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Subject 103 (Stochastic Modelling) — September 2004 — Examiners’ Report

(i)

(i1)

(iii)

(i)

(i)

he examiners were pleased to note that the overall quality of answerson this
final sitting of subject 103 was high and that many of the candidates
demonstrated a good knowledge of the principles and practice of stochastic
modelling. As always, credit was awarded for comments which showed that
candidates had an under standing of the topic covered in a question, even if the
calculations gave the wrong answer due to some mathematical error.
Question 7 was particularly well answered, with Questions 2 and 4 not far
behind. Questions 6 and 10 had the lowest proportion of good answers; itis
possible that time pressure played a role in the case of Question 10.

Let n;; denote the number of direct transitions from statei to state j, with n;,
the total number of transitions out of statei. Then f; =n; /ny, .

Mode fitting aimsto find the best-fitting model in agiven class. Butitis
conceivable that even the best-fitting model in the class does not fit very well.
Model validation is a set of procedures to test the adequacy of thefit.

Sensitivity analysisis part of model validation. The purpose is to determine
whether the behaviour of the fitted model would be substantially different if
the parameter values were dlightly different from the estimates already
obtained.

The technique involves simulating the fitted process alarge number of times,
using several simulations for each of a number of dlightly different parameter
values, then examining the output of the simulation to attempt to identify
systematic differences.

It isimportant that the same sequence of random numbers be used in each of
the sets of simulations to ensure comparability.

Many candidates failed to mention the importance of using the same sequence
of pseudo-random numbers. Apart from that, most answers showed good
knowl edge of the principles of modelling.

It is inadequate because someone who has never suffered from disease A or B
is not in the same position as someone who has suffered from one or both in
the past but is currently healthy.

The state space should be extended by splitting state O into 3: “0: Has never

suffered from A or B”, “A: Has suffered from A but is now healthy”,
“AB: Has suffered both A and B but is now healthy.”
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(itf)  Only atime-inhomogeneous model can properly reflect the dependence of
both the recovery rate for A and the infection rate for B on the age of the
person.

(iv) If, inapopulation taken as awhole, the number of peoplein each age group is
roughly constant over time, then the age-dependent transition rates of the
individuals who make up the population can be “averaged out” to give atime-
homogeneous model which works perfectly adequately given that national
medical services are generally only concerned with total numbersfallingill.
This question was answered well in general. Where candidates lost marksit
was often due to mis-specifying the additional statesin part (i). Splitting state
Ainto “Hasrecovered from Disease A and is aged below 18~ and “Has
recovered from Disease A and isaged 18 or more” is reasonable when
modelling an entire population, but does not lead to a time-homogeneous
Markov model when applied to a single individual, since one’s 18" birthday
does not occur at a randomtime. However, answers along these lines with
good explanations were given full marks.

(i) Set X, asfollows:

A if 0<U; <1/5
X, ={B if 1/5<U; <9/20
C if 9/20<U;

(i)  Usetheinverse transformation method.

2
10-x

The distribution function isF (x) = _E(Mdt :1—u for 4<x<10.
18 36

Solving the equation gives F ~1(u) =10-611-u
Sowe can set X; =10-6,/1-U;
or alternatively we could use X; =10-6,/U;

(@iti)  Use acceptance-rejection method:

LetV; =n Uy, sothat V, isuniformly distributed on [0, ] and has density
function g(x) = 1/n over that range.

We define
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C=sup f(X)/g(x)= sup 2sin?x=2.

O<x<m O<x<m

If U, <sin? V, let X, = V; otherwise reject this value and select a new pair
U,, U,. Repest for other X;

Answersto parts (i) and (ii) were generally good. For part (iii) many
candidates only described the general theory without specifying g(x) or
calculating the constant C.

4 0] A standard Brownian motion { B} is defined by the following properties:

e B(0)=0 and B, hasindependent increments; B, — B is independent of
B, for Osu<s and s<t.

e B hasstationary and Gaussian increments; B, —B; ~ N(O,t—9).

e B, hascontinuous sample paths, i.e. t — B, is continuous.

(i) Using It6’s Lemma gives
1 11 2
d(lo =—dS —=.—=(dx
(09%) = 5 05 5 (0)
o2
= Hdt+0 dBt_7 dt.

Thisimplies that
o2
logS =log S + W= t+oB,,
or, finaly,
02 ol
S = %Q(H_TJH Bl

@ity  Wehave
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P[S>X|S=Y]= P{csBt +(M—G—22Jt > Iog%}

oedles )

2
Iog§—(u—%)t

oVt

~1-®

Substituting the values x=120, y=96, 1 =0.2,6 =0.15 and t = 0.25 years
above we find that the answer is

1-®(2.3461) =1-0.9905 = 0.0095.

The calculationsin parts (ii) and (iii) were well done. The definition in part
(i) caused some problems: it is necessary to mention the stationary,
independent increments property; then either of the two remaining properties
(continuous sample paths, normally distributed increments) implies the other.

(1) The Markov property isclear: the chain jumps either up or down by 1, with
probabilities depending only on the current state, not the past history.

P(X,1 =1+1] X,, =1) isthe probability that the (n+1)th ball selected isred,
whichisjust 1/N of the number of red balls at time n, whichisN —i.

(i) From any statei it is possible to reach any other statej injust |j — i| steps,
either all upwards or all downwards. This means that the chain isirreducible.

Every transition takes the chain from an even state to an odd one or vice versa,
which implies that the period must be an even number.

On the other hand, starting from state O it is possible to return to 0 in two
steps. Therefore state O has period 2 and, by irreducibility, all states have
period 2.

(iti)  Tofind the stationary distribution we can use the relationship suggested by the
Detailed Balance Equations:

x % = My 'Ll\llfori:o,l,z,....,N—l.

Thus we get the recursive relationship

N —i
i+1

m fori=0,1,2,...,N-1

Tt
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Starting with i = 0 and working forwards we get

N
TEl ZTTCO

N-1 _ N(N-1)

2T T 0
. N—2TE2 _N(N-D(N-2) _
3 ©leley
and in general
n = N(I\.ll—l)(l\l.—2)..-(N—i+1)n0= N o :[Njno
ii-D3i-2)---(2@Q (N=D!I' 1! i

Alternatively, write down the transition matrix P and use the equation ©'P =
' to obtain

1
Wﬂ'l:ﬂ'o = m,=Nr,

N(N-1)
Ty +ﬁ7[2 =7, =7, :Tﬂo
N-L _17zl+i7z3 =TT, = 3= N(N-1H(N-2) Tty EtC.
N N 3!
To find np, we use the fact that ng + mqy + o +........ +oy =1

e {uiﬁy—[i%r—@“ )_1=2iN

!
i1 I i-0

Therefore the stationary distribution ©t = (ng, 1, Ty, ........ , Ty) 1S given by

N
ni:('j iNfori:O,l,Z,....,N
1) 2

(iv)  P(X, =]]|Xy=0) doesnot converge, being aternately zero and non-zero,
since X is periodic.

The derivation of the stationary distribution in part (iii) caused difficulties

with many candidates, but otherwise candidates showed a good under standing
of discrete-time Markov chains.
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(i)

(i)

(i)

(@

(b)

(b)

(©)

dm  d 1
d—"t‘l =B = ZE{dX ] = e [b-X] = alb-m) , where E,

denotes conditional expectation given X, = x. This derivation usesthe

fact that the increments of Brownian motion have expectation equal to
zero.

%[e“trq(t)] = abe®, implying that

my(t) = e “[x+b(e™ -1)] =b+ (x-b)e ™.

dY; = 2X,dX, +(dX;)? = 2X [a(b— X, )dt + o/ X B ] + %X dlt
= [20b+ 62] X, dt — 20X 2dt + 26X 2 2dB,

%mz(t) = [2ab+ 62]my (t) — 2am,(t). Again we have used the fact

that Brownian increments have mean zero.

We do not need to solve the equation, but just to note that since dmy/dt
tendsto O, thisimplies that 2o lim,_,,, mp(t) = [2ab + o] lim,_,., my(t)
= 20b? + bo?. Therefore

bo2
lim,_,., E[XZ | Xq=x]=b®+ — from which we deduce that
o

2
lim,_,, ValX, |Xo=x] =2
20

This question was relatively poorly answered, although much of it is based on
the standard theory of Ordinary Differential Equations.

Taking covarianceswith X;_, for k>1 in (1) gives

Cov(Xy, X k) = 0 CoV(X; 1, X ) +0aCOV( Xy o, Xy )+ + o pCoV(X¢_p, X¢ ),

(i)

which givesthe Y ule-Walker equations since, by definition,
Y = Cov(Xy, X;_y) for 0<k < p.

For k =0, thereis an extra term which accounts for Cov(X,,g) = 6°.

A diagnostic test is based on the partial ACF and uses the fact that, for an
AR(2) process, the partial autocorrelations, ¢, , are zero for k> 2.
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(iii)

Thevauesof ¢, areestimated by the partial ACF, ¢, , and for k > 2 the
asymptotic variance of J)k is 1/n. Using a normal approximation, values of the
sample partial ACF outside the range +2/y/n indicate that the AR(2) model
may be inadequate.

@ The process can be written in terms of the backward shift operator as
(1-0.6B-0.3B%)X, = § .

Hence the characteristic polynomial is 1-0.6z - 0.3z% with roots

2
+
0600712 ;o the roots are ~1+ 156/6.

-0.6

Since both roots lie outside the unit circle, the process can be
stationary.

(b) X; isnot Markov since the conditional distribution of X,,; giventhe
history up to time k dependson X,_; aswell ason X.

(©) The Yule-Walker equationsin this case yield

Yo =0.6y; +0.3y, +1 3
71 = 0.6y9+0.3y; 4)
v, = 0.6y1 + 0.3y,. (5)

From (4) we have

6
077, =060 =>1==2  (6)

and substituting into (5) we get

% .3 5. o
Y2 70Yo 10Yo 70Yo~

Inserting the last two equations into (3) we obtain

_30 +E +1
Yo 7OY0 7OOYO
which gives
[_ﬁ_ﬂ) _ _100
70 700)'° 07 169
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(i)

(iii)

(iv)

Then (6) and (7) yield resp.

G _s0 510
T2 169" 27 169"

The examiners were pleased to note the high quality of answersto this

guestion. It appears that the theoretical principles of Time Seriesanalysisare
well understood.

The egquation is

Xi=p+o(Xig—p)+6 +pe.

The parameters are o (the autoregressive parameter), § (the moving average
parameter), the mean level 1 and the innovation standard deviation .

A time series processis (weakly) stationary if the mean of the process,
m = E(X,) , does not vary with time and the covariance of the process,

Cov(X;, X) dependsonly on the time difference t — s and not on the
particular values t,s.

For the model in (1) to be stationary, |a |<1 is heeded.

For the method of moments, we calculate the theoretical ACF py,p, interms
of the parameters a3 . Then we find the sample ACF, say r;,r, from the data
Subsequently we obtain estimates for o, by equating p; with r; and p,
with r,.

Thevalue of o isestimated usi ng the calculated value of vy, and the sample
variance, whereas an estimate for p isthe sample mean X.

@ Using the given values we obtain the forecasts

%o5(1) = 9.12+0.71(14.82) + 0.17(~1.98) = 19.306

and

Ko5(2) =9.12+0.71(19.306) = 22.827.
(b) For exponential smoothing the equation is

%25(1) = Roa(D) + o (Xo5 — %24(1)) = 12.97 + 0.3(14.82-12.97) = 13,525,
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(V) Exponential smoothing is simple to apply and does not suffer from problems
of over-fitting. If the data appear fairly stationary but are not especially well
fitted by any of the Box-Jenkins methods, exponential smoothing islikely to
produce more reliable results. More advanced versions of exponential
smoothing can cope with varying trends and multiplicative variation.

Many candidates omitted to mention o as a parameter in part (i). Marks for
this question were not quite as good as for Q7, indicating that the practical
aspects of Time Series analysis are less well under stood than the theoretical
ones.

9 0] The Markov model implies that holding times are exponentially distributed.

(i) The generator matrix is as follows (in minutes then, equivalently, in hours):

W A M S H
w |- & 0 0 0]
A0 % % ™ =
M 0 0 -% 0 %
S 0 0 0 _1éo ?10
H 1o o o o o]
W A M S H
W [-4 4 0 0 0]
A |0 -3 045 015 24
M |0 0O -2 0 2
s |o o o -4 4
H |0 0 0 0 0]

@ The equations are as follows (first if t isin minutes, then in hours)

—Rw()———ﬂ/\nw()+ 5 Pwa(t)

a Pwa(t) = pWA(t) + pww(t)

% P (©) =—=2ppwm () +0.45pa (1)

£ Paa () = ~30a®) + 4P 9
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(iii)

(i)
(i)

(b)

(©)

(@

(b)

(©)

First note that pww(t) = € "*°. Then try inserting the given formulain
the second equation above:

d 4
LHS—— t) = —t/20+_e—t/15
P (1) = T T
and
1 1 1
RHS= - — t) + )=-= —t/20+ e—t/15+_e—t/15,
RO+ T R () =S e

which isequal to the RHS, asrequired.

We should also check that the formula gives py,(0) = 0, which it does.

al? e 0] -5°

impliesthat €% pp, (1) =0.9-1.8¢ /% 1 0.9e7/30 which simplifies
to puy (1) =0.9e730 —1.867120, 0.9671/15,

gt/30 4[e—t/20 _e—t/15} with pyy(0) = 0

The expected length of time spent in state W is 15 mins, after which
thereisatransition to state A with probability 1.

The other equations are:

Tyn = 20+015Ty+0.05T
Ty = 30
Ts = 180

Solving these equations gives T, =20+ 4.5+ 9 = 33.5and T\, =485
mins

A number of students suggested that p,,, (t) =1— p(t) , which worksin the
two-state case. In this example, however, it is only possible to state that

B (1) + Bua () + B (1) + Pus () + Py () =1, which is not the same.

It was disappointing that not many candidates made substantial progress with

solving the differential equations, but the last part of the question wasin
general well done.

The Wiener process can be defined as W, = ut +oB; . Inthiscase 6 =1.

We need to show that
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E[SIS]=S,  O<s<t.

aswell asproving that E[| S [] <.

But W(t) ~ N(ut,t), sothat M (x) = eux+tx2/2

We have

E[S1S]=E|e®"0|s|

_ E{ efZLL(W(t)*W(S)ﬁLW(S)) | Ss}
_ e 2W(S)E [e—ZMNV (t-9)) } (1)

using stationarity and independence of the increments.
From the definition of a Wiener process with drift above, we have

W(t-s) ~ N(u(t-s),(t-9), )

e[ w20,

where M,_ isthe moment generating function of the normal distribution in

(2). But for this distribution we know that M, ¢(x) = H(t-s)x(t=9)x2
Therefore
M, o(-2u) = e 20 (9+(t-9)@?/2 _y
now (1) showsthat E[§ | Ss]=S;, asrequired.
Finally, check the expectation: § >0, so
E[|§ 1= E[S] = Ele #VO] = M, (-2 = 2022 <o

(i) (@  P[S(t)<a] = P[e*BOH) - 5] = P[-2uB(t) < b+ 2u?t], where
b=loga.If u>0, thisbecomes
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(iv)

(b)

(©

(@

(b)

b b
P[B(t) >—2—“—ut} =c1{p\/f+ zp\/f}’

whereas in the case p <0 we have

b b

and in both casesthe RHStendstolast — «.
P[T,>t]<P[S(t)>a] >0 ast— x.
By definition, S(T,) =a. Therefore E[S(T,)] = a.

Thisis not a contradiction because the conditions of the optional
stopping theorem are not satisfied. Neither S(t) nor T, isbounded

above, even though S(t) isaconvergent martingale.

Inthiscase T, isonly finiteif S(t) hits a, whichisnot certain.
However, as aboveit is certain that S(t) —» 0 amost surely.

Therefore

S(T.) - a ifT,<wx
0 ifTy=c0
It followsthat E[S(T,)] = aP[T, < =] .

Now the optional stopping theorem applies, since S(t AT,) is bounded
below by 0 and above by a.

We may deduce that

1= S(0) = aP[T, <], i.e that P[T, <eo] = —.
a

In part (ii) a large number of candidates did not even attempt to prove that
E(|S |) <o thiscondition is a requirement for Sto be a martingale and

should not be omitted. However, most candidates had a good idea of how to
prove that S satisfied the conditional expectation condition.

Parts (iii) and (iv) attracted at best sketchy answers. The examinerswere
unsure whether this was due to pressure of time or to lack of familiarity with
applications of the optional stopping theorem.

END OF EXAMINERS REPORT
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