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he examiners were pleased to note that the overall quality of answers on this 
final sitting of subject 103 was high and that many of the candidates 
demonstrated a good knowledge of the principles and practice of stochastic 
modelling.  As always, credit was awarded for comments which showed that 
candidates had an understanding of the topic covered in a question, even if the 
calculations gave the wrong answer due to some mathematical error.  
Question 7 was particularly well answered, with Questions 2 and 4 not far 
behind.  Questions 6 and 10 had the lowest proportion of good answers;  it is 
possible that time pressure played a role in the case of Question 10.  

1 (i) Let nij denote the number of direct transitions from state i to state j, with ni+ 

the total number of transitions out of state i.  Then /ij ij ip n n .     

(ii) Model fitting aims to find the best-fitting model in a given class.  But it is 
conceivable that even the best-fitting model in the class does not fit very well.  
Model validation is a set of procedures to test the adequacy of the fit.     

(iii) Sensitivity analysis is part of model validation.  The purpose is to determine 
whether the behaviour of the fitted model would be substantially different if 
the parameter values were slightly different from the estimates already 
obtained.     

The technique involves simulating the fitted process a large number of times, 
using several simulations for each of a number of slightly different parameter 
values, then examining the output of the simulation to attempt to identify 
systematic differences.    

It is important that the same sequence of random numbers be used in each of 
the sets of simulations to ensure comparability.  

Many candidates failed to mention the importance of using the same sequence 
of pseudo-random numbers.  Apart from that, most answers showed good 
knowledge of the principles of modelling.   

2 (i) It is inadequate because someone who has never suffered from disease A or B 
is not in the same position as someone who has suffered from one or both in 
the past but is currently healthy.    

The state space should be extended by splitting state 0 into 3:  0:  Has never 
suffered from A or B , A: Has suffered from A but is now healthy , 
AB: Has suffered both A and B but is now healthy.

   

(ii)          

  0 

1 

A 

2 

AB
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(iii) Only a time-inhomogeneous model can properly reflect the dependence of 
both the recovery rate for A and the infection rate for B on the age of the 
person.   

(iv) If, in a population taken as a whole, the number of people in each age group is 
roughly constant over time, then the age-dependent transition rates of the 
individuals who make up the population can be averaged out to give a time-
homogeneous model which works perfectly adequately given that national 
medical services are generally only concerned with total numbers falling ill.     
This question was answered well in general.  Where candidates lost marks it 
was often due to mis-specifying the additional states in part (i).  Splitting state 
A into Has recovered from Disease A and is aged below 18 and Has 
recovered from Disease A and is aged 18 or more is reasonable when 
modelling an entire population, but does not lead to a time-homogeneous 
Markov model when applied to a single individual, since one s 18th birthday 
does not occur at a random time.  However, answers along these lines with 
good explanations were given full marks.    

3 (i) Set Xi as follows:     

if 0 1/ 5

if 1/ 5 9 / 20

if 9 / 20

i

i i

i

A U

X B U

C U

       

(ii) Use the inverse transformation method.    

The distribution function is
4

10( )
18

x tF x dt
2

10
1

36

x
 for 4 10x .    

Solving the equation gives 1( ) 10 6 1F u u

    

So we can set 10 6 1i iX U

    

or alternatively we could use 10 6i iX U

   

(iii) Use acceptance-rejection method:    

Let V1 =  U1 , so that V1 is uniformly distributed on [0, ] and has density 

function g(x) = 1/  over that range.    

We define   
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2

0 0
sup ( ) / ( ) sup 2sin 2.

x x
C f x g x x

 
     

If U2 < sin2 V1 let X1 = V1; otherwise reject this value and select a new pair 
U1, U2.  Repeat for other Xi   

Answers to parts (i) and (ii) were generally good.  For part (iii) many 
candidates only described the general theory without specifying g(x) or 
calculating the constant C.   

4  (i) A standard Brownian motion { }tB  is defined by the following properties:   

 

(0) 0B  and tB  has independent increments; t sB B  is independent of 

uB  for 0 u s  and s t .  

 

tB  has stationary and Gaussian increments; (0 )t sB B N t s .  

 

tB  has continuous sample paths, i.e. tt B  is continuous.    

(ii) Using Itô s Lemma gives      

2
2

2

1 1 1
(log ) ( )

2

2

t t
t t

t

d S dS dSt
S S

dt dB dt

    

This implies that      

2

0log log
2t tS S t B

    

or, finally,      

2

2

0
tt B

tS S e

    

(iii) We have   
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2

2

0

2

2

log
2

1
log

2

log
1

t t

t

x
y

x
P S x S y P B t

y

x
P B t

y

t

t

    

Substituting the values 120 96 0 2 0 15x y  and 0 25t  years 
above we find that the answer is      

1 (2.3461) 1 0 9905 0 0095.

    

The calculations in parts (ii) and (iii) were well done.  The definition in part 
(i) caused some problems:  it is necessary to mention the stationary, 
independent increments property; then either of the two remaining properties 
(continuous sample paths, normally distributed increments) implies the other.   

5 (i) The Markov property is clear:  the chain jumps either up or down by 1, with 
probabilities depending only on the current state, not the past history.  

1( 1| )n nP X i X i  is the probability that the (n+1)th ball selected is red, 

which is just 1/N of the number of red balls at time n, which is N 

 

i.   

(ii) From any state i it is possible to reach any other state j in just |j 

 

i| steps, 
either all upwards or all downwards.  This means that the chain is irreducible.    

Every transition takes the chain from an even state to an odd one or vice versa, 
which implies that the period must be an even number.   

On the other hand, starting from state 0 it is possible to return to 0 in two 
steps.  Therefore state 0 has period 2 and, by irreducibility, all states have 
period 2.     

(iii) To find the stationary distribution we can use the relationship suggested by the 
Detailed Balance Equations:     

1
1

i i
N i i

N N

 

for i = 0, 1, 2, ., N  1.    

Thus we get the recursive relationship     

1 1i i
N i

i

 

for i = 0, 1, 2, ., N  1 
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Starting with i = 0 and working forwards we get     

1 01

N

     

2 1
1

2

N
 = 0

( 1)

(2)(1)

N N

     

3 2
2

3

N

 

= 0
( 1)( 2)

(3)(2)(1)

N N N

    

and in general     

i = 0
( 1)( 2) ( 1)

( 1)( 2) (2)(1)

N N N N i

i i i
 = 0

!

( )! !

N

N i i
 = 0

N

i

     

Alternatively, write down the transition matrix P and use the equation TP = 
T to obtain    

1 0 1 0

1
N

N

    

0 2 1 2 0

2 ( 1)

2

N N

N

      

1 3 2 3 0

1 3 ( 1)( 2)
,

3!

N N N N

N N
 etc.    

To find 0, we use the fact that  0 + 1 + 2 + ..+ N  =  1    

i.e. 

1 1
1

0
1 0

! ! 1
1 2

( )! ! ! 2

N N
N

N
i i

N N

N i i i

    

Therefore the stationary distribution  = ( 0, 1, 2, .., N) is given by     

1

2
i N

N

i

 

for i = 0, 1, 2, ., N   

(iv) 0( | 0)nP X j X  does not converge, being alternately zero and non-zero, 

since X is periodic.    

The derivation of the stationary distribution in part (iii) caused difficulties 
with many candidates, but otherwise candidates showed a good understanding 
of discrete-time Markov chains. 



Subject 103 (Stochastic Modelling)  September 2004 

 
Examiners Report  

Page 7   

6 (i) (a) 1
1

1
[ ] [ ] ( )x t x t x t

dm d
E X E dX E b X b m

dt dt dt
, where Ex 

denotes conditional expectation given X0 = x.  This derivation uses the 
fact that the increments of Brownian motion have expectation equal to 
zero.    

(b) 1[ ( )]t td
e m t be

dt
, implying that  

1( ) [ ( 1)] ( )t t tm t e x b e b x b e .     

(ii) (a) 2 2

2 2 3/ 2

2 ( ) 2 [ ( ) ]

[2 ] 2 2

t t t t t t t t t

t t t t

dY X dX dX X b X dt X dB X dt

b X dt X dt X dB

         

(b) 2
2 1 2( ) [2 ] ( ) 2 ( ).

d
m t b m t m t

dt
  Again we have used the fact 

that Brownian increments have mean zero.      

(c) We do not need to solve the equation, but just to note that since dm2/dt 
tends to 0, this implies that 2  limt

 

m2(t) = [2 b + 2] limt

 

m1(t) 

= 2 b2 + b 2.  Therefore     
2

2 2
0lim [ | ]

2t t
b

E X X x b , from which we deduce that 

2

0lim Var[ | ]
2t t
b

X X x .      

This question was relatively poorly answered, although much of it is based on 
the standard theory of Ordinary Differential Equations.   

7 (i) Taking covariances with t kX  for 1k  in (1) gives    

1 1 2 2( ) ( ) ( ) ( )t t k t t k t t k p t p t kCov X X Cov X X Cov X X Cov X X

    

which gives the Yule-Walker equations since, by definition, 
( )k t t kCov X X  for 0 k p .     

For 0k , there is an extra term which accounts for 2( )t tCov X e .    

(ii) A diagnostic test is based on the partial ACF and uses the fact that, for an 
AR(2) process, the partial autocorrelations, k , are zero for 2k .   
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The values of k  are estimated by the partial ACF, 
k

, and for 2k  the 

asymptotic variance of 
k

 is 1 n . Using a normal approximation, values of the 

sample partial ACF outside the range 2 n  indicate that the AR(2) model 
may be inadequate.    

(iii) (a) The process can be written in terms of the backward shift operator as 
2(1 0 6 0 3 ) t tB B X e .      

Hence the characteristic polynomial is 21 0 6 0 3z z  with roots 
20 6 (0 6) 1 2

0 6

 

i.e. the roots are 1 156 6 .      

Since both roots lie outside the unit circle, the process can be 
stationary.     

(b) tX  is not Markov since the conditional distribution of 1kX  given the 

history up to time k  depends on 1kX  as well as on kX .     

(c) The Yule-Walker equations in this case yield       

0 1 20 6 0 3 1

 

(3)     

1 0 10 6 0 3

 

(4)     

2 1 00 6 0 3      (5)     

From (4) we have       

0
1 0 1

6
0 7 0 6

7

 

(6)     

and substituting into (5) we get       

2 0 0 0
36 3 57

70 10 70
(7)      

Inserting the last two equations into (3) we obtain       

0 0 0
36 171

1
70 700

      

which gives       

0 0
36 171 700

1 1
70 700 169
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Then (6) and (7) yield resp.       

0
1 2

6 600 570

7 169 169

   
The examiners were pleased to note the high quality of answers to this 
question.  It appears that the theoretical principles of Time Series analysis are 
well understood.   

8 (i) The equation is      

1 1( )t t t tX X e e

    

The parameters are  (the autoregressive parameter),  (the moving average 
parameter), the mean level  and the innovation standard deviation .    

(ii) A time series process is (weakly) stationary if the mean of the process, 
( )t tm E X , does not vary with time and the covariance of the process, 

( )t sCov X X  depends only on the time difference t s  and not on the 

particular values t s .     

For the model in (1) to be stationary, 1 is needed.    

(iii) For the method of moments, we calculate the theoretical ACF 1 2  in terms 

of the parameters . Then we find the sample ACF, say 1 2r r  from the data. 

Subsequently we obtain estimates for  by equating 1  with 1r  and 2

 

with 2r .     

The value of 2  is estimated using the calculated value of 0  and the sample 

variance, whereas an estimate for  is the sample mean x .   

(iv) (a) Using the given values we obtain the forecasts      

25(1) 9 12 0 71(14 82) 0 17( 1 98) 19 306x

     

and      

25(2) 9 12 0 71(19 306) 22 827x

    

(b) For exponential smoothing the equation is      

25 24 2425(1) (1) (1) 12 97 0 3(14 82 12 97) 13 525xx x x
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(v) Exponential smoothing is simple to apply and does not suffer from problems 
of over-fitting.  If the data appear fairly stationary but are not especially well 
fitted by any of the Box-Jenkins methods, exponential smoothing is likely to 
produce more reliable results.  More advanced versions of exponential 
smoothing can cope with varying trends and multiplicative variation.   

Many candidates omitted to mention  as a parameter in part (i).  Marks for 
this question were not quite as good as for Q7, indicating that the practical 
aspects of Time Series analysis are less well understood than the theoretical 
ones.   

9 (i) The Markov model implies that holding times are exponentially distributed.   

(ii) The generator matrix is as follows (in minutes then, equivalently, in hours):     

1 1
15 15

31 1 1
20 400 400 25

1 1
30 30

1 1
180 180

0 0 0

0

0 0 0

0 0 0

0 0 0 0 0

W A M S H

W

A

M

S

H

         

1 1
3 3

4 4 0 0 0

0 3 0.45 0.15 2.4

0 0 2 0 2

0 0 0

0 0 0 0 0

W A M S H

W

A

M

S

H

     

(a) The equations are as follows (first if t is in minutes, then in hours)       

1 3
( ) ( ) ( )

30 400
1 1

( ) ( ) ( )
20 15

WM WM WA

WA WA WW

d
p t p t p t

dt
d

p t p t p t
dt

         

( ) 2 ( ) 0.45 ( )

( ) 3 ( ) 4 ( )

WM WM WA

WA WA WW

d
p t p t p t

dt
d

p t p t p t
dt
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(b) First note that pWW(t) = e t/15.  Then try inserting the given formula in 
the second equation above:     

/ 20 /151 4
( )

5 15
t t

WA

d
LHS p t e e

dt

       
and     

/ 20 /15 /151 1 1 1 1
( ) ( ) ,

20 15 5 5 15
t t t

WA WWRHS p t p t e e e

     

which is equal to the RHS, as required.  

We should also check that the formula gives pWA(0) = 0, which it does.      

(c) / 30 / 30 / 20 /153
( ) .4

400
t t t t

WM
d

e p t e e e
dt

 with pWM(0) = 0 

implies that /30 / 60 /30( ) 0.9 1.8 0.9t t t
WMe p t e e , which simplifies 

to /30 / 20 /15( ) 0.9 1.8 0.9t t t
WMp t e e e .    

(iii) (a) The expected length of time spent in state W is 15 mins, after which 
there is a transition to state A with probability 1.     

(b) The other equations are:      

TA = 20 + 0.15 TM + 0.05 TS      

TM = 30      

TS = 180    

(c) Solving these equations gives TA = 20 + 4.5 + 9  =  33.5 and TW = 48.5 
mins  

A number of students suggested that ( ) 1 ( )WW WAp t p t , which works in the 

two-state case.  In this example, however, it is only possible to state that 
( ) ( ) ( ) ( ) ( ) 1,WW WA WM WS WHp t p t p t p t p t  which is not the same. 

It was disappointing that not many candidates made substantial progress with 
solving the differential equations, but the last part of the question was in 
general well done.   

10  (i) The Wiener process can be defined as t tW t B . In this case 1 .    

(ii) We need to show that   
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0t s sE S S S s t

    
as well as proving that [ ]tE S .     

But ( ) ( )W t N t t , so that 
2 2( ) x tx

tM x e

     

We have       

2 ( )W t
t s sE S S E e S

     

2 ( ) ( ) ( )W t W s W s
sE e S

     

2 ( ) 2 ( ( ))W s W t se E e

 

(1)    

using stationarity and independence of the increments.     

From the definition of a Wiener process with drift above, we have      

( ) ( ( ) ( ))W t s N t s t s

 

(2)    

so      

2 ( ( )) ( 2 )W t s
t sE e M

    

where t sM  is the moment generating function of the normal distribution in 

(2). But for this distribution we know that 
2( ) ( ) 2( ) t s x t s x

t sM x e .     

Therefore      

2 22 ( ) ( )(2 ) 2( 2 ) 1t s t s
t sM e

    

now (1) shows that t s sE S S S  as required.     

Finally, check the expectation: 0tS , so      

22 ( ) ( 2 ) ( 2 ) 2[ ] [ ] [ ] ( 2 )W t t t
t t tE S E S E e M e

    

(iii) (a) 2 ( ( ) ) 2[ ( ) ] [ ] [ 2 ( ) 2 ]B t tP S t a P e a P B t b t , where 
b = log a. If 0 , this becomes   
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( )
2 2

b b
P B t t t

t

     
whereas in the case 0  we have       

( )
2 2

b b
P B t t t

t

     

and in both cases the RHS tends to 1 as t .     

(b) [ ] [ ( ) ] 0aP T t P S t a  as t .      

By definition, ( )aS T a . Therefore [ ( )]aE S T a .     

(c) This is not a contradiction because the conditions of the optional 
stopping theorem are not satisfied. Neither ( )S t  nor aT  is bounded 

above, even though ( )S t  is a convergent martingale.    

(iv) (a) In this case aT  is only finite if ( )S t  hits a , which is not certain. 

However, as above it is certain that ( ) 0S t  almost surely.    

Therefore       

if
( )

0 if
a

a
a

a T
S T

T

     

It follows that [ ( )] [ ]a aE S T aP T .     

(b) Now the optional stopping theorem applies, since ( )aS t T  is bounded 

below by 0 and above by a .      

We may deduce that       

1
1 (0) [ ] i e that [ ]a aS aP T P T

a

   

In part (ii) a large number of candidates did not even attempt to prove that 
(| |)tE S : this condition is a requirement for S to be a martingale and 

should not be omitted.  However, most candidates had a good idea of how to 
prove that S satisfied the conditional expectation condition.   
Parts (iii) and (iv) attracted at best sketchy answers.  The examiners were 
unsure whether this was due to pressure of time or to lack of familiarity with 
applications of the optional stopping theorem.  

END OF EXAMINERS REPORT  


