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1 (i) This is clearly a Markovian birth process. The state space is {0, 1, ..., N}.

Given that we have m infected and N − m healthy individuals, the
number of “dangerous” pair contacts is m(N − m). Thus, the rate

σm,m+1 = λp
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(ii) The expected total infection time is the sum of the reciprocal rates
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2 (i) Let Nij denote the number of minutes when the car was in lane i at the
start of the minute and in lane j at the end. The estimate of the
transition probability pij is Nij / Ni+ , where Ni+ = Σj Nij .

(ii) The problem here is the alternative hypothesis. It would be possible to
test whether the distribution of Xn+1 conditional on Xn = i was really
independent of Xn−1. Or one might test, using a standard goodness-of-fit
test, whether the distribution of the number of consecutive minutes spent
in lane i really was geometrically distributed with parameter determined
by i.

3 (i) Since {Un} is Gaussian and stationary, it is determined uniquely by its
mean and autocovariance functions. For k > 0 we have γk = Cov(Un , Un−k)

=
2

2
τ
θ

e−θk , so that the ACF is ρk = e−θk and the variance γ0 =
2

2
τ
θ

.

(ii) Compare this with the corresponding values for an AR(1): γ0 =
2

21
σ
− α

and

ρk = αk for k > 0.

The two are seen to match as long as α = e−θ and σ2 = (1 − e−2θ)
2

.
2
τ
θ
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4 (i) If X satisfies dXt = Yt dBt + Zt dt, then f(Xt) satisfies

d[f(Xt)] = f ′(Xt) Yt dBt + { f ′(Xt) Zt + ½ f ′′(Xt)
2 }tY dt.

(ii) (x4)′ = 4x3 , (x4)′′ = 12x2.

4( )td B = 34 tB dBt + 1
2 . 212 tB dt = 34 tB dBt + 26 .tB dt

(iii) 4
0 ( )t

sd B� = 3 2
0 04 6 .t t

s s sB dB B ds� + �

Therefore 3
0
t

s sB dB� = 4 231
04 2 .t

t sB B ds− �

5 (i) P =
1 2 1
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(ii) (a) 3
13P =

14
64

=
7
32

= 0.21875.

(b) 2
23P =

2
16

=
1
8

= 0.125.

(c) 3 3 3
13 23 33

14 9 8
31 31 31

P P P+ + =
14 14 9 20 8 17

31 64
× + × + ×

×
=

512
31 64×

=
8

.
31

(iii) By time n = 300 the effects of the starting point have worn off. The
answer is therefore indistinguishable from the stationary probability π3 in
all three cases.

It is easily observed that the distribution in (c) is stationary, so that

π3 =
8
31

.

6 (i) The daily change in value of a share is generally on a scale consistent
with the value of the share: this tends to indicate that model II is
preferable.

(ii) (a) Model II does appear to fit better than model I; the S dataset does
indeed exhibit large variations when it is at a high level, and
smaller ones when low.

However, the fit does not appear all that good, as Brownian
increments are normally distributed, so are seldom as large as
some of the jumps which appear in this dataset.
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(b) If the Brownian model were accurate, the day-to-day increments
sn − sn−1 should be independently normally distributed with
constant mean and variance:

a test of normality (Anderson-Darling, Kolmogorov-Smirnov, χ2

goodness-of-fit) would do fine; a test of independence (based on
sample ACF, or the Durbin-Watson statistic) would also be a good
suggestion.

(iii) (a) A Lévy process is the sum of three independent components: a
deterministic part of the form µ + αt, a Brownian part of the form
σBt and a pure jump part which may be thought of as a compound
Poisson process.

(b) One problem would be in estimating the distribution of the jump
sizes, particularly with only 250 observations. Even if a family
were assumed for the distribution (e.g. double exponential), there
would be the additional difficulty that small jumps would not be
detectable against the background of the Gaussian noise.

7 (i) (a) First the uk need to be transformed so that their distribution is
something suitable for the white noise sequence of a time series,
since at the very least the mean of the sequence needs to be zero.

2(0, )eN σ is the standard choice: one method of achieving this is to
define, for each integer t,

e2t = 2 2 12 log sin(2 )e t tu u +σ − π

e2t+1 = 2 2 12log cos(2 ),e t tu u +σ − π

but there are others, such as the polar method, inverse transform
method or acceptance-rejection sampling.

The values of the et can now be fed into the formula to give the
values of the Xt , whichever model is in use.

(b) The ability to re-use a pseudo-random number sequence is
important when comparing the ability of different mechanisms to
control a process which is affected by randomness: in order to
ensure fair comparison of the mechanisms, the must be subjected
to the same degree of “random” input.

(ii) The models do not possess the correct correlation structure.
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(iii) (a) ρ1 = Corr(Xt ,Xt−1) = α1Corr(Xt−1 ,Xt−1) + α2Corr (Xt−2 ,Xt−1) = α1 + α2 ρ1 .

Hence ρ1 = α1 / (1 − α2)

ρ2 = Corr(Xt ,Xt−2) = α1Corr(Xt−1 ,Xt−2) + α2Corr(Xt−2 ,Xt−2) = α1 ρ1 + α2 .

(b) We have 0.7 = ρ1 = α1 / (1 − α2)

and 0.5 = ρ2 = α2 + 2
1α / (1 − α2) = α2 + 0.7α1. Two equations in two

unknowns. Solution: α1 =
35

,
51

α2 =
1

.
51

(2 marks for the observation that α1 = 0.7 and α2 = 0 is very close
to giving the right answer, as it gives ρ2 = 0.49.)

8 (i) 0,0( )P t′ = µP0,1(t) − λP0,0(t), or a more general form such as 0,0( )P t′ =

ΣP0,k(t)σk,0

(ii) Since P0,1(t) = 1 − P0,0(t),

we have 0,0( )P t′ = µ(1 − P0,0(t)) − λP0,0(t). Any solution method will do,

e.g.
d
dt

[e(λ+µ)t P0,0(t)] = µe(λ+µ)t , solved by P0,0(t) =
µ

λ + µ
+ Ce−(λ+µ)t, with C

being determined by the fact that P0,0(0) = 1.

(iii) E0Ot = E0 0
t� Is ds = 0

t� E0 Is ds = 0
t� P0,0(s)ds

= 2( )
t

µ λ+
λ + µ λ + µ

(1 − e−(λ+µ)t)

(iv) Since the process must be in state 0 or state 1 at all times, the solution is

just t − E0 0t = 2( )
t

λ λ−
λ + µ λ + µ

(1 − e−(λ+µ)t).

(v) (a) Assuming a member who is initially healthy, expected outgoings
(including expenses) by time t and expected income by time t, are
respectively

γt + β ( )
2 (1 )

( )
tt e− λ+µ� �λ λ

− −� �λ + µ λ + µ� �

and ( )
2 (1 ) .

( )
tt e− λ+µ� �µ λ

α + −� �λ + µ λ + µ� �
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In the long run, then, as t → ∞, we require αµ = βλ + γ(λ + µ) to
break even.

(b) The assumptions required are that the rate of becoming ill and
rate of recovery from illness are constant.

(c) This will certainly not be true of any individual member but, if
membership is large and the age and health profiles of the
members are constant by virtue of a constant influx of new
members, it may be a reasonable approximation.

9 (i) If Vt is a martingale, then its expectation must be constant and equal to
its initial value euy.

Therefore ( ) ( )tu y t B c u te +µ +α −E =
2 2( / 2 ( ))uy u u c u te + µ+ α − = euy.

Thus we must have c(u) = uµ + u2α2 / 2.

(ii) The optional stopping theorem states that if Mt is a martingale, and T is a
random stopping time, then under some additional technical conditions
(such as Mt∧T being uniformly bounded) we have:

EMT = M0.

It is frequently used to evaluate the expectation of a function of T, such as
the moment generating function (as in this instance).

(iii) Applying the optional stopping theorem to the martingale Vt we find that

aTVE = euy = ( ) .aua c u Te −E

The equation c(u) = v has two roots u+ , u− , one being negative and the
other positive (since v is positive).

Now
at TV ∧ = ( ) tu v Y vte − and Yt ≥ a for 0 ≤ t ≤ Ta. If u(v) < 0, then

0 < ( )
a

u v a
t TV e∧ ≤ for all t, so that the technical condition is satisfied; the

same cannot be said if u(v) > 0.

Therefore the positive root is unacceptable and f(y, v) = avT
ye

−E = ( )( )u v y ae − − .

Comment: For the record, there were two very slight errors in this question, both
appearing as subscripts. In line 4, first formula: { }T α should have read { }aT , and in part

(iii) line 1: { }uT should have read { }aT . This was taken into account by the markers, and

the examiners ensured that no marks were lost by students because of either small error.
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10 (i) PAA (s, t) =
t
s xdxe− � µ =

2 2( ) / 2t se−µ −

(ii) P[Rs ≥ w] = PAA (s, s + w) =
2 2(( ) ) / 2s w se−µ + − =

2 / 2.sw we−µ −µ Therefore

E[Rs] =
2 / 2

0 .sw we dw∞ −µ −µ�

Complete the square at the exponent to get

E[Rs] =
2 2/ 2 ( ) / 2

0
s s we e dwµ ∞ −µ +� =

2 2/ 2 / 2s x
s

dx
e eµ ∞ −

µ�
µ

=
1 ( )1

.
( )

G s

g s

− µ
µ µ

(iii) From (ii) and the given bound

1 1
[ ]sR

s
≤

µ µ
E =

1
sµ

3 3 / 2

1 1 1
[ ]sR

ss

� �
≥ −� �� �µµ µ� �

E = 3 2

1 1
.

s s
−

µ µ

The first inequality yields

µ ≤ 1
[ ]ss RE

=
1

420
= 0.00238 . (year)−2.

The second inequality can be written as

µ2E[Rs] 3

1
0,

s s
µ− + ≥

so µ must lie outside the interval:

2 3

4 [ ]1 1

2 [ ]

s

s

R
s s s

R

± − E

E
=

4 [ ]
1 1

2 [ ]

s

s

R
s

s R

± − E

E
=

24
1 1

70
2 6 70

± −

× ×
= [0.00023, 0.00215]

In fact, since clearly µ 1
[ ]ss R

−
E

�
we see that µ must lie in the interval

[0.00215, 0.00238].

(iv) Use the inverse transform method, X = F−1(U).

In this case 1 − F(x) = 70exp( [ ] )x a bt dt− � + = exp{−a(x − 70) − ½b(x2 − 702)}.
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Therefore ½bx2 + ax = −log(1 − F(x)) + ½702b + 70a. Replace F(x) by u to
get

x = F−1(u) =
2 22 [ log(1 ) ½70 70 ]a a b u b a

b
− + + − − + +

= −r + 2 2 170 140 2 log(1 ),r r b u−+ + − −

where r = ab−1. If u is an observation of a uniform pseudo-random variate,
then x is an observation from the required distribution.

11 (i) Consumer prices do tend to exhibit regular seasonal variation, though not
a great deal these days. And, since prices tend to go up rather more than
they come down, it is probably worth including a trend term in any model.
It is certainly possible to test whether the trend term is equal to zero.

(ii) (a) Xn+1 − xn = α(xn − xn−1) + en+1 + βen .

(b) The parameters are α, β and 2.eσ The trend removal process would
have accounted for any µ parameter.

(iii) ˆ (1)nx = E(Xn+1xn , ..., x1) = xn + α(xn − xn−1) + E(en+1 + βenxn , ..., x1). Now
en+1 has mean 0 and is conventionally supposed independent of everything
that happens before n.

On the other hand, en can be deduced from past data,
e.g. en = xn − xn−1 − α(xn−1 − xn−2) − βen−1 , which may be iterated back to get
en in terms of the known x and the known e0.

Thus

ˆ (1)nx = xn + α(xn − xn−1) + βen .

Similarly,

ˆ (2)nx = E(Xn+2Fn) = E(Xn+1 + α(Xn+1 − xn) + en+2 + βen+1Fn )

= (1 + α) ˆ (1)nx − αxn .

We see that Xn+1 − ˆ (1)nx = en+1 , so that the prediction variance is just

Var(en+1) = 2.eσ
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(iv) Since en = xn − 1ˆ (1)nx − , we have

ˆ (1)nx = xn + α(xn − xn−1) + β(xn − 1ˆ (1));nx −

if we set α = 0 and β = −ξ, the equation is identical to the updating
equation for exponential smoothing.

(v) An ARIMA(p, d, q) model is I(d); in this case, x is I(1).

A stationary (I(0)) model has an equilibrium distribution: the distribution
of the forecast of Xn+k would converge to equilibrium for large k. An I(1)
process is the partial sum of an I(0) process, so would have increasing
variance, even if the mean happened to be stable.

(vi) Two series {x} and {y} are cointegrated if both are I(1) but there are some
constants a and b such that {ax + by} is stationary.

Two processes are likely to be cointegrated if one drives the other, or if
both are driven by the same underlying process. In the given instance the
suggestion is certainly worth investigating.


