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General comments on Subject CT4 
 
Subject CT4 comprises five main sections:  (1) a study of the properties of models in general, 
and their uses for actuaries, including advantages and disadvantages (and a comparison of 
alternative models of the same processes); (2) stochastic processes, especially Markov chains 
and Markov jump processes; (3) models of a random variable measuring future lifetime; (4) 
the calculation of exposed to risk and the application of the principle of correspondence; (5) 
the reasons why mortality (or other decrement) rates are graduated, and a range of statistical 
tests used both to compare a set of rates with a previous experience and to test the adherence 
of a graduated set of rates to the original data.  Throughout the subject the emphasis is on 
estimation and the practical application of models.  Theory is kept to the minimum required 
in order usefully to apply the models to real problems. 
 
Different numerical answers may be obtained to those shown in these solutions depending on 
whether figures obtained from tables or from calculators are used in the calculations but 
candidates are not penalised for this. However, candidates may be penalised where excessive 
rounding has been used or where insufficient working is shown.  
 
Comments on the September 2012 paper 
 
The general performance was slightly better than in the September 2010 or September 2011 
sessions, but substantially inferior to that in April 2012.  Nevertheless, well-prepared 
candidates scored highly across the whole paper.  The comments that follow the questions 
concentrate on areas where candidates could have improved their performance.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 
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Benefits 
 
Systems with long time frames can be studied in compressed time    
 
Complex systems with stochastic elements can be studied (especially by simulation 
modelling).    
 
Different future policies or possible actions can be compared to see which best suits the 
requirements of a user.    
 
Models allow control over experimental conditions, so that we can reduce the variance of the 
results output without upsetting the mean values.    
       
Limitations 
 
Model development requires a lot of time and expertise, and hence can be costly.    
 
Models more useful for comparing the results of input variations than for optimising outputs.    
 
Models can look impressive, but can lull the user into a false sense of security.  Impressive 
output is not a substitute for validity and close imitation of the real world. 
     
Models rely heavily on the data input.  If this is poor or lacking in credibility the output is 
likely to be flawed.    
 
Models rely heavily on the assumptions used, poor assumptions can invalidate the model 
output. 
 
Users need to understand the model sufficiently well to be able to know when it is 
appropriate to apply it.    
   
Interpretation of models can be difficult.    
 
Models cannot take into account all possible future events, e.g. changes in legislation.    
 
Many candidates scored full marks on this question.  The question asked for TWO benefits 
and TWO limitations, so credit was given for the most fully described two of each.  Extra 
marks for the benefits could not be transferred to the limitations to make up a shortfall, and 
vice versa.  
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2 
 
The nature of the existing sickness data the company possesses.  The model can only be as 
complex as the data will allow it to be.    
 
Whether the company has made any previous attempts to model sickness rates among its 
employees, and how successful they were.    
 
The complexity of the model – e.g. whether it should be stochastic or deterministic.  More 
complex models will be costlier to prepare and run, but eventually there may be diminishing 
returns to additional complexity.    
 
General trends in sickness at the national level may need to be built in.  
 
The definition of sickness and level of benefits payable under the scheme.   
 
Does the company plan to change the characteristics of the employees?  For example, does it 
plan to recruit more mature persons?    
 
The ease of communication of the model.  
 
The budget and resources available for the construction of the model.  
 
Capability of staff.  Will outside consultants be required?  
 
By whom will the model be used?  Will they be capable of understanding and using it?  
 
Does the model need to interface with models of other aspects of the company’s business 
(e.g. taking data from other systems)?  
 
The independence of sickness rates should be taken into account e.g. in the event of an 
epidemic claims cannot be considered independent.   
  
Other relevant points were given credit.  The Examiners were looking for comments which 
made reference to the scenario proposed in the question.  Many candidates simply 
reproduced one of the lists in the Core Reading (unit 1 page 4 and unit 1 page 6) without 
relating to the scenario in the question. Answers along these lines scored limited credit. 
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3 
 
(i) The principle of correspondence states that a life should be included in the 

denominator of the rate at time t if and only if, were that life to die at time t, his or her 
death would be counted in the numerator.    

 
(ii) In order for the exposed to risk to correspond to the deaths data, it needs to be on an 

age next birthday basis.  
 
  The exposed to risk at age x next birthday may be approximated using the census 

approximation. 
 

  
2

,
0

c
x x tE P dt= ∫   

 
  Using the trapezium rule (i.e. assuming the population varies linearly between 

“census” dates) this may be evaluated as 
 

  ,1/1/09 ,1/1/10 ,1/1/10 ,1/7/10 ,1/7/10 ,1/1/11
1 1 1( ) ( ) ( )
2 4 4

c
x x x x x x xE P P P P P P= + + + + +  

  ,1/1/09 ,1/1/10 ,1/7/10 ,1/1/11
1 3 1 1
2 4 2 4x x x xP P P P= + + +     

  
  where ,x tP is the population aged x next birthday at time t.  
 
  But, in this case, we have data on an age last birthday basis. 
 
  If ,*x tP is the population aged x last birthday at time t, then 
  
  , 1,*x t x tP P −=   
   
  and the exposed to risk becomes 
 

  1,1/1/09 1,1/1/10 1,1/7/10 1,1/1/11
1 3 1 1* * * *
2 4 2 4

c
x x x x xE P P P P− − − −= + + +   

 
  So, using the data given, the exposed to risk we need at age 50 is  
 

  1 3 1 1(2,000) (2,100) (2,300) (2,500) 4,350
2 4 2 4

c
xE = + + + =    

 
  and the estimated force of mortality at age 50 next birthday is 

 

  50
200 225ˆ 0.0977

4,350
+

μ = =          
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(iii) The estimate 50μ̂ applies to the middle of the rate interval,  
 
  which is exact age 49.5 years.         
 
In part (ii) the question said “estimate” so some indication of how the answer was arrived at 
was required for full credit.  The correct numerical answer on its own was insufficient.  Some 
candidates noted that a correct exposed-to-risk could be calculated without using the July 
2010 population figures.  This was given full credit, provided a valid explanation of why the 
July population figures were not needed was given. In part (iii) the question said “state” so 
the full mark was awarded for 49.5.  In part (iii) for full credit the answer had to be 
consistent with what the candidate had done in part (ii).  
 
 
4 
 
(i)  We do not need to know the general shape of the hazard/distribution. 
 
(ii) ( )0( , ) ( )exp T

i ih t z h t z= β      

 
 h(t, zi) is the hazard at time t  (or just h(t) is OK) 
 h0(t) is the baseline hazard 
 zi are covariates 
 β is a vector of regression parameters  
   
(iii)   Baseline hazard refers to a male sold a whole life policy by the direct sales force. 
 
(iv) For the male policy 
 
 the probability still in force is 0.4. 

   
 Sum of parameters for male is 0.4        
 

 
5

0
0

0.4 exp ( )exp(0.4)h t dt
⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭
∫

5

0
0

exp 1.49 ( )h t dt
⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

∫  

 

 So 
5

0
0

ln 0.4( )
1.49

h t dt =
−∫   

 
 And for the female policy sum of parameters is -0.1  
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 THEN EITHER 
 

 We therefore want  
5

0
0

ln 0.4exp ( )exp( 0.1) exp 0.905*
1.49

h t dt
⎧ ⎫⎪ ⎪ ⎧ ⎫− − = −⎨ ⎬ ⎨ ⎬−⎩ ⎭⎪ ⎪⎩ ⎭
∫     

  
 = 0.57364  
 
 OR 
 

 We therefore want{ }
0.1

0.4 0.5
0.4 0.4

e
e e

−
− −

=     0.57364=                

 
Parts (i)-(iii) of this question were well answered.  Answers to part (iv) were variable.  
Common errors included working with the probability of having lapsed (i.e. 1 minus the 
probability of still being in force), and omission of the integral. 
 
 
5 
(i) Let  5

4
x c=  

 
 where c is the probability of exactly one claim in a year and x is the probability of one 
 or more claims in a year. 
 
 The transition matrix is 
 

 
1 0

0 1

1
4

x x
x x
c c x

⎛ ⎞
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎝ ⎠

    

 
 Using  Pπ = π  we get 
 
 1 1 2 34

cx xπ = π + π + π  

 2 1 3(1 )x cπ = − π + π  
 3 2 3(1 ) (1 )x xπ = − π + − π              
 
 The equation for π

3
 gives   

 
 { }2 3(1 ) 1 (1 )x xπ − = π − − 3x= π   
  

 2 3 1
x

x
π = π

−
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 So x = 1 − x from which x = 0.5 and c = 0.4 
 
 So the probability of exactly one claim in any given year is 0.4.    
 
(ii)   EITHER 
 
 Using the transition matrix  
 

 M = 
0.5 0.5 0
0.5 0 0.5
0.1 0.4 0.5

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

 2
0.5 0.5 0 0.5 0.5 0 0.5 0.25 0.25

= 0.5 0 0.5 0.5 0 0.5 0.3 0.45 0.25
0.1 0.4 0.5 0.1 0.4 0.5 0.3 0.25 0.45

M
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

    

 
 The required probability is therefore 
 
 (0.5 × 0.25) + (0.5 × 0.25) + (0 × 0.45) = 0.25    
   
 OR 
 
 We require the probability of no claims in either of years 2 and 3 (since only this will 
 leave the policyholder at the 40% level at the end of year 3). 
 
 The probability of one or more claims is 0.5 (from the solution to part (i)).  
 
 So the probability of no claims is 0.5, and the probability of no claims in years 2 and 3 
 is 0.5 × 0.5 = 0.25.            
 
(iii) After 20 years the probabilities of being at any level will be close to the 
 stationary probability distribution  
 
 From part (i) we know that 2 3=π π . 
 
 Using  Pπ = π  we get   
 
 1 2 3 10.5 0.5 0.1+ + =π π π π , 
 

 so 2 1
5
6

=π π .    

 
 Since 1 2 3 1+ + =π π π , +½ 
 

 we have 1
3
8

=π , 2 3
5

16
= =π π . 
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 So the probability of being at the 40% level after 20 years is estimated as 0.3125.    
            
This question proved more difficult for candidates that the Examiners had envisaged, and 
answers were disappointing.  Various alternative specifications of the matrix in part (i) were 
acceptable.   In all three parts of this question some indication of how each result was 
obtained was required.  Candidates who just wrote down the numerical answers did not 
score full credit. The solution to part (ii) could be found by drawing a diagram and tracing 
the possible routes through: this is perfectly valid and is arguably the quickest way to the 
correct answer. In part (iii) some indication that the answer is an estimate was required.  
This could be provided by saying, for example, that after 20 years the probabilities of being 
at any level will be close to the stationary probability distribution. 
 
 
6 

 
(i) Let S be the state space. We say that { }|j j Sπ ∈  is a stationary probability 

 distribution for a Markov chain with transition matrix P if the following  
  hold for all :j S∈  

   

           
j i ij

i S
p

∈

π = π∑ ,  OR π = π P     

 

           
1j

j S∈
π =∑ .  

 
            πi ≥ 0  
 
 (ii) With state space {Working, Broken} 
 
 

 Transition matrix A = 
0.95 0.05
0.6 0.4

⎛ ⎞
⎜ ⎟
⎝ ⎠

    

     
(iii) This requires the stationary distribution π  which satisfies 
 
 πA = π  
 
 0.95 0.6W B Wπ + π = π  
 0.05 0.4W B Bπ + π = π    
 
 and  1W Bπ + π =   
 
 12W Bπ = π  
 12 /13Wπ =  
 1/13Bπ =      
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 So 1 in 13 games is cancelled.    
 
 OR 
 
 The average number of games for which the lights work before breaking 
 down is 1/0.05 = 20 games.  
 
 Once they have broken down the expected number of games for which 
 they will be out of action is 1/0.6 = 5/3 games.  
   
 Therefore the proportion of games for which the lights are out of action 
 is 
 

 5 / 3 5 1
20 (5 / 3) 65 13

= =
+

    

 
 So 1 in 13 games is cancelled.     
 
(iv)  First we need to find the new stationary probabilities. 
 

 Transition matrix A′= 
0.95 0.05
0.8 0.2

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

   
 0.95 0.8W B W′ ′ ′π + π = π   
 
 and 1W B′ ′π + π =    

   
 Giving 16 /17W ′π =  1/17B′π =  

  
 Lost income (including fees to repair company): 
 
 with Floodwatch: ($10,000 + $1,000)*1/13 
 with Light Fantastic: ($10,000 + X)*1/17 where X is fee to be negotiated.   

  
 So need: 11000/13 = (10000 + X)/17 

  
 X  = $4,384.62 per day. 

   
 In part (i) no credit was given for wordy description of “what happens in the long run”. 
 In part (iii) the question said “derive”, so we needed an explanation of where the answer 
came from: only limited credit was given for writing down a numerical answer (even if 
correct) without explanation.  Moreover, in part (iii) calculating the stationary distribution 
was not sufficient for full credit: we were looking for the correct element to be identified and 
its value indicated i.e. an explicit statement that “1 in 13 games is cancelled”.  Parts (i), (ii) 
and (iii) of this question were well answered, and many candidates also evaluated the 
proportion of games that would be cancelled under the new floodlight regime in part (iv).  
Few were able to compute the daily saving, however. 
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7 
 
(i)  With state space {L, H} we have generator matrix 
 

 A
−μ μ⎛ ⎞

= ⎜ ⎟ρ −ρ⎝ ⎠  

  
  

 
(ii)  The holding times are exponentially distributed with parameter μ in state L and ρ in 
 state H.  
 
(iii) EITHER   
 
 The time spent in state L before the next visit to H has mean 1/μ.       
 
 Therefore a reasonable estimate for μ  is the reciprocal of the mean length of each 

visit: 
 
  = (Number of transitions from L to H) / (Total time spent in state L)  

  
 Similarly estimate for ρ  is the reciprocal of the mean length of each visit: 
 
  = (Number of transitions from H to L) / (Total time spent in state H)  
 
 OR 
 
 Using the maximum likelihood estimator for μ, we have: 
 
 (Number of transitions from L to H)/Total time spent in state L).  
 
 Similarly, the MLE of ρ is 
 
 (Number of transitions from H to L)/Total time spent in state H).  
 

(iv)  LL LL
t s t sP P

t
∂

= −μ
∂

  

  

 LL LL LH
t s t s t sP P P

t
∂

= −μ +ρ
∂

  

 

 LH LL LH
t s t s t sP P P

t
∂

= μ −ρ
∂

  

 

(v)  LL LL
t s t sP P

t
∂

= −μ
∂

 

   
 so 0 exp( )LL

t P t= −μ     
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 Looking for time when 0 1/ 2LL
t P =   

 
 1 / 2 exp( )T= −μ  
 ln(2) /T = μ   
 
(vi)  Observe that 0 0 1LL LH

t tP P+ =          
 
 so, substituting, we have  
 

 0 0 0(1 )LL LL LL
t t tP P P

t
∂

= −μ +ρ −
∂

 

  

 0exp(( ) ) exp(( ) )LL
tt P t

t
∂ ⎡ ⎤μ + ρ = ρ μ +ρ⎣ ⎦∂

    

 

 0exp(( ) ) exp(( ) ) constantLL
tt P tρ

μ +ρ = μ +ρ +
μ +ρ

 

 

 And in state L at time zero so const μ
=
μ+ρ

  

 

 0 exp( ( ) )LL
t P tρ μ

= + − μ+ρ
μ +ρ μ +ρ

    

 
Few candidates scored highly on this question.  In particular, very few made a serious 
attempt at parts (v) and  (vi).  In part (iv), there was confusion among some candidates 

between 0
LL

t p and 0
LL

t p
−−

 and
 
a common error was to write down exp( ).LL

t sP t
t
∂

= −μ
∂    

Many candidates did not attempt part (v) even though is is relatively straightforward.   
In part (vi) working through with tP0

LH then at the end taking one minus the answer is a valid 
approach . 
 
 
8

  
(i)  When preparing standard tables OR when graduating data from a large industrywide 

scheme, or a national population    
 
 because there will be lots of data available.   
 
(ii) (a)       EITHER Graphical graduation OR Graduation with reference to a standard 

table  
 
 (b)  EITHER 
  Graphical graduation may be suitable for a analysis of a newly discovered 

insect (as data will be scanty and an existing table will not exist)  
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  OR   
 
  Graduation with reference to a standard table   is useful if data are scanty and a 

suitable standard table exists (e.g. for female pensioners from a small scheme). 
   
(iii)   To test for overall goodness of fit we use the 2χ  test.   
 
 The null hypothesis is that the graduated rates are the same as the true underlying 

rates in the block of business. 
  

 The test statistic 2 2
x m

x
z ≈ χ∑  where m is the degrees of freedom.  

 
Age Exposed 

to risk 
Observed 

deaths 
Graduated  
rates ˆ( )sq  

Expected 
deaths 

zx zx
2 

40 1,284 4 .00240 3.0816 0.5232 0.2737 
41 2,038 4 .00266 5.4211 -0.6103 0.3725 
42 1,952 12 .00297 5.7974 2.5760 6.6360 
43 2,158 7 .00332 7.1646 -0.0615 0.0038 
44 2,480 11 .00371 9.2008 0.5932 0.3518 
45 1,456 7 .00415 6.0424 0.3896 0.1518 
46 2,100 12 .00464 9.7440 0.7227 0.5223 
47 1,866 16 .00519 9.6845 2.0294 4.1184 
48 1,989 15 .00577 11.4765 1.0401 1.0818 
49 1,725 10 .00642 11.0745 -0.3229 0.1043 

       
    Total 6.8794 13.6163 

 
 The observed test statistic is 13.62  
 
 The number of age groups is 10, but we lose an unknown number of degrees for the 

graduation, perhaps 2.  So m = 8, say.  
 
 The critical value of the chi-squared distribution with 8 degrees of  
 freedom at the 5% level is 15.51.  
 
 Since 13.62 < 15.51  
 
 we do not reject the null hypothesis. 
   
(iv)  It is not necessary to test for smoothness if the graduation was performed using a 

parametric formula or a standard table, provided that a small number of parameters 
were used in the formula, or in the function linking to the rates in the standard table.  

 
 It will be necessary to test for smoothness if the graduation was performed graphically 
 but this is unlikely to be the case with data from a large insurance company.  
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(v)   The null hypothesis is that the graduated rates are the same as the true underlying 
rates in the block of business. (i.e the same as part (iii))  

 
  We would expect the individual deviations to be distributed Normal (0,1)   
 
  and therefore only 1 in 20 zxs should have absolute magnitude greater than 1.96 (or 

none should be outside −3 to +3)  
  
  Looking at the zxs we see that the largest one is 2.576 and the next is  
  2.0294     
 
  Since they are both greater in magnitude than 1.96   
 
  we have sufficient evidence to reject the null hypothesis.     
 
In part (ii)(b) credit was given either for a valid reason or an appropriate example: both are 
not required. In part (iii) some candidates combined ages 40 and 41, on the basis that the 
expected deaths at age 40 are fewer than 5, and the statement in the Core Reading at the 
bottom of Unit 11, p. 10. This was fine. The relevant numbers for the combined 40-41 year 
age group will be 
 
Observed deaths  8 
Expected deaths  8.5027 
zx  0.1724  
zx

2 0.0297 
Chi-squared  12.9998 
 
Because we now only have 9 age groups, we should test against the chi-squared distribution 
with fewer than 9 degrees of freedom. In part (iv) no credit was given for performing a test 
for smoothness.  Very limited credit was given for impressionistic comments on the putative 
smoothness or otherwise of the data given.  In part (v) few candidates specified the null 
hypothesis or the distribution of the individual deviations under the null hypothesis. 
 
 
9 
 
(i) Interval  
 No. We are counting in days and we know which day each event occurred.    
 
 Right 
 Yes. The end of the course at day 30 cut short the investigation when not all  
 candidates had qualified.    
 
 Informative 
 Possible. Those who left during the 30 days will probably take longer to qualify than 
 those who stayed.        
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(ii) The data can be re-arranged as shown below. 
 
 Day Candidate Event 
 
 1 G  Qualified 
 5 B  Qualified 
 10 L  Left 
 12 E  Qualified 
 12 I  Qualified 
 15 K  Qualified 
 19 D  Qualified 
 19 H  Left 
 21 C  Left 
 24 M  Qualified 
 30 A  Left 
 30 F  Left 
 30 J  Left        
   

 The Kaplan-Meier Estimate is ˆ( ) 1
j

j

jt t

d
S t

n≤

= −∏   

 

 tj  Nj  Dj Cj 

j

j

D
N  1 j

j

D
N

−  

 
 0 13 0        0           
            1 13        1   0         1/13    12/13 
 5 12 1 1 1/12 11/12 
 12 10 2 0 2/10 8/10 
 15 8 1 0 1/8 7/8 
 19 7 1 2 1/7 6/7 
 24 4 1 0 1/4 3/4 
  
 Then the Kaplan-Meier estimate of the survival function is 
 
  t  (̂ )S t  
 0 ≤ t < 1 1.000 
 1 ≤ t < 5 0.923 
 5 ≤ t < 12 0.846 
 12 ≤ t < 15 0.677 
 15 ≤ t < 19 0.592 
 19 ≤ t < 24 0.508 
 24 ≤ t ≤ 30 0.381          
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(iii) 
 

 
 
(iv) 
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10 
 
(i)  
   

 
 
 
 
  

 
 
   
 
 
(ii) Let the states be labelled as follows: 
 
 Alive, A 
 Dead from illness, I 
 Dead from sacrifice, C 
 Zombie, Z  
 
 Let the number of transitions observed between states i and j be ijd   
 
 and let the transition rate between states i and j be ijμ .    
 
 Let the observed waiting time in state i be iv  

  
 The likelihood of the data can be written as follows: 
 

exp[( ) ]exp( ) exp( )( ) ( ) ( ) ( )
AI AC CZ IZAI AC A CZ C IZ I AI d AC d CZ d IZ dL v v v∝ −μ −μ −μ −μ μ μ μ μ               

    
(iii) Taking logarithms of the likelihood we have: 
 
 log log( ) terms not depending on AI A AI AI AI

e L v d= −μ + μ + μ .  
 
 Differentiating this with respect to AIμ  gives: 
 

 
(log ) AI

Ae
AI AI

d L dv
d

= − +
μ μ

,  

 
 and setting the derivative equal to zero produces the maximum likelihood estimate of 

AIμ :  
   

 ˆ
AI

AI
A

d
v

μ = .  

μCZ 
μAC μIZ 

μAI  
Dead from illness 

 
Alive 

 
Zombie 

 
Dead from sacrifice 
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 This is a maximum as the second derivative 
 

 
2

2 2
(log )

( ) ( )

AI
e

AI AI
d L d

d
= −

μ μ  
 
 is necessarily negative.    
 
(iv) Using the census formula, we estimate Av  as follows 
 

 0 100.5( ) 0.5(3,189 2,811) 3,000Av P P= + = + = .  
 
 assuming the population of aliens varies linearly over the ten years between the 
 censuses.  
 
 The estimated annual death rate from illness is therefore 
 

 369 0.123
3000

= ,  

 
 and the estimated rate of death through sacrifice over the ten years is 
 

 231 0.077.
3000

=    

 
(v) (a) The probability that an alien is still alive in ten years’ time 
  is given by the formula 

 
10

10
0

exp ( ) exp[ (0.077 0.123)10]AA AI AC
xp du

⎡ ⎤
⎢ ⎥= − μ +μ = − +
⎢ ⎥⎣ ⎦
∫               

 
   = exp(−2) = 0.135.  
 
 (b) Since we are only interested in whether the alien is dead, not what cause (s)he 

died from, 
 
  and since the rate at which aliens become zombies does not depend on cause 

of death, we can combine the two states “Dead from illness” and “Dead from 
sacrifice”, into a single state “Dead”.    

 
  For an alien to be Dead in 10 years time (s)he must have  survived for u 

alien years (0 < u < 10), died at time u, and then survived in the Dead state (i.e. 
not become a Zombie) for a duration equal to 10-u alien years.    
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  The probability density of this happening for any given value of u is 
 
  exp [−0.2u] survival Alive for a period u 
  × 
  0.2 du  (here we ignore o(du)) 
  × 
  exp[−0.1(10−u)] survival Dead for a period 10 – u                 
 
  which is  
 
  0.2*exp[ (1 0.1 )] 0.2*exp( 1) exp( 0.1 )u du u du− + = − −  
 
  = 0.0736exp( 0.1 )u du−   
   
             The required probability is obtained by integrating this expression over  

 all values of u from 0 to 10.  
 
  This is 
 

  [ ]
10

10
0

0

0.07360.0736exp( 0.1 ) exp( 0.1 )
0.1

u du u− = −
−∫   

 

  = [ ]0.0736 1 0.3678) 0.465
0.1

− =   

    
Parts (i), (ii) and (iii) of this question were well answered by most candidates, but there were 
few good attempts at parts (iv), (v) and (vi).  A minority of candidates produced an 
alternative transition diagram in part (i) as follows:  
   
   

 
 
 
 
  

 
 
   
 
    
 
 
 
 
 

 
 
 

μDZ 

μSH 

μCZ μHD μSD 

μHS  
Sick 

 
           Healthy 

 
Zombie 

 
Dead  
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Full credit was given for this, and for answers to parts (ii) and (iii) which were consistent 
with it.  In part (iii) some candidates derived the maximum likelihood estimate by applying 
the correct method to the wrong transition. In part (v)(b) it was possible to write the integral 
as follows: 
 

( ) ( )
10

0

exp[ 0.2 10 ]*0.2*exp 0.1w w dw− − −∫ .   

 
 The evaluation is: 
 

 ( ) ( )
10

0

0.2* exp 2 0.2 exp 0.1w w dw− + −∫  

= ( )
10

0

0.2 exp 2 0.1w dw− +∫  

= ( )
10

0

0.2exp( 2) exp 0.1w dw− ∫  

= ( ) ( ) ( )0.2 exp 2 [exp 1 exp 0 ]
0.1

− −  

= ( )2*0.1353* 2.718 1 0.465− =  
 
 

END OF EXAMINERS’ REPORT 


