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Transition diagram:
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(a) and (c) are both zero, as it is not possible to return to 1 in an odd number of
steps.
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(a) Yes every chain with finite state space has a stationary distribution.

(b) No. The chain is periodic, so the probabilities do not converge.

1t was possible to read the question as implying the possibility that the mouse could
stay where it was. candidates who did this were still able to obtain full marks for the
question.

Every candidate was able to draw the diagram correctly and most of them correctly
evaluated the required probabilities.

Some candidates were not clear about the distinction between a stationary
distribution and a limiting distribution.

(1)

(ii)

(iii)

(iv)

Prices and salaries are notoriously non-stationary processes, having a tendency
to increase rather than a tendency to stay in the vicinity of some central value.
What is more, the increase is more likely to be geometric than linear. There is
some hope that {VIn P,}, which is equal to {In (P,/P,_;}, may be a stationary

process, and similarly for S.
If prices have recently increased, it is reasonable that workers will demand
salary increases; if salaries have recently increased, there is more money in

the economy, generating a tendency for prices to rise. The dependences are
reasonable.
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This is a first-order VAR.

Sensitivity analysis comes after model verification. In model verification you
check that simulations of the process (with parameter values equal to the
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values estimated from data) look similar to what has actually been observed.
For sensitivity analysis you check that this still works when the parameter
values used for the simulation are a little bit different from the estimates. The
purpose is to guard against the possibility that you have by chance used
parameter values with untypical properties.

Parts (i) and (ii) were done quite well. In part (i) a lot of people concentrated just on
the logs or just on the differences rather than both. In part (ii) quite a few people gave
answers such as "both are linked to inflation" rather than explaining why, or only
considered one way (eg why should salaries be related to prices, but not the other
way around).

Most people got part (iii). In part (iv) most people mentioned varying the parameters

slightly, but not many conveyed the idea of then studying the simulated output of the
model and assessing whether it still looked similar to real life.

()  E(Y)=pt, Var(Y)) = o2t.

(i) E(X,)=n(2p—1) D, Var(X,,) = nD? x 4p(1 - p).
Therefore E(X;) = (2p — 1) D {ﬂ Var(X)) = 4p(1 — p)D> [ﬂ
(iii) (@)  Werequire p = (2p —1)D/h and 62 = 4p(1 — p)D?/h.

(b)  This implies that p = %(H“—Dhj ,D?=c*h+p’h?.

This applies only when 0 < || < u~!. Small values of / should be used
because the random walk model converges to Brownian motion /
diffusion as &7 — 0.
Parts (i) and (ii) were well answered — maybe half the people successfully equated
the random walk moments with the Brownian motion ones — although many
candidates failed to see the derivation of the conditions on p and D through to
completion.

The biggest problem was the last part: "h small" is on the whole a bit too vague to get
the full credit.

(1) Let X =— (log U)/6. Then, for x > 0,
P(X>x)=P(log U <-0x) = exp(—0x).

Differentiating, /(x)=0e %, as required.
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Alternatively: use the inverse distribution function method.
F(x)= f Oe " dy =1—e"" . We need to invert this: set U= F(X) and express
X as a function of U. This gives X =— 0 'log (1-U).

(i) (2

(b)

Use f{x) = 0 exp(—0x) as the base density. We need to find a constant

e—ex

1+x

C such that k(0)—— < COe™% for all x > 0.

C = k(9)/6 is the best that we can do.
The procedure is:
1.  Generate a value y from the density f(x) = 6 exp(—6x).

2. Take another Uniform pseudo-random variable U,; if this is less

than g(y)/(C f{(y)) [which is equal to 1/(1 + y)] then we accept the
value y, otherwise reject it and return to 1.

On average it takes C repetitions of steps 1 and 2 to generate a value.
Each such repetition requires two uniform pseudo-random variables.
So the answer is 2 £(0)/6.

Most candidates did well here, although a few people inverted the density function
instead of the distribution function.

Some experienced real difficulty in providing a clear statement of the algorithm for
Acceptance-Rejection method. A lot of people answered this part in abstract without
realising that they should use the density from part (i) as the base density, and hence
didn't get the marks for calculating C.

)

(b)

EW({) = 0, Cov(W(s), W(t)) = 16Cov(B(ks), B(kt)) = 16k min(s, ©).

Thus & = 1/16 is the required value.

To prove that a process is a BM, it is necessary to check the
covariance, not just the variance.

In addition to the expectation and covariance function, we need to
show

* that W is Normally distributed. Any linear transformation of a
Normal random variable is itself Normal.

* that I has continuous sample paths. For small 4, we have
W(t+ h) — W(t) = — 4(B(kt + kh) — B(kt)), which clearly tends to 0
as h approaches 0.
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*  An alternative to proving continuity is to state that the increments
of W are independent of past values and are also Normally
distributed.

(i1) Consider exp[2B(f)-2¢] with respect to the filtration F,.

B(t) — B(s) is independent of F, and B(s) is F-measurable. Then

E( 2B | Fv): E ( G2LB(D-B(5)] 2B(s) | Fv)

= 2B E( 2LB(1-B(5)] | Fq)

- eZB(S)E(eZ[B(t)—B(S)])
The increment B(¢) — B(s) has the normal distribution with mean 0 and
variance ¢ — s, so the expectation of ¢2l8() =~ B()] i5 equal to

M(2) = exp(2(t — 5)), where M(-) is the moment generating function of the
N(0, t — 5) distribution.

It follows that

E ( o2B(-21 |F ): o2B()-2s
S

and therefore €28~ 1 is a martingale.

For part (i), in (a) many candidates just checked variance rather than the covariance,

but got 1/16 correct. Not so many people got part (b) — generally people assumed
that (a) implied (b), rather than considering other properties of Brownian motion

Most candidates fared well on part (ii), identifying where necessary the mgf of a

normal random variable to successfully demonstrate the given process is a
martingale.
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6 (1) {X()} 1s not Markov because, for example, P[.X,,; =2 |Xt =3,X_1=2,...]
cannot be reduced to P[X,,; =2 |Xt =3].

(11) (a) Define new states

3a = Level 3 this year following Level 2 last year
3b = Level 3 this year following Level 4 last year

(b) The transition matrix is then

1 02 08 0 0 0
2 02 0 0.8 0 0
3a |0 02 0 08 0
4 0 0 0 0.8 0.2
3b |02 0 0 08 0

(©) We have

= 0.27'[:1 + 0.27‘[2 + 0.27'[317 —> = 0.257‘[2 + 0.257T3b

1% 0.8751 + 0.2753a e d Ty, = 0.25(7T3a + 7T3b)
M3, = 0.27T3b + 0.27T3a e d T3, = 0.257531)
T3 = O.2TC4

Applying the condition Z 7; = 1, we obtain the solution as

(Tfl, T, T34, Ty, 7'[3[7) = ﬁ (21, 20, 16, 320, 64)

It follows that the long-run proportion of time spent in Level 3 is
(16 + 64)/441 = 80/441.

A large number of candidates fared well on this question. Some committed the mostly
harmless error of including too many (redundant) states. Most people had a
reasonable attempt at (ii)(c) too, although there were some errors of arithmetic or
matrix multiplication.

7 (1) The generator matrix is
—-c— U c 1)
p —-p—Vv V.
0 0 0

(11) Let B and C be the levels of benefits and contributions, and define 4
(respectively s) as the expected time spent by a policyholder in state H
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(iv)

)
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(respectively S) before finally entering state D. For solvency the company
requires Ch — Bs > 0.

The model allows /4 and s to be calculated. [The equations are

1 c 1 p
+ s, §= +
o+l o+p p+Vv p+v

h=

h]

(a) This might improve predictive power as far as the individual
policyholder is concerned, but in a large population of policyholders
with constant age profile it is not likely to make much difference.

(b) Certain kinds of sickness are more likely to strike at particular times of
year, but they may more or less balance out. If there is a significant
increase in the incidence of sickness in one season, it should be helpful
to include this in the model.

(©) Similarly to (a), the inclusion of duration dependence will significantly
improve the goodness of fit when only one policyholder is being
regarded, but in a large population of policyholders it is unlikely to
make a difference overall.

If the population is split up into categories depending on age, duration of
illness and time of year, it is highly unlikely that there will be sufficient data to
estimate all the transition rates reliably.

This can be regarded a Time Series problem: we seek a test for the existence
of seasonal variation. One suggestion could be to find the best-fitting model
without seasonal variation and the best-fitting with seasonal variation, then to
compare the values of the Akaike Information Criterion.

Alternatively, if the number of policyholders is roughly constant from year to
year, one could use one-way Analysis of Variance to determine whether
Season has a significant effect on claims. If the number of policyholders
varies greatly from year to year, a two-way ANOVA with Year and Season as
explanatory variables could be fitted.

A test based on i’ would have to be carefully constructed. For example,
drawing up a contingency table with the quarters as the rows and with column
titles like “Stayed healthy” and “Fell sick” would be a reasonable approach.

Again done quite well generally.

Many candidates weren't clear that they needed to write a formula that characterises
the company's policy in part (ii).

Parts (iii) and (iv) done well —most people seemed to get the general ideas and write
sensible comments, even if they didn't quite get full marks. Only a few candidates
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noticed that in a large stable population of policyholders the trainee’s suggestions
would not greatly improve the model’s predictive power.

In part (v) many candidates merely mention using the chi-squared test without
explicitly describing it. The question was carefully written to elicit responses which
showed whether the candidate understood what was to be tested.

(1)
(i)

(iii)

State space for X, is {0, 1, 2, 3}.

(a)

(b)

Let 7 be the time taken for a cash dispenser to break down. From the
question:

P(Te(t,t+dt) | T >t)=odt+o(dt)

P(T e(t,t+dr) )
P(T >t)

or in other words = adt+ o(drt)

If we set F(t) = P(T < t), then

M = adt +o(dt)
1-F (1)

and letting dt — 0,

(1)
1-F(¢)

=

Integrate this to get —ln(l —F(t)) =o t+const

Since F(0) = 0, we can set const = 0, and hence F(f) =1 —e™*
That is, 7 has an exponential distribution with mean 1/a.

P(no breakdowns by time £) = (¢*)3 = 3%, Thus the time until the
first breakdown is exponentially distributed with parameter 3o

PX(t+ h) = m) = PCX(E) = m, X(t + h) = m) + PCX(H) = m — 1, X(t + h) = m)

+ P(X(©)=m + 1, X(¢t + h) = m) + o(h).

Thus in general

P, (t+h) = P (D11~ (3~ m)ee + mB)h]+ By (1) —m)cthl,
+ Py (O(m+ DAL, 5 +o(h),
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where 1, is the indicator function of event A.

Rearranging and letting 7 — 0 gives the required equations.

First look at the LHS: if P,, has the given form, then
! _ 3 m—1 2—-m
By ()= " 0" " (1-6())" " 0'(O)[m(1-6(1)) - (3-m)6(1)]
On the other hand, the RHS is equal to
3 m 3-m
- ()" (1-6(¢)) [mB +(3- m)oc] +
m

3 m—1 4—m 3 m+1 2—-m
(4~ m)ot( Je(f) (1=6@)" " +(m+ 1)3( Je(f) 1-6()
m—1 m+1
3
m

=( je(t)’"—l (1-0(t))>™ {—[mB+(3—m)a]9(1—9)+moc(1—9)2 +(3 —m)BGZ}

= @je(z)'”‘l (1-0(2)>" (m—30){o(1-0) - PO}

Thus the LHS and RHS are equal as long as 9'(t) =a—(a+PB)o(2).

Almost everyone got part (i). In part (ii), stating the time until first breakdown is
exponential in (a) is not sufficient: it was necessary to derive this from first principles.
Similarly, a reasonable number got the answer to (b) without deriving it properly.

The most successful strategy for part (iii) was writing the generator matrix and
getting the equations from there.

Only the exceptional candidate attempted (iv),; the algebra was tough, but did not
involve any tricks.

(1)

We need to prove that (Y, |X1, X5, .. X)=17Y,.

We have

EY, | X, X, ... X)) = E((q/ p)> ™| X, X, X,)

= (q¢/ P E((q/ p)* 11X, X,5,..X,)
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= (q/ Py (pq/ P)+qq/ ) +(1=p=q) =1,
which shows that Y, is a martingale.

By taking expectations, we obtain that E(Y,, ;) = £(Y,,), and this in turn implies
that £(Y,) = E(Yy) = (¢/p)™.

(i1) (a) It is clear that T is a stopping time with respect to this martingale, since
the event that the share has reached 0 or N by time n depends only on
Xl’ Xz, ceny Xn al’ld m]

Forn<T,wehave 0<S, <N,
Y, = (q/p)S” S(q/p)N ifg>p,orY,<1ifg<p.

(b) The conditions of the optional stopping theorem are satisfied. It
follows that E(Y7) = E(Y,) = (¢/p)™.

m N 0 N
(iii) (ij =E(YT>=(1] P(ST=N)+[1J P(ST—0)=1—(1-[1] JP(ST—N).
p p p p

_@/p)" /)"
1=/ p)"

Thus P(S;y =N)= % so that P(Sy =0)
1-(q/p)

iav) (a) We have

EZ,y | X, Xo, ., X)) =E(S2 428, X, 1+ X2 —2(n+1)pl X}, X,,.., X))
= Sy =2(n+1)p+28,E(X,.py + E(X1,).

But £(X,,,) =0, E(X 3 +1) =P T g =2p, and the last equation gives
E(Z,, |X1, X5, o0 X)) = 52 —2np=~Z2,,so that {Z,} is a martingale.

n

(b) The conditions of the optional stopping theorem are not satisfied, since
S,f —2np is not bounded below for 0 <n < 7. But we can work with a

truncated stopping time 7x = min(7, K), for which the conditions of the
OST are satisfied, then let K — oo,

Applying the optional stopping theorem we get

E(Zy) = E(Zy) = m*.
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But E(Z;) = E(S7) — 2pE(T) = N*P(S;= N) — 2p E(T) and we are
given that P(S;= N) = m/N. Thus m? = E(Z;) = Nm — 2pE(T), which
implies that E(T) = m(N — m)/(2p), as required.

Parts (i) and (iv)(a) were generally answered successfully.
Part (ii): in (a), the bounds on (q/p)*" must be shown to apply for any p and g, not
just some; the main problem with (b) was that many did not mention the Optional

Stopping Theorem as justification for claiming that E(Y7) = E(Yy).

Of the candidates who attempted (iv)(b), very few noticed that the stopping time did
not meet the requirements of the OST, so needs to be truncated.

(1) The model can be written as
(1-1.7B+0.4B>+0.3B%) X,=(1-0.7B +0.12B%) e,.
The term in the brackets on the LHS above is divisible by 1 — B. We have
(1-1.7B+0.4B>+0.3B8%) =(1 - B)(1 - 0.78 - 0.3B3).
The last term is also divisible by 1 — B, giving
(1-1.7B+0.4B2+0.3B%) =(1 -B)(1-0.7B-0.38%) =(1 — B)*(1 + 0.3B).
(11) The model can be identified as an ARIMA(1, 2, 2) process.

(1)  {X,:t=0} is clearly a non-stationary process, as the AR operator

(1 = B)3(1 + 0.3B) has two roots with modulus one; any ARIMA(p, d, q)
process with d > 0 is non-stationary.

(iv)  (1+0.3B)W,=(1-0.7B + 0.12B%)e,, which can be expressed as
W,=(1+0.3B)1(1-0.7B+0.12B%)e,.
Expanding the first term, W, = (1 — 0.3B + 0.098% — ...)(1 — 0.7B + 0.12B?)e,
=(1-B+0.42B%—..)e,
Therefore yy =1, y; = -1, y, = 0.42.

(v) Just invert the previous representation: e, = (1 — B+ 0.42B8% — ...y 1 W,= (1 +
B—0.42B>+ B> - ...) W, so that m; = -1, m, = —-0.58.

(vi)  None of the three processes is Markov; we know that if {X,: #> 0} is an
ARIMA(p, d, q) process with ¢ > 0, then any finite collection (X,, X, _,
X,_.+1)! is non-Markov.
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(vii)  First transform the data, so that the differenced observations y, = (1 — B)x, may
be thought of as realisations of a stationary ARIMA(1, 1) model.

Estimate the parameters of the model (by Maximum Likelihood or Method of
Moments) and obtain forecasts for future values of y.

Transform these back to obtain forecasts for the x values.
Part (i) was done very well; of people with the wrong answer, most stopped after
taking out one (1-B) factor rather than trying for the 2nd. (ii) and (iii) were also well

answered, following on from (i).

In (iv) there were difficulties with the expansion of the denominator, meaning that few
candidates did well. Similar problems were encountered with part (v).

For the verification or otherwise of the Markov property in (vi) it would have helped
to write out {Y,} and {Z,} explicitly in terms of lagged terms.

Most candidates who attempted (vii) got at least part of the method, but few wrote
down all the main steps in the correct sequence.
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