM estimates the mean of parameter   is -.0.9163 and standard error is 0.3536. 

Figure 4 shows that the posterior distribution of   shifted toward left compared to Normal 

approximation in GLM, although the two distributions share the same mode at around -0.9.   

 

Figure 4. Distribution of    

Figure 5 shows that the posterior distribution of prediction   shifted toward left compared to log-

Normal distribution, and what’s more, it is far from Normal approximation.  Both posterior distribution 
and log-Normal distribution has mode at 0.4.  However, the mean of the distribution is higher, as show 
in Table 19.   

 

Figure 5. Distribution of    
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Table 19. Mode and mean of distribution of estimate 

  Mode Mean Mean vs Mode 

Posterior  0.4 0.45 12.5% 

GLM 0.4 0.483 20.8% 

Table 19 shows that the mode, or maximum likelihood estimate, is much lower than the mean of the 
distribution of estimation.  This is mainly because in this illustrative example, the number of data is 

very low and hence the uncertainty of   is high at 0.3536.  Usually in practice we observe that the 

standard error of linear predictor X  ranges 0.01-0.1 and the more complicated is the model the 

higher is  .  

To give a more realistic scenario, the same 20 policies as in table 18 are repeated 15 times. GLM 

based on this new dataset has standard error of   of 0.0913.  And the distribution of parameter   

and prediction   are plotted in Figure 6 and 7.  Figure 6 shows that posterior distribution of 

parameter   is very close to Normal distribution.  However, the distribution of prediction   in Figure 

7 is still not Normally distributed.  Table 20 shows that the maximum likelihood estimate is about 1% 
lower than the mean. 

 

Figure 6. Distribution of    
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Figure 7. Distribution of    

Table 20. Mode and mean of distribution of estimate 

  Mode Mean Mean vs Mode 

Posterior  0.4 0.403 0.8% 

GLM 0.4 0.405 1.3% 

6.3 Key implications 

When the distribution of estimate is positively skewed, usually the mean of distribution is higher than 
mode, which indicates the ML estimate is lower than the probability weighted average of all possible 
predictions, i.e. the mean.  So the current practice to use ML estimate might not be ideal, as it 
underestimate cost on average.  

The extent of underestimation depends on uncertainty in parameter estimation, and ultimately on 
volume and quality of data.  Model has higher uncertainty, for example severity model, large claim 

frequency model, the impact could be quite big.  As a rule of thumb, if the standard error of   is 

about 0.1, ML estimate underestimate the mean about 1%. 

6.4 Possible solutions 

The uncertainty of parameter and prediction need to be better understood and evaluated.  Although 

both parameters   and prediction   are asymptotically Normal distributed, the speeds of 

convergence are different.  The parameters   usually converge faster, so it can be assumed that  

  2ˆ ,i i iN s   

and i s are mutually independent.  This assumption gives that the linear predictor is also Normal 

distributed with mean ˆX  and variance ˆTX ΣX , i.e. 

 ˆ ˆ, TX N  X X ΣX  

where Σ̂  is covariance matrix of  .  Because it is a Normal distribution, the mode equals mean, so 

the ML estimate is a good approximation mean. 
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The uncertainty of   depends on the link function.  But generally there is 

       1 1ˆ ˆE E g g E       . 
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7 Link function could bias the model prediction and significantly 
change the lower and upper bound of prediction 

7.1 Discussion of fact 

In using canonical link function, the model prediction always equal to the average in the data.  
However, this desired feature is not guaranteed when non-canonical link function is used [7].    

Usually log link function is used in risk premium with the main aim to simplify the implementation as 
multiplicative rating structure is preferred.  Log is a canonical link function for Poisson distribution but 
not for Gamma distribution.  This explains sometime in the severity model, the modelled prediction 
does not equal to the historical average in the data exactly.  However, based on our previous 
experience, this difference usually is not big with maximum of 1%.  Theoretically reason for this will 
not be explored further here but more details are in [7]. 

A more serious issue is the impact on the confidence interval of the prediction.  As discussed in 
Section 6, the uncertainty of parameters and prediction are important element in the model and are 

asymptotically Normal distributed.  Although the parameter   usually converges to Normal 

distribution quickly, the prediction after link function transfer  1g X  does not.  Because the link 

function is applied on the linear predictor, it could change the confidence intervals significantly.   

7.2 Examples 

 We build a set of severity model with Gamma distribution using the dummy dataset in Table 21 

Table 21. Data for severity model with Gamma distribution  

Factor Value 

A 100 
A 400 
A 500 
A 1000 
A 10000
B 100 
B 200 
B 300 
B 400 
B 500 

‘Factor’ is the only rating factor used in the model, and the claim value is in the ‘Value’ column.  Table 
22 – 24 show the results of GLM with different link functions. 

Table 22. GLM output using canonical link (Inverse link) 

factor prediction bottom top xbeta stdbeta 

A 2400 1239.5 37656.24 0.000416667 0.00019904 
B 300 154.94 4707.03 0.003333333 0.001592318 

Table 23. GLM output using log link 

factor prediction bottom top xbeta stdbeta 

A 2400 941.014 6121.06 7.78322 0.4777 
B 300 117.627 765.13 5.70378 0.4777 
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So the current practice of model diagnostics might give an optimistic message of model fitness.  With 
conversion rate as low as 0.1% on price comparison website, only this 0.1% of model really matters.  
Rather than how good is the model, the question really should be asked is how bad the model is 
when the model is wrong. 

The current model diagnostics methods need to be applied to sales portfolio.  However, the sales 
portfolio will only happen in the future after price is set, so it has to be estimated.  So it has to be 
estimated.  One approach is to use the conversion model.  So the process to build risk premium GLM 
might work in following steps: 

1) Build GLMs using all historical claim experience data 
2) Build conversion model by using GLMs’ output and current market condition 
3) Score a conversion rate to every historical data 
4) Model diagnostic on the historical data with scored conversion rate as weight 
5) If the model diagnostic show good fit, then finish, otherwise go to step 1) and use scored 

conversion rate as weight in GLMs training 
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9 Conclusion 

Six facts of GLMs are discussed in this paper.  From a statistical point of view, nothing is really new.  
However their applications and implications in non-life pricing have not been fully explored before. 

Overall, it has been shown that GLMs might underestimate premium in segments where the model is 
highly uncertain.  GLMs also tend to push premium towards extreme level, which creates downside 
risk in a competitive market.  GLMs might also need to be tailored to specific segments that relevant 
to future sales. 

It is pre-mature to conclude whether the use of GLMs is still fit for purpose in current market.  
However, it is clear that GLMs have some limitations when used for pricing.  It is important to 
understand and communicate these limitations so business management could make informed 
decision. 
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