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1. Summary and Introduction 
 
 
1.1. A Word of Thanks 
 
A great many people have contributed a lot of hard work to this working party – 
beyond the members named, including former working party members, their 
colleagues and other members of the profession. I am very grateful to all who have 
taken part and have helped contribute to a wide ranging paper. 
 
1.2.This Report 
 
This report has four main components: 
 
1.2.1 Best Estimates 
 
Some brief thoughts on what we mean by best estimate. This is not intended to be a 
comprehensive treatise on the subject but rather to point out that when thinking about 
reserving uncertainty, and the range of potential outcomes for the ultimate claims 
payments, it is as well to understand what one means by a best estimate. Our thoughts 
on this subject are contained in Section 2, and we provide a suggested standard 
definition, based on a subjective estimate of the mean of possible outcomes. 
 
We note that some of the commonly used reserving methods, such as the basic chain 
ladder, do not provide an estimate of the statistical mean, although it can be tempting 
to describe the estimates so derived as though they were estimates of the mean. We 
have not probed this matter further. It has been addressed in previous papers and there 
is another ROC working party looking at the performance of reserving methods. 
 
1.2.2 Survey 
 
We have carried out a survey of the profession to determine what methods are being 
used by members now in investigating reserving uncertainty. This is described in 
Section 3 and Appendix E. We see that the over-dispersed Poisson (ODP or 
Bootstrap) method is widely used. We note that there was a previous informal survey 
of the profession at GIRO in 1993 and we show high level results of that survey for an 
interesting comparison.  
 
1.2.3 Applying Methods to Real Data 
 
The third area of work, and the one which has involved dozens of volunteers, is in the 
application of a numbers of methods and models to some real claims development 
data, which was kindly provided to the working party for this purpose. The working 
party split into a number of sub-groups who each carried out testing. We also opened 
the doors to submissions from any professional service firm who wanted to test a 
method or model of their choosing and we received one such submission from 
Insureware.  
 
Sections 4 to 8 deal with this phase of the work. Section 4 explains the background to 
this exercise and how we set about the work. Section 5 describes the data and the 
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issues we faced. Section 6 illustrates in a table the key features of the methods we 
tested and Appendix A gives a summary of the methods. Section 7 contains a 
numerical summary of the results of the working group testing and Section 8 
summarises the qualitative comments about using the different methods, such as ease 
of use. Appendix F contains the complete Insureware submission. 
 
It is interesting to note that there are areas of significant overlap between the 
distributions of outcomes produced by the various methods – and there are also 
important and noteworthy areas of non-overlap.   Further, as the results in Section 7 
show, it is not unusual for there to be significant differences between indications from 
various stochastic reserving techniques and not every method will give a reasonable 
result for every set of data. 
 
It is also interesting to look at the full set of results, say for the Employers’ Liability 
class (Graph 1 in Section 7). Some actuaries may wonder whether many or any of the 
method generate a 95th centile value which is as high in relation to the mean as 
seasoned actuaries might expect, based on their experience of reserving such classes. 
 
Having discussed these findings within the working party and with the Reserving 
Oversight Committee, we believe that – at least in the short-term - there is a clear 
need to apply a variety of methods rather than relying heavily upon the output of one, 
or even two methods.  There also continues to be a need for careful professional 
judgement. In the longer term, as a profession, we feel there is an imperative to have a 
deeper understanding of the causes of variation between the results produced by the 
methods, and to add an intuitive understanding of the appropriateness of applying 
particular stochastic methods to the actuary's tool-kit.  Since quantifications of 
reserving uncertainty will be becoming part of the statutory returns in the near future, 
the results of these methods are likely to attract greater scrutiny from outside the 
profession. 
 
1.2.4 Numerical Simulation Testing of Stochastic Methods 
 
This area of work had originally been intended as somewhat of an aside. We intended 
to use artificial simulated data to test how well the various methods handle unusual 
circumstances. We decided to begin by creating a baseline – testing the performance 
of the stochastic methods when all of their conditions are met. In theory, the 
simulations should show that 25% of outcomes fall above the method’s 75th centile 
result, and that 1% of outcomes fall above the method’s 99th centile result. In fact, we 
found some interesting results, with the methods most commonly used, applied in the 
way they are generally applied, tending to under-estimate the tails of the distribution. 
Considerably more than 1% of observations were falling above the 99th centile 
produced by the methods in our testing. The work is described in Section 9 and the 
detailed calculations can be found in Appendix B. 
 
On the one hand these could indicate that we have an important and urgent issue to 
deal with as a profession; on the other hand, there could be aspects of our analysis 
which are partly or wholly responsible for generating these anomalous results. 
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We have thought of three issues in relation to our testing work which could be 
contributing to the anomalous results at the extremes of the distributions and these are 
shown below.  
 

• We may have made a calculation error in our testing. To seek to reduce this 
risk we have had a number of working party members reproducing the 
calculations independently. 

 
• There may be a fundamental flaw in our approach to testing stochastic 

methods (for example, the method for generation of the artificial data may 
have introduced anomalies or inaccuracies at the extremes of the distribution). 
To reduce this risk we need careful consideration from the wider profession. 

 
• When testing methods that produce only the first two moments of the 

predictive distribution for reserves (i.e. mean and standard error) we obtained 
percentiles by fitting particular analytic distributions (Log-Normal and Inverse 
Gauss) to the mean and standard error. We found that the Log-Normal and 
Inverse Gauss results did not differ materially, so we have presented detailed 
results only for the Log-Normal. However, it is still possible that using other 
analytic distributions would have led to different conclusions. (The use of the 
Log-Normal for this purposes was recommended by Thomas Mack in his 1993 
paper, and we believe is quite common practice).  

 
An alternative explanation for some or all of the anomalies is: 
 

• The stochastic methods tested (including over-dispersed Poisson and Mack) 
may genuinely not work well at the tails of the distributions (for example, 
because functions of unbiased estimators, which are themselves approximately 
unbiased, may not be sufficiently unbiased in these extremes). 

 
If this alternative is a true explanation for some, or all, of these anomalies then such 
would be a serious finding, because these methods are in widespread use across the 
profession, and in particular, are used for capital modelling where the extremes tails 
of the distributions are potentially in play. 
 
We have set out our work here so that more members of the profession can consider 
the way we have approached it, and the potential implications, in the hopes that 
together we can better understand the true position and work together towards 
resolving any issues which may arise. 
 
1.3 Judgement as a Method 
 
1.3.1 Is Judgement a Method? 
 
One of the methods we looked at and thought about was “Judgement”. We had some 
interesting discussions about what this meant, and whether it was a meaningful 
method, both within the working party and with the Reserving Oversight Committee. 
As you will see in Section 8 the working groups had differing views on this. 
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We thought it would be helpful to add some words about what we mean by judgement 
as a method, how it can work in combination with other methods, and why it is 
important. 
 
1.3.2 What is the Judgement Method? 
 
Actuaries apply professional judgement in most of their work, from choosing 
development factors to exclude from averages, to interpreting data and softer 
information. That is not what we have in mind as the judgement method, but rather 
the following. 
 
The judgement method, in the context of estimating quantifications of reserving 
uncertainty, is a use of the actuary’s own experience as an implicit benchmark for 
expected results. In fact this definition may work in wider contexts. 
 
The actuary may have implicit experience-based benchmarks for many possible 
values, including for example, tail factor extremes, the ratio of tail centiles to means, 
“worst case” loss ratios for certain classes of business, exposure based method 
parameters. 
 
There are two methods related to the judgement method, being benchmarking and 
scenario testing. 
 
Benchmarking is the use of explicit data to create benchmarks which will guide the 
selected estimates, or parameters involved in their derivation. Judgement is similar 
because the actuary is essentially using his or her own, potentially complex and 
interacting, set of benchmarks based on personal experience. When an actuary has 
become sufficiently confident in their implicit benchmarks they may become “rules of 
thumb” and be adopted by other actuaries and spread through the profession’s 
consciousness. 
 
Scenario testing is the creation of possibly hypothetical scenarios to be used as 
deterministic parameterisations for certain calculations. The choice of scenarios to 
consider may be based on the actuary’s own experience and hence a manifestation of 
the judgement method. 
 
1.3.3 How does Judgement Work in Combination with other Methods? 
 
Actuaries may carry out a number of methods in estimating the distribution of 
possible ultimate claims outcomes. In so doing they may combine these methods with 
the judgement method. For example, the actuary may believe that the 95th centile of 
the distribution of outcomes is being underestimated by his or her chosen method. 
This could be because in his or her experience they may feel they have seen 
sufficiently many examples of adverse development to suggest a higher level of 
deterioration for a 1 in 20 event. They therefore adjust the results of their method to 
align the aberrant parts of the distribution more in line with their own experience. 
 
1.3.4 Why is the Judgement Method important? 
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The judgement method is important because it is so often used in practice, whether or 
not this is stated explicitly. Given that different actuaries have different past 
experiences it seems likely that they may at times have different implicit benchmarks 
which they have developed from their respective experiences. It is arguably therefore 
all the more important that we disclose when we are using this method, and seek to 
articulate the implicit benchmarks we are using. 
 
There are clear risks with the judgement method, especially if it is not used in a 
transparent manner. Some actuaries may have limited experience, or their experience 
may not be typical, and so their personal suite of benchmarks may be unreliable. The 
ability to assimilate experiences in such as way as to differentiate between different 
types of circumstances to create sufficiently intricate implicit benchmarks may vary 
from person to person, so that some develop more robust implicit benchmarks than 
others. Peer review can clearly reduce these risks. 
 
1.3.5 Development of the Profession’s Judgement on Reserving Uncertainty 
 
One of the objectives of this working party is to add some material to assist in 
developing the profession’s judgement on estimating reserving uncertainty. 
 
We are acutely aware of the need to resolve the issues raised in 1.2.4 so that we can 
be sure that the profession’s growing experience and rapidly forming implicit 
personal benchmarks, especially for the tails of the distributions, are based on a robust 
foundation. 
 
 
1.4 Next Year 

 
While we have carried out a great deal of work this year there remains a lot still to do. 
In Section 10 we set out some objectives for next year’s working party to carry on the 
work. 
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2. Best Estimates 
 
 
2.1 Definitions of “Best Estimate” 

What is an actuary’s “best estimate” of an outcome, for example, of ultimate losses? 

It is her/his subjective derivation of the mean of all possible outcomes, taking 
into account all available information about the business being analysed. 

This definition allows for the subjective interpretation by the actuary of the available 
data and the choice of models and methods used.  As a default it also excludes 
allowance for events not reflected in the data such as unanticipated major new types 
of latent claims, although in some cases it could be argued that all available 
information includes knowledge about the risk of such new claims potentially arising. 
 
Subjectivity is included in the definition because it emphasises that even with a 
standard definition of “best estimate” one would still expect different parties to 
produce different estimates.  The uncertainty about the random process being 
estimated and the data provided gives grounds for different judgements to be made 
about how the future will unfold.  Also, different actuaries may understand the 
“available information” to include or exclude different matters. Therefore a variety of 
reasonable best estimates is possible, even with a common definition. 
 

However, if the actuary diverges from the above definition then we would 
recommend that a detailed description be given, defining exactly what is being 
estimated.  This should include comment on: 

• Why the above standard definition is not being used in a particular instance and why 
an alternative definition is thought to be a more appropriate single point estimate, 
“best” summarising the true underlying random probability distribution.  Other 
summary statistics which might be favoured include the mode and the median 

• Whilst the actuary’s view of the mean of the whole distribution of all possible 
outcomes should not vary depending on the purpose of his or her work, the purpose 
may influence which areas of divergence from this complete mean may be acceptable 
or desirable. The actuary should therefore comment on the purpose of the best 
estimate and how this influences the choices made about what, if any, contingencies 
to exclude from the set of possible outcomes. 

• How prudent, optimistic or pessimistic the estimate is intended to be.  In this case it is 
preferable to define any deviation from the standard definition explicitly; for example 
“The best estimate is the mean of the underlying distribution of the claims allowing 
for all possible outcomes, plus a margin of prudence.”  (Giving reasons for the 
prudent stance) 

• Whether unlikely outcomes are included or excluded (if excluded explain why).  It is 
worth differentiating between remote events that are significant to a particular insurer 
and those that could cause significant proportions of the industry to collapse 

• Whether an attempt has been made to provide for latent events 
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2.2 Mean versus Median 
 
There is sometimes a debate about whether best estimates should be means or 
medians.  
 
The mean definition of a best estimate accords with UK professional guidance in 
GN20 and it corresponds to equivalent definitions used internationally – albeit using 
different terminology (i.e. “expected value estimate” of a reasonable provision in the 
US – ASOP 36 and “central estimate” in Australia – PS300). It accords with the 
anticipated reserving requirements under Solvency 2 and IFRS. 
 
The mean is arguably a more intuitive choice and it has the benefit that the expected 
average surplus equals the expected average deficit. That said some of our 
stakeholders may assume the best estimate is “the midpoint”, or that it is “equally 
likely to be too high as too low”, which indicates a median rather than a mean. 
 
The US system, albeit using an “expected value” terminology, does not necessarily 
require the actuary to anticipate future contingencies and so, if it is a mean, it is 
perhaps a mean of a distribution with some of the extreme tail removed. Given the 
typically skewed nature of distributions of ultimate claims outcomes, such an estimate 
may be nearer to the median of the whole distribution than the mean. 
 
This working party has come down in favour of the mean in this debate.
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3. Survey and Results 
 

3.1 Survey of GI Actuaries 
 
Given the ROC brief to investigate reserving uncertainty methodology, it seemed 
appropriate to include practical evidence of the methods and views of the industry 
towards reserving uncertainty. 
 
A questionnaire was written – see Appendix E1, and distributed to members on the 
GIRO mailing list by Peter Stirling on 17th May. 
 
The accompanying text follows: 

“To General Insurance Actuaries on behalf of GI ROC  

As you probably know, four work streams of GI ROC (General Insurance Reserving 
Oversight Committee) were announced at last year's GIRO convention. The 'Best 
Estimates and estimating uncertainty' and 'Effectiveness of reserving methods' 
working parties would like your help in completing a brief on-line survey as follows: 

The GI ROC working parties will be reporting on their investigations into the 
assessment of best estimates and reserving uncertainty at this year's GIRO conference. 
A survey has been developed to put the results into a practical perspective and to 
assess where the industry is up to in terms of the methods currently in use. Your 
participation in this survey would be very much appreciated. All responses will be 
anonymised and only the combined results in summary form will be publicly 
disclosed following analysis of the raw data. Please access the survey by clicking on 
the link below. The survey is open for responses until Friday 25th May. 

http://wam.actuaries.org.uk/eforms/eForm.aspx?TAG=ROC  
Many thanks in anticipation of your help.” 
 
 
3.2 A Previous Survey in 1993 
 
A 1993 GIRO working party produced a paper entitled “Variance in Claims 
Reserving” that discussed the principles of stochastic claims reserving and tested 
several methods current at the time on actual datasets. That paper is available under 
“general insurance convention papers archive” on the Institute of Actuaries website. 
 
An informal survey on use of stochastic reserving methods was also carried out at the 
1993 GIRO. 40% of those present who were involved in claims reserving said they 
had used a stochastic method at one time or another. The table below shows numbers 
who had used various classes of stochastic method. 
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Table 3.2.1 - Numbers of attendees at 1993 GIRO who had previously used stochastic 
reserving methods in practice 
 
 Log incremental 

regression (static) 
Log incremental 
regression 
(dynamic) 

Bootstrap Operational 
time 

Consultants 3 3 1 7 

Lloyds/RI 2 0 0 0 

Insurers 7 1 2 3 

Total 12 4 3 10 

  
Log incremental regression (static) refers to regression methods where the dependent 
variable is the log of the aggregate incremental paid amounts and the underlying run-
off pattern is assumed to be the same for all origin years. Log-incremental regression 
(dynamic) refers to similar methods in which run-off pattern is allowed to vary across 
origin years using the Kalman filter (this method was advocated by Insureware at the 
time). Mack’s method was not considered by the 1993 working party as it had only 
just been published.  
 

3.3 The Results of our 2007 Survey 
 
Please see Appendix E2 for the detailed results. 
 
There were 47 respondents, mostly based in the UK, from a mixture of Insurance 
companies, Reinsurance companies, Lloyd’s syndicates and consultancies. Just over 
half represented insurance companies. Please see Chart 1 and Chart 2 of Appendix 
E2. 
 
Respondents were invited to report on the classes of business for which their 
organisation performed reserving work. Reinsurance companies covered most of the 
classes of businesses - see Chart 3. The largest number of responses related to 
Personal lines – property, Personal lines – motor, Commercial lines – property and 
Commercial lines – liability, although for Lloyd’s syndicates Marine was also 
significant. 
 
For the 3 largest classes, respondents were asked which methods and models they 
used to calculate best estimate values and to determine uncertainty. 
 
The results from question 3a (best estimates) indicate that the Basic Chain ladder – 
incurred is most often the key method, followed by Bornhuetter Fergusson, paid chain 
ladder and then judgement. Alternative approaches included using loss ratios from 
pricing work. 
 
The results from question 3b (reserving uncertainty) indicate that the key methods 
were: Overdispersed Poisson (ODP) stochastic chain ladder/ bootstrap, judgement, 
scenarios and then basic chain ladder paid and incurred methods. Alternative methods 
included using benchmark information from the market. 
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Question 4 asked about the key requirements for determining uncertainty. 
They were: 
1) to identify variability around the best estimate and, 
2) to identify the tail of the distribution (above 95th percentile). 
 
Question 5 asked what were the factors influencing a choice of method/model. 
The choice was decided based upon  
1) Practical issues relating to the data 
2) The quality of results that the model/method will give. 
 
Interestingly, “knowledge of the actuarial staff” was listed as the least important 
factor. This indicates a confidence within the industry that actuarial staff understand 
the relevant models being used. 
 
Question 6 asked what systems/software were used to model uncertainty. 
When modelling uncertainty organisations were evenly split between using in-house 
models and a combination of in-house and off-the-shelf packages. The packages 
mentioned included ResQ, Igloo, RMS Risklink and @Risk. ResQ was most 
frequently mentioned. 
 
Question 7 asked about the methods used to communicate uncertainty to senior 
management/ executives. 
The most frequent methods used were: 
1) Quantitative using percentiles. 
2) Quantitative using everyday English. 
A satisfyingly low number didn’t communicate uncertainty at all. 
 
Question 8 asked about what aspects of uncertainty were covered in communications. 
Communication of uncertainty most commonly covered process and parameter 
uncertainty, but less often covered model uncertainty. 
 
Questions 9 to 13 asked for additional information was collected relating to the 
groupings by time periods commonly used in reserving to calculate best estimates and 
for calculating uncertainty. 
 
For calculating best estimates, the majority grouped data using annual origin periods. 
The most common grouping by development period was quarterly. 
 
For calculating uncertainty, the majority grouped data using annual periods and 
annual development periods. 
 
Reserving, in most instances was done quarterly using a full analysis. Where 
reserving was done monthly, a reduced analysis was more often performed. 
 

3.4 Our Thoughts and Conclusions 
 
When drafting the survey, the extent to which different institutions would use 
different methods was not known. Since the GRIT paper was issued in 2006, it was 
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hoped that its key recommendations had been adopted. This survey indicates that 
most respondents do communicate and quantify uncertainty. 
  
The survey shows reliance on a small number of standard methods for producing 
estimates of reserve uncertainty, and the key requirements of such methods are to 
identify variability around the best estimate and identify the tail of the distribution. 
Other parts of the ROC paper give an independent assessment of several of the 
methods that can be used and illustrate their limitations.  
 
The answers to question 5 reveal a confidence from respondents that actuarial staff 
members are equipped with sufficient knowledge to deal with whichever 
method/model is chosen to measure uncertainty. This may be owing to high quality 
actuarial training, or may indicate a degree of misplaced complacency – particularly if 
the limitations associated with the methods used are not fully understood. 
 
The above results are representative of only a small proportion of the industry, and 
represent the views at a particular point in time. It is hoped that this survey (or a 
similar one) could be re-issued on an annual basis to detect changes that the industry 
are making in reserving methodologies. 
 
Ideally the results would have been split and analysed by line of business. This has 
been done, but not published in Appendix E2, owing to the small sample sizes and 
similarities between the responses. Where the responses were not very similar, they 
are detailed below. 
 
Judgement and scenarios were more used commonly to calculate best estimates and 
reserving uncertainty used in reinsurance lines than was the case for direct writers.  
 
Reinsurers also were more interested than primary insurers in identifying the 
complete distribution of reserve variability than just the tail of a distribution. The key 
requirement though was variability around the best estimate for both types. 
 
Personal lines insurers chose a method to identify reserve uncertainty based more 
upon the quality of results than the quality of the data. Commercial lines and 
reinsurers chose a method based more upon the available data. 
 
The survey questions about the groupings of data suggest that different groupings by 
origin/development year are used when determining best estimates compared to 
reserve uncertainty. Perhaps further studies could be performed to indicate whether 
this impairs the accuracy of the best estimates/reserve uncertainty results. 
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4. Method Testing: Our Scope and Approach 
 
 
4.1 Background 
 
There have been many developments in recent years that have generated increased 
interest in the assessment of uncertainty within the reserving process.  These have 
largely been driven by the Morris review, which identified the lack of a consistent 
approach or set of approaches relating to both the estimation and communication of 
uncertainty within point estimates for claims reserves within formal actuarial reports. 
 
The work of GRIT, which was intended to pre-empt and also respond to the Morris 
report investigated the calculation of reserve uncertainty to a limited extent, focussing 
largely on the way such concepts are understood within the profession, as well as how 
they are communicated outside, and how such information is received and interpreted. 
 
Further impetus has been provided by the re-interpretation of the GN12 guidance on 
formal actuarial reports, which has underlined the need for actuaries to indicate both 
the source and amount of uncertainty within their work, where practicable.  
 
Additionally various authors continue to investigate the statistical credibility of 
various models, and develop increasingly sophisticated methods to derive more 
reliable and consistent results to compare to best estimates and standard actuarial 
reserving tools. 
 
Separately from reserving uncertainty alone, the introduction of the Individual Capital 
Assessment by the FSA, and to a lesser extent the discussions relating to IFRS, have 
brought the attention of parties both inside and outside the profession to bear on 
uncertainty in general, with reserving uncertainty being a strong element of these 
discussions. 
 
These discussions have focussed on the definition of adequacy around particular 
centiles of probability, implicitly implying that a full distribution of outcomes is 
required to derive the associated processes. 
 
The above sources of interest in this area are relatively well reported, however there 
are other, less public, areas that have increased the need for research and discussion in 
this field.  These are through the proliferation of more advanced computing power and 
the increasing use of off-the-shelf reserving packages that include “standard” 
reserving uncertainty methods, which can be run almost as an afterthought to the 
reserving process. 
 
This has increased the ease of obtaining reserve uncertainty information, but also has 
opened the question of how much the explicit and implicit assumptions relating to the 
models are understood by the reserving actuary, let alone the user of the report. 
 
The above issues have raised the level of awareness of reserving uncertainty as a topic 
within the profession, and we believe there is a need to broaden the general 
knowledge base within the profession on the methods available, their strengths and 
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limitations and to generally demystify the area for the general insurance population at 
large. 
 
4.2 GRIT Conclusions 
 
One of the key recommendations from GRIT was: “Providing more information on 
uncertainty in our reserve estimates.  In particular, we recommend that actuaries 
provide a quantitative indication of the range of outcomes for future claim 
payments…”. 
 
The 2005/6 Estimating Reserving Uncertainty Working Party following GRIT also 
showed that only a limited number of actuaries were using defined methods within the 
reserving process or assessing reserve uncertainty at all, and that those that did tended 
to rely on a single method. 
 
This paper is intended to help members of the Profession understand more about the 
tools at their disposal, as well as giving some information about the relative merits 
and limitations of such methods.  It is hoped that this may help in the fulfilment of the 
GRIT recommendation, and also to ensure that a follow-up to the Working Party next 
year would indicate better understanding and use of such methods. 
 
4.3 What the paper is attempting to do 
 
The key objectives of this paper are: 

• to educate the majority of general insurance actuaries so that they are aware of 
the wide variety of methods available; 

• to educate the majority of general insurance actuaries so that they are able to 
understand at a basic level what the differences are between these models are; 

• to give a high-level review of the practical and theoretical aspects of a few of 
the more common models based on application to real data sets; 

• to provide resources of data, models and references with which to accustom 
actuaries to these models. 

 
4.4 What the paper is not attempting to do 
 
We are definitely not attempting to suggest that a particular model is somehow 
“better” than any other, nor are we trying to review all possible methods.  In particular 
we are not attempting to bring the reader up to date with the latest developments in 
the field, as we are concentrating on educating from the most basic level. 
 
We expect future working parties to extend the work presented here in response to 
feedback from the profession on this paper, and this is discussed in more detail in 
Section 10. 
 
Before we get into more detail about the work we have done, we would like to draw 
the reader’s attention to the work of the ROC best estimate working party, which is 
reviewing more traditional actuarial models, and assessing their effectiveness in 
various circumstances.  We have shared data with them, and intend eventually to 
present combined results to compare best estimates and ranges. This will follow next 
year. 
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4.5 Our Approach 
 
Briefly, our approach centred on selecting a few methods we could look at for a 
number of datasets, and could compare the observations of a number of sub-groups of 
the working party for each method employed.  This process would not only look at the 
technical results, but also assess each method for ease of use, understanding and 
interpretation.  The results of these analyses have been combined to present an 
assessment of the methods under various categories to help identify those with 
strengths and weaknesses in particular areas. 
 
The following paragraphs set out this process in more detail. 
 
We selected a number of methods for assessment.  The selection was largely based on 
the knowledge within the working party itself as to the most common methods within 
the profession, as well as through literature searches and discussions with colleagues. 
 
This “long” list was then reduced to a selection of eight, including purely subjective 
approaches and methods that required a level of detail within the data that is not 
usually available, particularly for consultancy work or for older data sets.  We also 
provided our data to consultancies to allow them to provide results on their own 
models for comparison, we received a completed response from one consultancy, 
which is included in full in Appendix F.  These methods are briefly discussed in 
Appendix A. 
 
The data we applied these methods to was sourced anonymously from a number of 
companies.  We attempted to cover “normal” lines of business, as well as some more 
unusual classes such as Marine.  The classes included long and short tail, and had data 
of different periodicities and levels of detail.  In particular we unfortunately were not 
able to obtain transaction level information, which reduced the number of available 
methods by one. 
 
The data was adjusted such that the source was not easily identifiable, however this 
process was not well defined, and hence the consistency of some data sets was 
questionable.  However, as the key objective was to test the methods against each 
other, such inconsistencies did not necessarily result in a data set being rejected. 
 
To concentrate the results of the models we selected three core data sets for analysis.  
These represented an employers’ liability class, a commercial property class and a 
motor class.  Other classes were modelled for some methods, but they did not form 
the core of our work.   The data is discussed in more detail in Section 5. 
 
The working party was split into a number of sub-groups, each of which was given 
two methods to investigate, as well as considering the methods of scenario testing and 
judgement. 
 
Each method was assessed using a standard questionnaire, which investigated various 
aspects of the method, both numerical and practical.  Although we tried to avoid using 
off-the-shelf packages for all groups working on a particular method, where they were 
available use was made of them to investigate the effects of implicit assumptions 
relating to ensuring that the method could operate on the data sets provided. 
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It was therefore intended that each of the methods was investigated by a number of 
groups independently.  However, there were fewer responses than originally 
envisioned, as discussed in Section 7.  The results of the investigations for each were 
compared to identify any sources of user error or where off-the-shelf packages had 
used a more advanced version of the model than from the primary reference.  In 
addition the practical aspects of the models were discussed to assess the less technical 
areas for investigation.  Sections 7 and 8 discuss the numerical and qualitative 
comparisons respectively, with Section 6 giving a high-level comparison of the 
results. 
 
We also asked for input from Professional Service firms, and Insureware made a 
submission using some of their own methods applied to our datasets. In particular, in 
Section 7 we show the results for the Employers’ Liability class which compares the 
methods tested by the Working Party subgroups with modelling frameworks utilised 
by Insureware. The full submission from Insureware can be found in Appendix F. 
 
A separate strand of our work focussed on assessing the theoretical accuracy of a 
number of models under ideal conditions.  This was achieved using stochastic 
simulation whereby the models were applied to a large number of simulated triangles, 
each with a known ultimate.  These data sets have been derived such that the 
assumptions required by those models are fulfilled.  The aim of these tests was to 
calculate the accuracy of the model in estimating the probability of events at 
particular centiles.  This investigation is set out in Section 9. 
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5 The Data 

5.1 Introduction 
 
This section considers the data requirements for the application of the various 
methods and the limitations imposed by the data available to the working party.       

5.2 Required data characteristics 

5.2.1 Real or artificial data 
 
The working party set out to test a range of methods for estimating uncertainty by 
considering the merits and disadvantages associated with their practical application..  
This “real world” testing suggested that the methods should be tested using real data.  
This presented a number of problems.  Firstly there is no central repository of 
insurance data in the UK and secondly distinguishing how different features of the 
data are impacting different methods can be extremely challenging.   
 
The Institute of Actuaries has arranged the collection and rescaling of real data from 
companies who were willing to contribute.  The rescaling methodology has not been 
disclosed to the members of the working party but it is understood that the approach 
used is sufficient to ensure that individual data is not recognisable without distorting 
the variability within that data.  The working party recommends that the resulting data 
is not appropriate for reaching conclusions around the relative performance of any 
sectors of the insurance industry as premium income and loss information from the 
same entity may have been rescaled on different bases. 
 
The amount, timing and uncertainty of emerging cash flows is affected by a wide 
range of factors arising from policyholder attitudes and behaviour, the companies’ 
own management strategies and practices and the wider economic and legislative 
environment.  It is often difficult to interpret the results of analyses when using 
familiar, well understood actuarial techniques such as the chain ladder or Bornhuetter-
Ferguson technique.  Understanding the results is an even greater challenge when the 
techniques being applied are not widely used and understood. 
 
Artificial data can be designed to avoid the distorting features of actual live insurance 
data.  An alternative approach to testing using real data is to develop artificial data 
tailored to the characteristics of the method being tested to produce a “control” set of 
results.  Understanding of the method’s response to some of the features of general 
insurance can be achieved by adding new features to the artificial data and comparing 
the results with the control. 
 
The working party has tested the Mack and ODP methods (both analytic and 
bootstrap versions) using artificial data. An overview is given in Section 9, and details 
in Appendix B. 
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5.2.2  Aggregate or transactional data 
 
Ideally the working party would have preferred to work with transaction level data 
and aggregated it according to the requirements of each method.  Although this 
approach is time consuming it means that data can be aggregated in a variety of 
different ways and a deeper level of investigation and understanding is possible.  In 
practice aggregated data is more readily available and, as described above, easier to 
alter to ensure the source of the information is not recognisable.   
 
The working party, in drawing up a list of methods for measuring uncertainty, 
identified techniques that required transactional data and could not be run using 
aggregated triangulation data.  Although we understand that access to transaction data 
is still being sought, this data has not been available to the working party and 
consequently the techniques that rely on such data have not been tested.   
 
Aggregate data has been made available to the working party.  Paid and incurred 
claims triangulations have been provided for all except one data set which excluded 
paid data.  A reasonable number of years of exposure, varying from 8-20 years, have 
been available for most classes.  For longer tail liability risks this volume of data is 
not sufficient to show fully mature historical loss development and it is necessary to 
make assumptions regarding future development to ultimate.  Development intervals 
varied by data set between monthly, quarterly and annual.  This has not presented a 
problem for testing conducted to date but does prevent consideration of how the 
techniques would respond to quarterly analyses for many of the data sets provided. 
Exposure information is available for 11 out of the 30 data sets and separate large loss 
information has been provided for 13 of the data sets.  Claim counts are available for 
half the data sets although for two of these claims counts are only in relation to large 
losses.  
 
Some very limited qualitative information has also been supplied in respect of each 
data set namely: 
 

• Class and sub-class of business; 

• Gross or net of reinsurance (not known for all data sets). 

 

The sub-class information is useful in separating out some specific risks from the 
underlying data.  For example subsidence and weather losses are separately identified 
from other property losses.  Separate data for bodily injury and non-bodily injury 
motor claims are also available. 
 
The table attached in Section 5.3 below summarises the aggregate data available to 
the working party. 
 
Whilst the working party acknowledged from the outset that access to high quality 
data was likely to be a problem, the information available is not ideal.  We anticipate 
most actuaries would be able to access better quality information in the normal course 
of their work.  It is noted, however, that in the testing of the methods it is useful to 
know which methods can be applied when there is restricted or less than ideal 
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information.  The practical constraints of applying each method, including data 
requirements, are considered in Section 8. 

5.3 Classes of Business 
 
The working party has been relying on information donated to the institute so has not 
been able to specify its own data requirement.  A range of classes of business have 
been provided including: 
 

• Property – personal lines and commercial lines 

• Motor – personal lines and commercial lines 

• Marine 

• Construction 

• Liability – employers’ and public 

 

In order to ensure maximum comparability of the results it was decided to test each of 
the selected methods on a limited number of classes of data in the first instance.  A 
review of the data resulted in the recommendation to use the following three classes: 
 

• Commercial Property 

• Personal Motor Non-comprehensive 

• Employers’ Liability 

 

The Commercial Property and Personal Motor Non-Comprehensive data sets both 
provide triangulations by accident quarter and quarterly development period for 
payments, incurred losses and reported claim counts with corresponding earned 
premiums and earned exposure.  The data is gross of reinsurance.  The underlying 
business is UK risks sourced through intermediaries, direct sales and corporate 
partners.  Large claims are included in the underlying loss experience and are not 
available separately.   
 
Apart from one anomalous figure, assumed to be a data error, the loss development 
for the Commercial Property business is very stable.  In contrast the Personal Motor 
Non-comprehensive data demonstrates a greater degree of variation around the 
average development as would be expected for a liability class of business.  
Comparing the results for these two classes under a number of different methods will 
assist in considering the extent to which the various methods respond to the variability 
in the underlying loss data.   
 
The Employers’ Liability data set provides annual development triangulations by 
annual exposure period for payments, incurred losses, settled claim counts and 
incurred claim counts.  No premium or exposure data is provided.  The data is 
provided for three sub-classes and is further sub-divided between large losses and 
attritional claims.  No qualitative information is provided on the nature of the 
underlying sub-classes (hence these are not identified separately in the table below).  
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The sub-classes demonstrate very different features.  One subclass appears fully 
developed after 10 or 11 years whilst the other two are still developing after twenty 
years (the limit of the data), one of which is demonstrating latent development after 
12 years and relatively high variability compared with the other two subsets.  This 
data is particularly interesting in terms of testing the models but the eventual results 
will be highly dependent on individual assumptions in relation to the tail development 
beyond the 20 years development history provided. 
 
The following table provides a summary of all the data sets available to the working 
party. 
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Class Sub Class Paid / Incurred? Origin Period Development Period Large Losses? Exposure? Net of Reinsurance?
Construction Employers' Liability P & I 1985 - 2005 Annual By Class. Not by sub Class No ?
Construction Public Liability P & I 1985 - 2005 Annual By Class. Not by sub Class No ?
Construction Damage P & I 1985 - 2005 Annual By Class. Not by sub Class No ?

Employers' Liability Employers' Liability P & I 1991 - 2005 Annual By Class. Not by sub Class No ?
Public Liability Public Liability P & I 1991 - 2005 Annual By Class. Not by sub Class No ?

Employers' Liability Employers' Liability P & I 1985 - 2005 Annual Yes No No

Home Direct Subsidence P & I 1995 - 2005 Monthly No No ?
Home Int Subsidence P & I 1995 - 2005 Monthly No No ?
Home Direct Non subsidence P & I 1998 - 2005 Monthly No No ?
Home Int non Subsidence P & I 1998 - 2005 Monthly No No ?

Comm Property Comm Property P & I 1997 - 2006 Q3 Quarterly No Yes No
Household Weather Household Weather P & I 1997 - 2006 Q3 Quarterly No Yes No

Property Weather P & I 1985 - 2005 Annual By Class. Not by sub Class No No
Property Ex Weather P & I 1985 - 2005 Annual By Class. Not by sub Class No No

Marine Cargo P & I 1988 - 2005 Annual Yes (for Gross) Yes Yes
Marine Liability P & I 1988 - 2005 Annual Yes (for Gross) Yes Yes
Marine Hull P & I 1988 - 2005 Annual Yes (for Gross) Yes Yes

Motorcycle Motorcycle P & I 1997 - 2006 Q3 Quarterly No Yes No
Motor Fleet Bodily Injury P & I 1997 - 2006 Q3 Quarterly No Yes No

Motor Direct injury P & I 1990 - 2005 Monthly No No ?
Motor Int injury P & I 1998 - 2005 Monthly No No ?
Motor Direct Non injury P & I 1990 - 2005 Monthly No No ?
Motor Int non injury P & I 1998 - 2005 Monthly No No ?

Pers Motor Non Comp Pers Motor Non Comp P & I 1997 - 2006 Q3 Quarterly No Yes No
Pers Motor Non Comp Pers Motor Non Comp P & I 1997 - 2006 Q3 Quarterly No Yes No

Business Interuption Weather P & I 1985 - 2005 Annual By Class. Not by sub Class No ?
Business Interuption Ex Weather P & I 1985 - 2005 Annual By Class. Not by sub Class No ?

Personal Creditor Personal Creditor P & I 1997 - 2006 Q3 Quarterly No > 2003 No

Prof Indemnity Prof Indemnity P & I 1997 - 2006 Q3 Quarterly No Yes No
Prof Indemnity Prof Indemnity I 1989 - 2005 Annual No No No  



5.4 Items Beyond the Data 
 
Assessments of uncertainty need to also consider the potential for differences in future 
claims experience when compared with past experience as depicted by the historical 
loss data.  The working party considered that appropriate methods for evaluating 
uncertainty would need to be able to take into account anticipated future changes 
relative to past experience.   
 
The working party considered the potential sources of uncertainty which may not be 
reflected or may only be partially reflected in the data sets used and came up with the 
following non-exhaustive list: 
 

• Inflation 
• Policy data e.g. lack of historical split by risk factors 
• Rating indices 
• Latent claims 
• Case estimation practice 
• Data quality 
• Circumstances of business 
• Staff turnover 

o Claims handlers 
o Underwriters 
o Actuaries 

• Product bundles 
• Aggregate policies – combined data 
• Legal changes e.g. Ogden tables 
• Pricing change data 
• Underwriting cycle 
• Terms and conditions 
• Period claims order 
• Known events not in data 
• Social and economic factors 
• Knock-for-knock 
• Contract certainty 
• Large catastrophes (extreme events or just catastrophes?) 

o Impact on claims philosophy 
o Demand surge 

• Climate change 
• Return period of large claims  

o What should be stripped out 
o Potential impact on UPR 

• Distribution methods 
• Geographical exposure changes 
• Changes in reinsurance 
• Influence of rating agencies 
• Influence of market views 
• Reserving process 
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o Anchored knowledge 
o Personal independence 

 
Each of these factors not only has the potential to change the expected amount and 
timing of future cash flows but the uncertainty around the amount and timing of those 
cash flows.  A challenge for measuring uncertainty will be how actuaries can reflect 
these and other factors affecting the future performance of the business within the 
methods available.   
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6 Key Features of the Methods Tested 
 
 

  ODP/Bootstrap Mack 
Bayesian/BF 

Method Judgement Scenarios Regression/Curve Fitting 

Description 

Most common 
bootstrap model.  
Potential to use 

different 
distribution for 
the residuals 

Calculation of 
standard error 

with and 
without tail 

factors.   

Uses ODP model 
with a series of prior 

ULR estimates 
defined by a 
distribution 

Based  on 
professional 
experience 

Can include any variation 
such as changing 

development patterns or 
single events 

Fits Craighead curve to each origin 
year to derive initial estimate of 

ULR, then smoothes across origin 
years using regression  

Data required 
Cumulative 

claims triangles 
(paid or incurred) 

Cumulative 
claim triangles 

(paid or 
incurred) 

Cumulative claim 
triangles (paid or 

incurred)  
Any Any Premium and claim amounts 

triangles 

Is the method 
acceptable to 
the Profession? 

Yes Yes Yes Yes Yes Depends on purpose 

Is the method 
easy to use and 
is it practical? 

Yes Yes No Yes Yes Yes 

Can judgement 
or amendments 
be applied? 

Yes 

Amendments 
needed where 

gaps in 
published 
method 

Requires prior 
distribution of 

ultimate position of 
each origin year 

Yes - essential 
Yes via choice of 

scenarios and manual 
adjustments or tweaks 

Yes, perhaps too easily 

Is the method 
easy to explain? 

Principles easy to 
explain No Very difficult Yes Yes Yes 

When is method 
good? (Or not?) 

Good if little 
negative 

development and 
residuals are iid 

and run-off 
pattern is same 

for all years. 

Good only if 
run-off pattern 
is same for all 

years 

Good if little negative 
development and 

residuals are iid and 
run-off pattern is 

same for all years. 

Good if actuary 
has additional 

knowledge; bad 
if not 

experienced 

Not good if volatile 
datasets or inexperienced 

actuary 

 Good if run-off pattern varies 
across origin years. Not good if 

there is much negative 
development 
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  ODP/Bootstrap Mack 
Bayesian/BF 

Method Judgement Scenarios Regression/Curve Fitting 
Are extreme 
events 
included? 

Only if in data Only if in data Yes, if in data and/or 
in prior distributions  Yes if desired Yes if desired Yes, if in data but can exclude if 

desired 

Produce 
complete 
distribution of 
outcomes? 

 Yes if process 
error is simulated 

in addition to 
bootstrapping for 
parameter error  

Produces mean 
and standard 

error only  
 Yes 

Yes as any 
required 

percentile can 
be estimated 

using 
judgement  

No – produces a few 
possible outcomes to 

which probabilities can be 
judgementally applied  

No, just an approximate range  

Type of 
uncertainty 
measured 

 Bootstrap 
method gives 

parameter 
uncertainty, 

process 
uncertainty can 
be simulated in 

addition 

Process and 
parameter 

uncertainty  

Process and 
parameter 

uncertainty  

Potentially 
model error as 

well as 
parameter and 
process error 

Usually just parameter 
uncertainty 

Parameter uncertainty only 
(dependent variable in regression is 

expected ULR)  

Time to program 
and complete 

Easy to program 
in Excel though 
long time to run 

Easy to 
program and 
quick to run  

Specialist software 
required and very 

slow to run 
     Easy to do in Excel 

Comparison of 
class results to 
aggregated 

 Automatic 
consistency 

between origin 
year and 

aggregate results 

Automatic 
consistency 

between origin 
year and 

aggregate 
results  

Automatic 
consistency between 

origin year and 
aggregate results  

Should be 
consistent 

given enough 
care, but this 

not guaranteed 

Does not produce 
separate assessment of 
aggregate uncertainty  

Does not produce separate 
assessment of aggregate 

uncertainty  
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7 Numerical Summary of Results 
 

7.1 Summary of Approach 
 
The Working Party has tested and compared a variety of methods to quantify 
reserving uncertainty. The working party members were split into groups with each 
group applying a method on 3 datasets. These datasets were chosen for their 
dissimilarity – Employers’ Liability, Personal Motor and Commercial Property. More 
than one group attempted some of the methods. 
 

7.2 Comparison of Methods 
 
A key aim of this analysis was to assess how comparable the results were from 
different method frameworks.  The following Sections show a graphical comparison 
of the mean, inter-quartile range and 5th-95th percentile range of reserve estimates for 
each of the methods by class. 
 
Possible causes of the variation in estimates produced by the methods could include 
differences in the: 
 

• theoretical framework of the methods 
• practical application of the methods 
• subjective choice of underlying parameters/data used 

 
Although the data being used in the trial was real insurance company data, anonymity 
was given to the source of the data.  Therefore, the groups applying the methods did 
not have a detailed knowledge of the company supplying the data, or have the facility 
to investigate the causes of any apparent anomalies in the development.  A key 
message from the GRIT report was the importance of understanding the data when 
applying any actuarial method.  Some of the results of the analysis described below 
highlight this issue, as different treatment of anomalies in the data produced a wider 
range of results than that seen from applying different methods.  
 
A further difficulty in drawing conclusions from the analysis was the relatively low 
number of groups involved.  There were few cases where more than one group 
applied the same method to the same data set, making it impossible to reliability 
adjust for the variation in estimates arising because different people were applying the 
methods.  However, from the few observations possible, it appears that the variation 
produced by different groups was very significant compared to the variation between 
methods. This may have arisen from some groups applying the methods 
automatically, with little judgemental adjustment, whilst others may have 
incorporated market knowledge into the analysis.  
  
Given all the difficulties outlined above, any conclusions from this analysis about the 
relative results from the different methods could be spurious. 
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Employers’ Liability Results Comparison 
 
 

 

Graph 1: Employers’ Liability Method Comparison 
 
The graph above shows the results produced for the reserves at the various centile 
points we discussed above, for a number of methods and modelling frameworks. The 
majority of results shown are those produced by the working groups. The two right 
most results shown, (PTF/MPTF/ELRF, PTF/MPTF/ELRF – Inflation trend) are from 
the submission from Insureware. This is the only class for which we received a 
distribution from Insureware. 
 
We have discussed the results produced for this class with the Reserving Oversight 
Committee. We would observe that some actuaries may be concerned that the 95th 
centiles produced by most of the methods in Graph 1 appear surprisingly low for this 
class of business when benchmarked against their personal reserving experience. It 
would be interesting to hear from the profession whether this is so. We refer the 
reader to the discussion about the judgement method in Section 1. 
 
Some of the methods and modelling frameworks produce fairly narrow ranges in this 
example – such as Mack Bootstrap Incurred, Mack Variability Incurred, ODP BF 
Targets, ODP BF Targets (Varying Scale), Bayesian - Group 1, Bayesian Incurred, 
PTF/MPTF/ELRF, PTF/MPTF/ELRF – Inflation trend. 
 
Some of the methods produce fairly wide ranges in this example, such as ODP – 
Group 1, ODP – BCL Targets, ODP – Large Losses Separate and the four 
Regression/Curve fitting methods. 
 
There is a wide variety of means produced across the various methods, the highest 
being around three times the lowest. 
 
One cause of the difference in the results appears to arise from the choice of paid 
versus incurred triangles. The majority of groups used paid triangles but for the Mack 
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and Bayesian approaches incurred data was also used. The relationship between Paid 
and Incurred data changed in more recent origin periods and gave rise to noticeably 
different results with the same method.  The graph below shows the development of 
paid claims as a proportion of incurred claims.   
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Graph 2: Employers’ Liability Paid to incurred Data Comparison 1997 to 2005 
 
It can be seen that the paid claims as a proportion of incurred claims increased for 
more recent origin periods, possibly indicating either a relative weakening in case 
reserves or a speeding up of payment patterns, or a combination of both.  The 
assumption made about which of these explanations underlies the change in 
development significantly affects the results produced.   
 
When applying the methods to incurred claims, it is implicitly assumed that the 
development pattern of incurred claims is stable.  As the graph below shows, the older 
years had shown a substantial proportion of redundancy within outstanding claims 
case estimates being released after about development year 4. 
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Graph 3: Employers’ Liability Incurred Claims Development -  All Years 
 
When applying the methods to incurred claims, the level of this release was implicitly 
assumed to continue.  The mean estimates produced by the incurred methods appear 
unreasonably low, as in some cases they are below paid claims to date, with little 
historical evidence for recoveries on paid.  It is notable that the automatic application 
of these methods produced estimates where even the 95th percentile was significantly 
below the mean produced by methods applied to paid claims.  However, the 
systematic decrease in incurred claims invalidates the assumptions for some of the 
methods used.    
 
The decision to analyse large losses separately for the ODP method also gave rise to 
very different results. 
 
The choice of approach within each method was also influential. For example the 
choice of informed prior and scaling approach in the Bayesian method led to quite 
different results. Group 1 applied the deterministic basic chain ladder method to both 
Paid and Incurred data and then based the informed prior on the average of the 
ultimates by origin year. Group 2 did not use an informed prior. Neither group 
incorporated their own external judgement to influence the informed prior. 
 
The Insureware team did not believe in a method as such but rather a modelling 
framework to identify the structure in the data. The modelling frameworks used were 
the Probabilistic Trend Family (PTF), Multiple Probabilistic Trend Family (MPTF) 
and Extended Link Ratio Family(ELRF). Please note that the graph for this approach 
does not show the 5th and 25th percentiles. 
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Comparing the 95th percentile to the mean the Regression/Curve Fitting method gave 
the highest value at 138% compared to the Insureware approach giving the lowest 
value at 107%. This is quite a significant variation in the estimated uncertainty.   
 
 
Personal Motor Results Comparison 
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Graph 4: Personal Motor Method Comparison 
 
The majority of methods gave consistent results for this dataset. The ratio of the 95th 
percentile to the mean mostly varied between 110% and 120%. The exceptions were 
the Regression / Curve fitting methods (varying between 186% and 243%) and the 
Judgement method on Paid Data from Group 2 giving a ratio of 133%. It is noticeable 
that these exceptions were the methods where intermediate percentiles were not 
calculated. 
 
The Mack Variability Incurred projection was significantly skewed due to the high 
coefficient of variation and the decision to use a lognormal distribution. 
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Commercial Property Comparison 
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Graph 5: Commercial Property Method Comparison 
 
The estimates seemed to be split into two main groups with the results being quite 
consistent within these groupings. This was partly explained by the choice of Paid or 
Incurred data.  As for the Employers’ Liability class, there was a change in the 
relationship between paid and incurred claims, albeit in this case paid claims reduced 
as a proportion of incurred claims for recent origin periods leading to estimates from 
incurred claims exceeding those from methods applied to paid claims. 
  
The Regression / Curve Fitting results on paid data were noticeably different to the 
remaining methods. 
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8. Summary of Qualitative Comments 

8.1 Introduction 
 
In applying the selected methods to the real datasets, sub-groups of the working party 
considered the following qualitative questions: 
 

• Would the method be acceptable to the Profession? 

• Ease of use and practicality of method 

• How difficult is it to apply judgement and / or amendments to the results  

• How easily would you be able to explain the method to non technicians? 

• Does the method include extreme events? (By this we mean can you allow for 
the sudden emergence of large individual losses, late tail kicks in incurred, 
surprising developments on known large losses, etc) 

• When is the method good, when is it not good, and when does the method fail? 

 

Comments from the sub-groups are summarised in the remainder of this section for 
each method in turn. In some cases, these comments were collected from more than 
one-subgroup and the sub-groups may have had differing views: these have been 
retained.  

8.2 ODP Bootstrap Method 

8.2.1 Would the method be acceptable to the Profession? 

Three sub-groups looked at this method. The consensus was that this method would 
be acceptable (and our survey results, Section 3, show that it is in fact one of the most 
widely used methods). However, the new simulation results presented in Section 9 
and Appendix B of the present paper suggest that a renewed debate on this would be 
appropriate: published versions of the ODP bootstrap method seem to be inaccurate in 
the extremes of the predictive distribution.   

8.2.2 Ease of use and practicality of method. 

A group that used an existing proprietary implementation commented that the 
bootstrap ODP method is easy to use once set up, and as the algorithms are relatively 
simple, the program runs quickly.  This group added that the method is relatively 
straightforward and can be run in an Excel spreadsheet; but that it is better suited to 
specialist software without the limitations of Excel. 
 
Another group who used Excel commented that it is easy to programme, taking 1-2 
days to programme for a generic application including tests. However, this group 
found it quite slow to run in Excel (about 30mins for 200 simulations). This group 
commented that a significant number of simulations is required to generate 
distributions without "roughness" in the tail, as use of scale parameter and integer 
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Poisson results can give clumpy results on an individual underwriting year basis, 
particularly where minimal reserves are expected. 
A third group programmed the method in C++ and found that 1,000 simulations took 
a fraction of a second, so running enough simulations to obtain a smooth predictive 
distribution was not a problem.  

8.2.3 How difficult is it to apply judgement and / or amendments to the results  

Judgement is required on details of the method where the published literature is silent 
or inconclusive. If using a proprietary implementation, some of these judgements have 
been made by the software providers and users should be aware of this.  
One group commented that checks are needed to ensure that individual development 
factors are greater than one. The group that used a C++ implementation did not 
impose this constraint but instead imposed the weaker constraint that all cumulative 
paid amounts should be positive in pseudo-data (as described in Section B2.4.1 of the 
present paper). 
 
The group that used the proprietary application commented that the ODP Bootstrap 
results can be scaled to achieve any desired mean or coefficient of variation. 
Judgement is required on whether or not to do this, and in the choice of target mean 
and/or variance. The mean could be chosen to match results attained by a 
deterministic statistical method, such as a deterministic chain ladder.  The variance 
could be chosen to match that of another, perhaps more complicated, stochastic 
method.  Otherwise the variance could be scaled (either additively or multiplicatively) 
in proportion to the scaling of the mean. 
 
However, it is unclear what the bootstrap ODP method achieves if the bootstrap 
predictive distribution is shifted and scaled in this way. This presupposes that the 
mean and predictive standard error have been obtained by some other method, in 
which case an analytic distribution (instead of a bootstrap distribution) could be fitted 
to give the required mean and standard error.   
 
The group that programmed the method in Excel commented that the method has 
limited usability on a pure basis as it needs all individual development factors (idfs) to 
be greater than one, adding that judgement can be applied to select a set of idfs, but 
this will increase the residuals and hence uncertainty. This group also commented that 
other amendments to the base model are possible, including changing the assumptions 
on the predictive distribution. 

8.2.4 How easily would you be able to explain the method to non technicians? 

One group commented that the bootstrapping part of the method (in respect of 
parameter uncertainty) would be easier to explain to non-technicians than the 
forecasting part: it would be possible to explain the principles of bootstrapping in 
layman’s terms. Another commented that principles would be easy to explain, but 
technical details more difficult. This concurs with experience of other members of the 
working group who have had to explain the method in practice. 
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8.2.5 Does the method include extreme events? 

One group commented that the ODP bootstrap can produce some very extreme 
outliers that may need to be capped in order for the distribution to be used. Judgement 
is needed on whether/how to include extreme outcomes in the bootstrap results. 
Another group commented that extreme events are only included as much as they 
exist in existing data.   

8.2.6 When is the method good, not good, and when does it fail? 

One group commented that the ODP bootstrap is good if there are few negative 
developments, and it is reasonable to assume that the residuals are identically 
distributed (subject to scaling) and independent. 
 
The group that used the proprietary implementation commented that the method will 
not work if the sum of a column in the incremental triangle is negative. Another group 
commented that for similar reasons, the method may not work well on incurred data.  
It was generally recognised that the method requires the underlying run-off pattern to 
be the same for all origin years, and will not work well if this is not the case. This is 
confirmed by the simulation results presented in Appendix B (Section B.4.5) of the 
present paper.   

8.3 Mack’s Method 
 
Two sub-groups tested and commented on this method. 

8.3.1 Would the method be acceptable to the Profession? 

As for the bootstrap ODP method, the general view was that the method is currently 
quite widely accepted by the profession. However, the new simulation results 
presented in Section 9 and Appendix B of the present paper suggest that a renewed 
debate on this would be appropriate because the method can be very inaccurate in the 
extremes of the predictive distribution.  

8.3.2 Comment on difficulty of method to program and run  

One group used an existing implementation and commented that software was readily 
available for the method and was quick to run. Another group found it straightforward 
to programme the method in both Excel and C++.  

8.3.3 How difficult is it to apply judgement? 

The group that used an existing implementation said that adjustments could not be 
made. The group that programmed the method in accordance with Thomas Mack’s 
original papers found that nearly all details are specified by Mack, but there is some 
scope for judgement where there are too few data-points to estimate a variance 
parameter for each development period, and where tail factors are required. Mack also 
does not fully prescribe how a complete predictive distribution should be obtained 
from the mean and standard error that are produced by the method.  
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8.3.4 How easily would you be able to explain the method to non technicians? 

One group commented that it would probably be difficult to explain this to non 
technicians but no more so than most methods. Another group commented that it is a 
relatively difficult method to explain to non-technicians. 

8.3.5 Does the method include extreme events? 

It was generally recognised that extreme events are only included to the extent that 
they occur in the past data.   

8.3.6 When does the method fail or not work well? 

It was generally recognised that the method requires the underlying run-off pattern to 
be the same for all origin years, and will not work well if this is not the case. The 
method will not fail if the run-off pattern varies, but will give poor results. This is 
confirmed by the simulation results presented in Appendix B (Section B.4.5) of the 
present paper.   

8.4 Bayesian Bornheutter-Ferguson (BBF)  
 
Two subgroups tested this method – both used proprietary specialist software (Igloo).  

8.4.1 Would the method be acceptable to the Profession? 

The method is a formalisation of the widely used Bornheutter-Ferguson method, so in 
principle should be acceptable to the profession, provided it is correctly implemented 
and the judgements required understood. 

8.4.2 Comment on difficulty of method to program and run  

The BBF method has some advanced theory behind it and requires some advanced 
sampling algorithms. The method requires sampling several parameters from a non-
standard multivariate distribution. This has been done using Adaptive Rejective 
Metropolis Sampling (ARMS).  The Gibbs method is used to reduce the 
multidimensional sampling problem to an iterative one dimensional problem. This 
would be very difficult to perform without using specialist software. 
 
Both groups commented that the specialist software used is currently slow to run.  
One group said that running 50,000 simulations on a 10 by 10 triangle takes over one 
hour using a PC with processor speed 3 GHz and 2GB of RAM.  The other said that 
run time can be decreased by reducing the sampling rate, but that when unadjusted, 10 
scenarios for one triangle takes 20mins to run. 

8.4.3 How difficult is it to apply judgement? 

The model is flexible as it can accept prior information in the form of a distribution. 
The prior distributions used in the BBF method influence the results. The output 
distribution can be adjusted to achieve a desired mean and variance, however this 
would undermine the decision to use the BBF method in the first place. 
 
The method requires a prior distribution for the ultimates separately for each origin 
period. Judgement is required in choosing these distributions. The levels of certainty 
of the prior estimates are reflected in the choice of the coefficients of variation for the 



 37

prior distributions. If a high CoV is chosen for the prior distributions then the BBF 
predictive distribution resembles that produced by the ODP Bootstrap method. If the 
CoV of the prior distributions are small then the ultimates will have a smaller CoV. 
The mean of the distribution tends towards that of a deterministic BF model as the 
CoV of the priors tend towards zero.   

8.4.4 How easily would you be able to explain the method to non technicians? 

One group commented that the BBF method is difficult for a technician to understand 
so it would be very difficult to explain the method to a non-technician.  Even to 
explain the principles of the BBF method in layman’s terms would be very 
challenging. The other group said it would probably be difficult to explain this to non 
technicians but no more so than most methods. 

8.3.5 Does the method include extreme events? 

It was generally recognised that extreme events are only included to the extent that 
they occur in the past data.   

8.4.6 When is the method good, when is it not good and when does it fail? 

The BBF is useful to use when there is a prior assumption of the ultimate values. It is 
not so good when time or processor speed is an issue. One group said the method will 
not work if the sum of a column in the incremental triangle is negative. The other said 
the method does not seem to work if there is no movement in the upper right of the 
triangle. 

8.5 Judgement 
 
Two sub-groups considered this approach. 

8.5.1 Would the method be acceptable to the Profession? 

We refer the reader to this discussion of this method in Section 1. The following 
discussion is from the working groups. 
 
The first sub-group said: Yes.  “Actuarial judgement” is probably the most widely 
used concept when setting reserves. It does rely solely on the judgement of the person 
setting the reserves, but it allows that person full control and flexibility to adapt to any 
trends they may see in the data without much effort. This method could be criticised 
as the accuracy of the best estimates is dependent on the experience of the actuary 
applying the judgement. There is always a risk that two reasonable actuaries would 
generate two very different results through taking a different view around emerging 
trends or allowances for distortions. 
 
The other sub-group said: I don't think so. It is very subjective and difficult to do. 
However this second group also recognized that this method does have the merit of 
potentially allowing for model error as well as parameter and process error. 

8.5.2 Comment on difficulty of method to program and run 

The first group considered the use of the basic chain ladder method as a starting point 
for the application of judgement, and commented that to generate a range of results 
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using judgement it can be somewhat laborious tweaking development factor 
assumptions to allow for distortions within the data. They added that automatically 
generated development factors can be easily obtained however as a starting point by 
sampling across varying numbers of accident periods. Generally, initial selection can 
be made quickly (several minutes). Generating a sensible range of results through 
adjustment of factors naturally adds to time taken. 
 
They also commented that input from several modellers provided greater variety of 
answers. In this way, the subjectivity of the approach could be viewed as an 
advantage when assessing reserve uncertainty. However, they also commented that it 
can be difficult to avoid being influenced by an expectation of what reserves should 
be.  For example, the actuary could be 'anchored' to previous valuation results. 
They commented that the method potentially allows for the many complexities of 
different classes of business, but taking all factors into account by judgement is 
demanding and time consuming to do well. Additional information (e.g. large claims 
data) or discussions with claims handlers can provide valuable insight leading to a 
better application of judgement. 
 
The other group said it is generally very difficult to translate judgement into 
percentiles. 

8.5.3 How difficult is it to apply judgement? 

See response to 8.5.2 above. 

8.5.4 How easily would you be able to explain the method non technicians? 

It is easy to explain how certain factors have been taken into account when presenting 
results to non technicians. It is also relatively easy to explain the basic chain ladder 
approach to non technicians to expand on where judgement has been applied. 

8.5.5 Does the method include extreme events? 

Extreme events can be suitably allowed for through additional margins within the 
provisions by making reasonable assumptions about likelihood and severity. 
However, there may be much subjectivity over what is ‘reasonable’ here. 

8.5.6 When is the method good, when is it not good and when does it fail? 

It is good to apply judgement when the actuary believes he or she has relevant 
knowledge or experience about the expected future development of the claims, and is 
adept enough to make suitable allowances. The application of judgement is less 
necessary for standard short-tail classes where past performance remains a good guide 
to the future. 
 
Lack of experience or inaccurate supporting data/information could lead to unsuitable 
application of judgement. Peer review can help to mitigate these risks. 

8.6 Scenarios 
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There are several ways to employ scenario testing. This method can be applied to 
many underlying reserving methods including chain ladder, Bornheutter Ferguson and 
exposure methods. 
 
One sub-group considered the use of scenarios generated from the basic chain ladder 
method and commented as follows:  

8.6.1 Would the method be acceptable to the Profession? 

Yes.  Application of judgement can play a major role in selecting scenarios to obtain a 
range of results. A more mechanical process of simply selecting the most optimistic 
and pessimistic development factors is unlikely to be suitable, especially where large 
distortions exist within the data. 

8.6.2 Comment on difficulty of method to program and run 

The basic chain ladder method is very simple and easy to use. A simple mechanical 
process of selecting the most optimistic and pessimistic development factors is easy to 
apply. Other considerations should be made however to avoid generating meaningless 
results. Inherent uncertainty / volatility in smaller datasets e.g. from large claims, 
ideally need to be considered and allowed for in the scenarios selected. 

8.6.3 How difficult is it to apply judgement? 

It is easy to apply amendments to results via manual adjustments and other tweaks 
when using a simple, well designed model. 

8.6.4 How easily would you be able to explain the method to non technicians? 

It is relatively easy to explain the basic chain ladder approach to non technicians and 
describe the choice of scenarios generating the range of results. 

8.6.5 Does the method include extreme events? 

Extreme development factors can only be selected to the extent they are generated 
from the underlying dataset. A mechanical selection of factors, with no consideration 
to the distorting effect of extreme events, would not be sensible. 
 
(The working party would add that the use of scenarios can be a helpful approach to 
considering extreme events, and can be usefully employed, for example, in exposure 
reserving for asbestos claims). 

8.6.6 When is the method good, when is it not good and when does it fail? 

A purely mechanical application of selecting best/worst scenarios would not be 
advised, especially when used for volatile datasets. Conversely, this type of method 
works well with large stable datasets. Lack of experience could lead to inappropriate 
selection of scenarios. 

8.7 Craighead Curve followed by Regression 
 
This was considered by one sub-group who commented as follows:  
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8.7.1 Would the method be acceptable to the Profession? 

It depends on the purpose. It gives a rough indication of uncertainties of reserves 
based on past development observations. The method would need heavy adaptations 
and more research to be used for stochastic simulations.  

8.7.2 Comment on difficulty of method to program and run 

The method is easy to implement using Excel. The regression method does not give 
estimation for the first two origin periods (because one needs more than two points to 
perform regression) 
Curve fitting could be an issue if there is much negative developments:  the Craighead 
curve is increasing, and other curves could be vulnerable to over-fitting. 

8.7.3 How difficult is it to apply judgement  

Judgments are required at several points in the methods (e.g. the weight to give in the 
curve fitting for each data point, the curve to use, the weight to give in the regression 
for each data point, etc.) But (at least for the curve fitting), it seems that there isn't that 
much more judgment required than in, say, the chain ladder. The paper (by Benjamin 
and Eagles) proposed several modifications to the method - very easy to "break into 
the method" and make modifications 

8.7.4 How easily would you be able to explain the method to non technicians? 

Should be easily explained to colleagues in other professions.   

8.7.5 Does the method include extreme events? 

The mechanical application of the model does include them - but one may want to 
exclude (or put less weight) on them for curve fitting or regression. 

8.7.6 When is the method good, when is it not good and when does it fail? 

No comment provided. 

8.8 (Multiple) Probabilistic Trend Family (M)PTF 
 
The comments in this subsection have been taken from the submission to the working 
party provided by Insureware Pty Ltd. Insureware produces software (ICRFS-plus) for 
carrying out these methods. Their complete submission is given in Appendix F.   

8.8.1 Would the method be acceptable to the Profession? 

Yes. 

8.8.2 Comment on difficulty of method to program and run  

It is extremely difficult to program (but theoretically possible) in a spreadsheet form, 
but is easy to run in ICRFS-Plus as all the programming has been pre-specified. 
ICRFS-Plus is a point and click system with extremely fast algorithms. Individual 
tests do not need to be programmed.   It takes seconds for individual tests to be 
completed. 
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8.8.3 How difficult is it to apply judgement within the program 

It is not difficult.  Judgement is made on the basis of accurate information about the 
volatility in the business. 

8.8.4 How easily would you be able to explain the method to non technicians? 

No comment provided. 

8.8.5 Does the method include extreme events? 

No comment provided. 

8.8.6 When is the method good, when is it not good and when does it fail? 

No comment provided. 
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9. Assessing Performance of Stochastic Reserving 
Methods by Numerical Simulation 

9.1 Introduction 
 
The work described in previous sections has given us an initial impression of the main 
features of several stochastic methods. Although we have given an initial assessment 
of these methods (as described in previous sections) we cannot formulate definitive 
conclusions on the performance of these methods from the experience of applying 
them to a handful of data-sets. 
 
Towards this end, we have also used numerical simulation methods to assess the 
performance of various stochastic methods. The basic idea is to apply the methods to 
a large number of simulated run-off triangles for which the ‘true’ ultimate is known 
(by simulating it), and to compare the predictions produced by the various methods to 
the true ultimate.  
 
While this approach can be criticised on the grounds that simulated data may not 
exhibit all the complications and variety or real-world data, it does have merits: 
 

• It enables methods to be tested on very large numbers of triangles.  

• Predictions can be compared to ‘true’ ultimates without waiting years for the 
true ultimate position to be reached. 

• Triangles can be constructed such that they exactly satisfy the assumptions 
underlying a method: the performance of a method in this ideal situation 
indicates the limits of the method’s potential performance on real data. (If a 
method does not perform well on ideal data, it is unlikely to perform well on 
real data.) 

• The robustness of a method to violations of its underlying assumptions (which 
may be met in practice) can be tested in a controlled way.  

 

We have made a start with this but have not yet done enough to formulate definitive 
conclusions. We propose that the working party should continue pursuing this 
approach next year. 
 
In practice, the assumptions of a stochastic method are never perfectly satisfied, and 
(even if the stochastic assumptions approximate the past run-off data reasonably 
closely) there is the added risk of shocks and changes in the future unlike anything 
observed in the past.  
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9.2 What constitutes “good performance” for a stochastic reserving method? 

9.2.1 Three main types of uncertainty 

In the following discussion, it is worth bearing in mind the three main categories of 
uncertainty when forecasting outstanding claims liabilities: 

• model uncertainty 

• parameter uncertainty 

• process uncertainty 

9.2.2 Why different stochastic methods give different results 

Some stochastic methods tend to give wider confidence intervals for the eventual 
outcome than others. Some possible reasons are listed below (examples follow this 
list): 
a) Inappropriate stochastic model: if a method is used where the underlying 

stochastic assumptions are not appropriate for the data, then the results - both best 
estimates and uncertainty assessments – are unlikely to be good.  

b) Failure of some methods to take account of both parameter and process 
uncertainty. 

c) In assessing parameter uncertainty, failure of some methods to take account of 
uncertainty in all parameters.  

d) Failure to make use of all available data. 

e) Failure to take account of correlations between different components of the overall 
forecast. 

f) Use of inadequate mathematical approximations in the formulation of a stochastic 
method (so that even if the method is applied where its stated assumptions are 
perfectly satisfied, it may not give reliable results).  

An example of (a) is misuse of any method based on an assumption that the 
underlying run-off pattern across development time is the same for all origin years. 
Where this assumption is a reasonably good approximation to reality, such methods 
may give realistic results. But if applied in situations where this assumption is 
unreasonably wide of the mark, such methods may tend to understate uncertainty, that 
is, give predictive ranges that are unrealistically narrow.  
 
While there will always be some model uncertainty, we should attempt to minimise 
this by being aware of all model assumptions and of the claim settlement processes 
involved in the lines of business concerned, so we are in a position to judge whether 
the model assumptions are reasonably realistic in each application of any stochastic 
method. The run-off data itself can often be used to check for gross violations of the 
model assumptions.   
 
An example of (b) is where bootstrapping is used to determine a ‘range of best 
estimates’ but no attempt is made to include future process uncertainty. 
 
An example of (c) occurs where run-off data is pre-adjusted for inflation as if the rate 
of claims inflation were known precisely. 
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An example of (d): given a triangle of aggregate amounts paid and a corresponding 
triangle of counts of claims closed, some methods may not make use of the counts 
triangle. It is tempting to think that using more relevant information necessarily 
reduces uncertainty, leading to narrower predictive ranges. However this is not 
necessarily the case: the additional information might indicate that there is more 
apparently random variation than previously thought. For example, suppose we are 
using a stochastic chain ladder method and all available diagnostics indicate that the 
model is appropriate. That is, past data shows no statistically significant departures 
from a constant run-off pattern and all residual variation apparently satisfies the 
stochastic assumptions. The quantum of parameter and process variation is assessed 
from this residual variation (e.g. using Bootstrap, or analytic methods). Then, two 
diagonals later, there is no material change in the run-off pattern, but residual 
variation is much greater. This new information indicates that process variation is 
potentially much greater than it previously appeared: as a result future process 
uncertainty may increase, despite there being a reduced period of future development. 
 
An example of (e): a method may produce forecasts and standard errors for each 
origin year separately and in combining these, fail to take proper account of the 
possibility that over-estimation of a single parameter of the model may cause 
forecasts for all origin years to be simultaneously overstated. 
  
An example of (f) occurs where a stochastic method relies on asymptotic 
unbiasedness and efficiency of maximum likelihood estimates, but the number of 
estimated parameters is so high compared to the number of data-points that these 
asymptotic approximations are poor. 

9.2.3 Choice of stochastic method 

It is hopefully clear from the above discussion that, in choosing between stochastic 
methods, the width of predictive ranges produced by the methods should not be the 
primary consideration.  
 
Users of our results from outside the profession may be forgiven for judging methods 
in this way, because they may make the implicit assumption that all methods used by 
actuaries will be ‘correct’ in the sense of not omitting any major source of uncertainty 
(such as those listed above). However, this will only be true if we within the 
profession ensure this is the case by critically examining all stochastic methods we 
use. For us, the primary considerations should be that stochastic methods:  
 

• attempt to assess all sources of uncertainty,  

• are technically accurate in this assessment given the assumptions of the 
method,  

• are applied only where the assumption of the method have a reasonable chance 
of being approximately true.  

 

If these points are all satisfied, then we have to accept the resulting ranges regardless 
of their width. (Of course, this may be an iterative process: if ranges come out 
surprisingly narrow or wide, the above points should be critically examined and the 
method adjusted and refined if necessary. But when we are eventually satisfied that a 
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valid method has been validly applied, the results should not be rejected merely on the 
basis that the width of predictive ranges was initially surprising, or may be surprising 
or inconvenient to others.) 
 
With reference to model assumptions being satisfied, a related and more difficult 
question concerns the robustness of a method to violations of its assumptions. That is, 
how reliant is a method on the correctness of its assumptions? This is an important 
question as it is rare for model assumptions to be perfectly satisfied in reality.  
 
For example, one key assumption underlying all stochastic chain-ladder methods is 
(as in the basic chain-ladder) that the underlying run-off pattern is the same for all 
origin years. If a stochastic chain ladder method is used where this assumption is 
false, are the results likely to be materially misleading? Perhaps not, because if a 
method involves assessing the quantum of process variation from residual variation in 
the data, then systematic departures from this key assumption will be partly taken into 
account through an increase in the residual variation. 

9.3 Outline of numerical simulation approach to testing stochastic methods 
 
To test stochastic methods, we can use the well known fact that if X is a random 
variable, and F(x) is its cumulative distribution function, then the random variable 
F(X) has a uniform distribution on the unit interval [0,1]. 
 
In the context of stochastic reserving, X represents the total of future claim payments 
(i.e. ultimate less amount paid-to-date). A stochastic method produces a function F(x) 
that purports to be the distribution function of X. (Many stochastic methods produce 
only a best estimate reserve and a root-mean-square predictive error, but these can be 
extended by using some class of analytic distributions, e.g. Log-Normal, to produce a 
complete distribution F(x).) 
 
If a stochastic method is reasonably good, F(X) should therefore have approximately a 
uniform distribution. To test this, we need a number of independent instances from 
this supposedly uniform distribution to see if they are indeed uniformly distributed. 
The larger the number of instances, the more powerful will be the test. 
 
Having carried out the stochastic method on a particular triangle, we can obtain one 
instance of the random variable F(X) by waiting for the triangle to reach its ultimate 
position: this gives us one instance (x0 say) of the random variable X, hence one 
instance F(x0) purportedly from the uniform [0,1] distribution. 
 
By applying the same stochastic method many times to independent triangles, and 
then waiting for each to develop to ultimate, we could gradually accumulate an 
increasingly large sample that can be tested for uniformity. 
 
Clearly, if we use only real-world data, it is likely to take a very long time to obtain a 
large enough sample for a reasonably powerful test of uniformity. The entire process 
can be accelerated by using a large number of artificial triangles. This approach also 
has the advantage of allowing us to test the robustness of a method to violations of its 
underlying assumptions. 
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So, for each stochastic method we can do two things: 
 
a) Check the performance of the method in situations where its underlying 

assumptions are perfectly satisfied. 

b) Test the robustness of the method to violations of its assumptions. 

 

The main steps of (a) are: 
 

(i) Generate a large number I of artificial datasets (i = 1…I) that follow the 
assumptions of the method: each dataset to contain run-off arrays (on which to 
apply the stochastic method) and ‘true’ reserves (denoted ri). 

(ii) For each artificial dataset, apply the stochastic method to obtain the predictive 
distribution function Fi(x) (where x is any possible value of aggregate future 
payments). 

(iii) For each artificial dataset, calculate ui = Fi(ri) (where ri is the simulated ‘true’ 
total of future payments). 

(iv) Test the dataset {ui: i = 1…I} for uniformity. If this is not significantly different 
from uniform, then the method is ‘stochastically correct’ (in other words, it 
appears to correctly assess parameter and process error, given the underlying 
model assumptions). 

 

For (b) (the assessment of robustness) the steps are as for (a) except that at step (i) the 
artificial datasets would be generated to have some feature that departs from the 
assumptions underlying the stochastic method.  For example, if the chosen stochastic 
method assumes that settlement delay is unrelated to the size of a claim, we could 
generate datasets in which larger claims tend to take longer to settle than smaller 
claims. If the distribution obtained at step (iv) still does not depart significantly from a 
uniform distribution, then we can conclude that the method is robust to the particular 
aspect modelled. In other words, no material additional uncertainty arises from this 
particular aspect of model uncertainty. 

9.4 Overview of simulation analysis carried out so far and provisional 
conclusions 

We have done some initial work applying the approach described in the previous 
section to: 
 

• Thomas Mack’s method as described in his 1993 paper.  

• The over-dispersed Poisson (ODP) method as described by Arthur Renshaw 
and Richard Verrall (1998), Peter England and Richard Verrall (1999) and 
Peter England (2001). 

• Tom Wright’s operational time average-cost-per-claim method as described in 
his 1992 paper. 

Appendix B gives a detailed description of the simulations carried out and the results 
obtained. Here we give just a brief overview and summarise the main findings. 
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For each of these stochastic methods, we simulated at least 30,000 triangles using 
algorithms that perfectly satisfy the stochastic assumptions underlying each method. 
We then applied the stochastic method to each simulated triangle to obtain a 
predictive probability distribution function F(x) (where x the total of future 
payments). We then calculated u = F(r) where r is the ‘true’ outcome (simulated along 
with each triangle). As discussed, in the previous section, this quantity should be 
uniformly distributed in the range 0 to 1. However, for all the stochastic methods 
tested, too many value of F(r) were very close to 1. The table below shows the 
proportion of simulations in which F(r) exceeded 0.99. In other words, this is the 
proportion of simulations in which the true outcome exceeded the 99th percentile of 
the predictive distribution obtained from the triangle. Clearly, if the predictive 
distribution is accurate, this should occur in 1% of simulations.  
 
Table 9.4.1 Proportion of simulations in which ‘true’ outcome exceeded 99th percentile 

Mack 1993 (with Log-Normal) 8% to 13% 

Analytic ODP (Renshaw & Verrall, 1998), Pearson dispersion 2.6% 

Analytic ODP (Renshaw & Verrall, 1998), deviance dispersion 2.7% 

Bootstrap ODP (England & Verrall, 1999) 3.1% 

Bootstrap ODP (England 2001) 2.6% 

Operational time (Wright 1992), Pearson dispersion  4.0% 

 
 
Bootstrap ODP (England 2001) is the only one of these methods that produces a full 
predictive distribution F(x): the others produce just a best estimate and a standard 
error (or “root-mean-square predictive error”). For these methods we used a Log-
Normal predictive distribution F(x) (as suggested by Mack 1993) in order to calculate 
u = F(r). (We also tried using the Inverse Gauss distribution for F(x) but found this 
made no material difference to the main results summarised above.)  
 
It is emphasised that for each of the methods, the above results are based on at least 
30,000 triangles generated in a way that perfectly satisfies the stochastic assumptions 
of the respective method.  
 
For most methods we have so far used only a single set of parameters to generate 
triangles that perfectly satisfy the assumptions. Other parameters would no doubt lead 
to different results. Only in the case of Mack’s method have we tried more than one 
set of parameters for generating the triangles, which is why the table above shows a 
range of results (from 8% to 13%). For all stochastic methods the simulated triangles 
had 10 origin years and annual development. We would expect better performance on 
larger triangles but have not yet tested this.  
 
We should generally expect stochastic methods to perform worse than this in practice 
because their assumptions will never be perfectly satisfied. We have done some 
testing of robustness to violations of assumptions only for Mack’s method and the 
ODP methods so far. The results for all variants of the ODP method indicate, as 
expected, a deterioration in performance if applied where the ODP assumptions are 
violated. Surprisingly, results obtained so far for Mack’s method show it performs 
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better where its assumptions are not satisfied than where they are perfectly satisfied 
(details and a possible explanation are given in Appendix B).  
 
9.5 Conclusions to Date 
 
The main conclusion of the simulation work carried out so far is that all these 
stochastic reserving methods tend to understate the chance of extreme adverse 
outcomes, even in situations where their underlying assumptions are perfectly 
satisfied.  
 
In Appendix B we outline some possible explanations of why these stochastic 
methods do not work well at the extremes. To be fair to the developers of these 
methods, the goal-posts have moved. The aim at the time these methods were 
developed was to improve on the usual practice of providing just ‘best estimate’ 
reserves, or perhaps estimates based on just a few scenarios (to give perhaps low, 
medium and high reserve estimates). It is only in more recent years that regulators 
have begun specifying particular extreme percentiles for capital requirements. Our 
results indicate that further work is now needed to develop and refine stochastic 
reserving methods to better meet this new challenge.   
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10. Objectives for the Working Party for Next Year 
 
 
There are three main areas of objectives for next year: 
 
10.1 Objective 1: Statistical Testing When Conditions Met 
 
We would like to continue the consideration of the performance of statistical methods 
when all their underlying conditions are met. We would like to better understand to 
what extent and in what circumstances these methods can be reliable indicators of 
ultimate claims outcomes at the tails of the distribution. Do we need to alter the way 
we use such methods and are there any “quick wins”? We see this as a key priority in 
the context of reserving risk assessment for capital purposes. 
 
Part of the work in this area is likely to include liaison between this working party and 
the one concentrating on best estimate reserving and the performance of methods in 
that context. 
 
10.2: Objective 2: Test More Methods 
 
We would like to expand the review and testing of methods on “real” data to include 
additional methods, if possible those which operate on transactional data. This would 
ideally include further quantitative and qualitative review.  
 
10.3: Objective 3: Robustness of Methods in Real Life 
 
We would like to expand the work on simulated data to test the response of methods 
to circumstances when there underlying conditions are not met – which is the case in 
most real life scenarios. How do methods respond when there are new trends, changes 
in claims processing speeds or underwriting cycles, for example. How should the 
actuary make use of information beyond the triangle? How should an actuary test 
whether methods are appropriate or not – and how might these tests vary depending 
on the purpose and the part of the distribution of outcomes which is of particular 
interest? 
 
 



Appendix A: Summary of the Methods Tested 
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Appendix A – Summary of each of the methods tested 
 
The following methods are described briefly below: 

1. Judgement 
2. Scenario testing 
3. Mack 
4. Over-dispersed Poisson stochastic chain ladder 
5. Transaction level modelling 
6. Operational time 
7. Regression/ Curve fitting 
8. Bayesian/BF method 
9. Probabilistic Trend Family (PTF) - ICRFS 
 

Note that Prof. Richard Verrall has a web-lecture on a number of these methods at: 
https://talk.city.ac.uk/stochasticreserving.  In addition the paper by England and 
Verrall provides a detailed review of the differences between many methods and 
approaches (England and Verral, BAJ (2002)). 
 
Additional references to these methods are contained in the bibliography, the 
references provided here represent the actual methods applied in each case. 
 

1. Judgement 
 

Description: This method is described in Section 1 of the report. 
 
Key assumptions: This will vary depending on exactly how the actuary applies 
judgement. In some cases the only assumptions will be the selected results 
themselves. 
 
Data required: Any – but relevant experience is also needed. 
 
 
Reference: n/a 
 

2. Scenario testing 
 

Description: although not the only methodology that can be defined under this 
heading, this is generally perceived as selecting alternative parameters from the best 
estimate projection that reflect the user’s view of the extreme ends of the range to be 
defined. 
 
Key assumptions: the assumptions under this method are similar to those under the 
judgement method.  However, they are generally more specific and relate to changes 
in one or more parameters to investigate the effect such changes have on the projected 
reserves.  Note that any assumptions that relate to the underlying model(s) used to 
calculate the best estimate will still be applicable in this case. 
 
Data required: Any. 
 
Reference: n/a 
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3. Mack 
 

Description: This method calculates the standard error involved in the application of 
the Chain-ladder method for the reserve estimation for each origin year and for all 
years combined, allowing for both parameter and process uncertainty.  The 1999 
paper allows for tail factors within the method. 
 
The method can be applied both as a deterministic calculation, or using a bootstrap 
approach.  It is suggested that standard distributions (LogNormal; Gamma) can be 
used to derive ranges based on the results of the method. 
 
Key assumptions: 

• The underlying run-off pattern is the same for all origin years (as in the basic 
chain ladder method) 

• Future development factors are independent of past development factors (i.e. 
the size of the next factor is independent of the size of the last factor). 

• Variance of the next cumulative claims amount is proportional to the current 
cumulative claims amount. 

 
Data required: Cumulative claims triangles (paid or incurred). 
 
Reference: ASTIN Bulletin vol. 23 (1993) (and update in 1999 - ASTIN vol.29) 
 

4. Over-dispersed Poisson method 
 

Description: This method calculates the distribution of outcomes for each origin year 
and for all years combined.  It models incremental claims using an Over-dispersed 
Poisson distribution.  The calculation of a distribution of outcomes is performed using 
a Bootstrapping calculation. 
 
Key assumptions: 

• The underlying run-off pattern is the same for all origin years (as in the basic 
chain ladder method) 

• Incremental claims amounts are stochastically independent  
• The variance of incremental claim amounts is proportional to the mean 

(process error). 
• Incremental claims are positive for all development periods (though there are 

adjustments to the method that can allow for data where this is not the case). 
 
Data required: Cumulative claims triangles (paid or incurred). 
 
Reference: “Stochastic Claims Reserving”, England and Verrall, BAJ (2002) and 
others 
 

5. Transaction level modelling 
 

Description: This method uses Bootstrapping techniques to model individual claims 
events, based on investigation of individual claim data.  GLM methods are used to fit 
the claims development factors to each claim’s data, based on all available 
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information e.g. credit rating or exposure measure contained within the policy or 
claims data to derive the best estimate.  Similar techniques are applied to derive 
estimators for reserve ranges. 
 
Key assumptions: 

• Individual claim development is a function of characteristics relating to that 
policy and claim. 

• IBNR claims originate in a similar response to the predicted claims 
development factors. 

• A known mix of “good” and “bad” policies is contained within each origin 
year to allow for changes in business, i.e. the reserving cycle. 

 
Data required: Policy and developmental claim data for each claim. 
 
Reference: “Loss reserving using claim level data”, Guszcza and Lommele, CAS Fall 
Forum (2006) 
 

6. Operational time 
 

Description: An average-cost-per-claim method in which the average-cost-per-claim 
closed is assumed to depend on the point in operational time at which a claim is 
closed.  ‘Operational time’ is defined as the number of claims closed expressed as a 
proportion of the ultimate number of claims in an origin year (so it increases from 
zero at the beginning of each origin year to one when an origin year reaches ultimate). 
The main advantage of using operational time is that the method does not require the 
underlying run-off pattern (across real development time) to be the same for all origin 
years. Generalized linear modelling is used to find the best fitting formula relating 
mean claim amount to operational time. Best estimate reserves are determine by 
evaluating this fitted formula for all future operational times. Predictive standard 
errors are calculated that allow for both process and parameter uncertainty.   
 
Key assumptions: 
•        The probability distribution for the amount of an individual claim depends on the 

point in operational time (between 0 and 1) when the claim is settled. 
•        The variance of the probability distribution for individual claim amounts is 

proportional to the mean raised to some power (determined from residual 
analysis). 

•        Aggregate incremental claim amounts are stochastically independent (given the 
number of claims closed). 

 
Data required:  
The method requires the usual run-off triangle of aggregate paid amounts, and also a 
triangle that counts the number of claims closed. Optionally, the method can also 
make use of counts of reported claim numbers (used to improve estimates of ultimate 
claim numbers).   
 
Reference: “Stochastic reserving when past claim numbers are known”, Wright T. S, 
Proceedings of Casualty Actuarial Society 1992 
 

7. Regression/ Curve fitting 
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Description: Estimates ultimate claims by fitting a Craighead (or similar) curve to 
paid and incurred development data (either as ratios of ultimate premium or absolute 
values) using a weighted least squares fitting algorithm.  The range of reserve 
estimates is derived by plotting IBNR vs. incurred claims for each development 
[period within a given origin year. 
 
This plot is examined for potential uncertainty for fitting a regression curve to the data 
for each origin year separately.  This method does not therefore explicitly generate a 
particular statistical property of the reserve distribution; the extent of the range is 
defined by the fitting process and the implicit assumptions used therein. 
 
This method does not, therefore, produce reserve ranges for all origin years combined. 
 
Key assumptions: 
The fitting curve is a good description of the claim development 
 
Data required: Ultimate premium, paid and incurred cumulative claims. 
 
Reference: Benjamin, S. & Eagles, L. (1997). A curve fitting method and a regression 
method. Claims Reserving Manual volume 2. London: Institute of Actuaries. 
. 
 

8. Bayesian/BF method 
 

Description:  Bayesian method in which prior probability distributions are specified 
for the ultimates of each origin year. Using very vague priors yields the same results 
as the over-dispersed-Poisson chain-ladder method: using exact priors produces the 
same results as the Bornheutter-Ferguson method. So the method allows for a 
complete spectrum of results between these two extremes. The appropriate point on 
this spectrum is determined by the prior distributions, which must be set by the user 
on the basis of judgement and/or information from other sources (eg industry data).  
 
Key assumptions: 
Same as for over-dispersed Poisson model: 

•        The underlying run-off pattern is the same for all origin years (as in the basic 
chain ladder method) 

•        Incremental claims amounts are stochastically independent  
•        The variance of incremental claim amounts is proportional to the mean  
•        Incremental claims are positive for all development periods (though negatives 

can be removed or adjusted if not too many). 
And in addition: 

•        Assumptions for mean and variance of prior distributions (by judgement, or 
from industry data, or both). 

 
Data required:  
Usual run-off triangle of aggregate amounts (paid or incurred). However, as non-
positive increments must be removed or adjusted, the method may break-down if 
there are too many negative increments, so it is often unsuitable for use with incurred 
data.  
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In addition, information (or prior experience with other datasets) is needed to inform 
the judgemental selection of prior means and variances. 
 
Reference: Verrall R. J (2001): A Bayesian generalized linear model for the 
Bornhuetter-Ferguson method of claims reserving. Actuarial Research Paper No. 139, 
Department of Actuarial Science and Statistics, City University. 
 
 

9. Probabilistic Trend Family (PTF) (as implemented in ICRFS-plus) 
 
Description:  Normal theory linear regression models for the logarithm of aggregate 
increments. Regression parameters represent origin year effects, and differences 
(‘trends’) between successive development years and successive calendar years. 
 
Key assumptions: 

• Same development pattern for all origin years after allowing for calendar year 
effects. 

• Aggregate incremental paid data are approximately log-normally distributed. 
(Note this can never be exact because the sum of log-normals is not log-
normal, but it might sometimes be a reasonable approximation: residual 
analysis can be used to check.) 

• Incremental paid amounts are stochastically independent.  
 
Data required:  
Aggregate development data with few negative increments. (Because the dependent 
variable in the regression is the log of the incremental data, negative or zero 
increments have to be removed, so the method is often unsuitable for use with 
incurred data.) 
 
If available, the method can also make use of some measure of exposure (eg premium, 
or number of claims reported in first development period). 
 
Reference: Best Estimates for Reserves, Glen Barnett and Ben Zehnwirth, PCAS 2000 
Volume LXXXVII Part 2 
 



 

Appendix B: Numerical Simulation – Detailed Results 
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B Assessing performance of stochastic reserving methods 
by numerical simulation 

B.1 Assessment of Mack’s 1993 method using simulation 

B.1.1 Mack’s assumptions 
As discussed in Section 9, we aim to use simulation to:  

a) Determine whether Mack’s method gives correct results when its assumptions are perfectly 
satisfied, and 

b) Determine the robustness of the method to its assumptions not being perfectly satisfied. In 
other words, to answer the question: does the method continue to give reasonable uncertainty 
assessments when the claim payment process deviates (in ways that may be met in reality) 
from the assumptions underlying the method? 

In Mack’s 1993 paper he considers the basic chain ladder method (BCL) and sets out to find 
stochastic assumptions under which the BCL should give good point estimates, and then to find 
formulas (derived from these stochastic assumptions) for the root-mean-square predictive error 
of the BCL. (We will use the term ‘standard error’ to mean the root-mean-square predictive 
error.) The assumptions identified by Mack are as follows (where Cjk denotes the cumulative 
amount paid in origin year j by the end of development period k): 

1. There exist parameters fk such that: E(Cj,k+1 | Cj1,…Cjk) = fk.Cjk 

2. There exist parameters αk such that: Var(Cj,k+1 | Cj1,…Cjk) = αk
2.Cjk 

3. Accident years are stochastically independent. 

B.1.2 Artificial data satisfying Mack’s assumptions (Algorithm A) 
To test whether Mack’s formulas give a correct assessment of uncertainty when these 
assumptions are perfectly satisfied, we generate artificial run-off triangles satisfying these 
assumptions. Since the assumptions concern only the conditional mean and variance of the 
aggregate run-off data (saying nothing about higher moments), we are free to use any probability 
distribution in generating the artificial data (provided the above mean and variance assumptions 
are satisfied). Because of its widespread acceptance in modelling loss data and its ease of use, we 
have used the Log-Normal distribution initially.  

The steps used to generate an artificial run-off triangle (and corresponding ‘true’ ultimates) 
satisfying Mack’s assumptions are as follows: 

 

Algorithm A for artificial run-off data: 

1. Decide on the dimensions of the triangle. We have used 10 origin years with annual 
development: the number of development years reducing from 10 in the first origin year to 1 
in the last. 
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2. Decide on values of the parameters fk and αk: the values we used are given in Table B-1 
below.  

3. For each origin year j, generate a value for Cj1 (representing the amount paid in the first 
development year). Mack’s assumptions say nothing about how these values are generated so 
we are free to use any method. We used random sampling from a Log-Normal distribution: 
the same Log-Normal distribution for all origin years (mean = variance = 1.0) but 
independent random sampling for each origin year.   

4. For each origin year, generate Cjk (for k>1) recursively using Mack’s assumptions. We 
generated Cj2 by random sampling from the shifted Log-Normal distribution that gives values 
greater than Cj1, with mean equal to f1.Cj1 and variance equal to α1

2.Cj1. We then generated 
Cj3 by random sampling from the shifted Log-Normal that gives values greater than Cj2, with 
mean equal to f2.Cj2 and variance equal to α2

2.Cj2. We continued recursively in this way, 
using independent random sampling at each stage, until we obtained a value for Cj,10, which 
is the ‘true’ ultimate figure for origin year j. This was repeated for each origin year, using 
independent random sampling for each one. The triangle was then constructed by discarding 
the lower right part of the development array (except the Cj,10 values which were kept as the 
‘true’ ultimates for comparison with estimates produced by applying Mack’s method to the 
upper left triangle). Note that we assumed complete development after 10 years, so no tail-
factors were necessary when producing forecasts by Mack’s method. 

 
Table B-1 – Parameter values used at Step 2 of Algorithm A 

Dev-yr (k) 1 2 3 4 5 6 7 8 9 

fk 4.289 2.064 1.502 1.268 1.150 1.085 1.048 1.027 1.015 

αk 1 1 1 1 1 1 1 1 1 

 

B.1.3 Performance of Mack’s method where its assumptions are true 

B.1.3.1 Details of simulation method 
We created 10,000 artificial triangles (and corresponding ‘true’ ultimates) by Algorithm A, and 
applied Mack’s method to each triangle. For each triangle, we considered only the reserves for 
the entire triangle (all origin years combined) and we compared the forecast produced by Mack’s 
method to the ‘true’ reserve.  

Mack’s method produces a best estimate (equal to the basic chain ladder or BCL estimate) and 
an estimated root-mean-square prediction error (or just ‘standard error’). We used these to 
calculate the ‘standardised predictive error’ as [BCL estimate - true reserve] / (Mack’s standard 
error). If Mack’s standard errors are correct, then this should have a mean close to zero and mean 
square close to one.  

We also followed Mack’s recommendation of using a Log-Normal distribution for the reserve, 
with mean equal to the BCL estimate and standard deviation as given by Mack’s formula. From 
this, we found the probability (based on knowledge of the upper left triangle only) that the 
ultimate outcome would be less than what it turned out to be. In other words, if F(x) denotes the 
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Log-Normal cumulative distribution function (with mean equal to the BCL estimate and standard 
deviation as given by Mack), we calculated F(true reserve). If, in addition to Mack’s standard 
errors being correct, the Log-Normal is a reasonable distribution for the predictive error, then the 
quantity F(true reserve) should be uniformly distributed on the unit interval. Mack also suggests 
using a Normal distribution (instead of the Log-Normal) when the coefficient of variation is less 
than 50%, so we have also investigated this. 

B.1.3.2 Results for first 10,000 simulations 
Table B-2 shows results from the first 10,000 simulations carried out. Each value in the second 
column is the mean (over all 10,000 simulations) of the quantity indicated in the first column. 
Table B-2 – Results of applying Mack’s method to data generated using Algorithm A 

Simulated quantity Mean from 10,000 simulations

BCL estimated reserve 77.74 

Indicator that (BCL > True) 47.25% 

BCL estimate - True reserve  0.68 

Mack standard error 27.88 

(BCL – True) / (Mack std error) -0.60 

Square of the above 6.6 

Log-Normal F(true reserve) 0.571 

 

The graph below shows the cumulative distribution function for the quantity (BCL estimate – 
True reserve).  
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The figure 47.25% means that in 4,725 out of the 10,000 simulations, the BCL estimate was 
greater than the ‘true’ reserve (in the other 52.75% of simulations the BCL estimate was less 
than the true reserve). So BCL reserves are smaller than ‘median’ reserves in this case.  

The fact that the mean predictive error (0.68) is such a small proportion (0.9%) of the mean 
estimated reserve (77.74) supports the belief that the basic chain ladder method is unbiased when 
the assumptions given by Mack hold true (ie, that BCL reserves are ‘mean’ reserves). 

However, the fact that the mean standardised predictive error appears (at -0.60) to be 
significantly below zero, and its mean square (6.6) significantly greater than one, suggests that 
when the BCL gives an underestimate, the Mack standard error also tends to be understated. So it 
seems that Mack’s method tends to understate the chance of extremely high outcomes. This is 
confirmed by analysis of the quantity F(true reserve) based on the Log-Normal predictive 
distribution. 

The mean value of F(true reserve) being substantially higher than 0.50 indicates that this quantity 
is not uniformly distributed on the unit interval as it should be, but tends to be too high. In other 
words, it seems that actual outcomes (total future claim payments) tend to be higher than 
indicated by Mack’s method.  

We have investigated this further by looking at the empirical distribution function of this 
quantity which is shown below. The vertical axis shows the proportion of simulations in which 
F(true reserve) was less than the value shown on the horizontal axis. If this quantity were 
uniformly distributed (as it should be), then this graph should not differ significantly from a 
straight line from (0,0) to (1,1). Clearly it does: the shape confirms that Mack’s method tends to 
understate reserve uncertainty, particularly the chance of extremely high outcomes (right end of 
graph below).  
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In 3,467 simulation out of the first 10,000 simulations (34.67%), the quantity F(true reserve) 
exceeds 0.80, and in 2,455 of these (24.55%) exceeds 0.90. If the Log-Normal distribution based 
on Mack’s standard error were correct, these events should occur in only 20% and 10% of 
simulations respectively. Mack’s method clearly tends to understate the chance of very high 
outcomes even when its underlying assumptions hold precisely (at least, this is so for the 
particular set of parameters selected to generate the artificial data). 

At the other extreme (left hand end of the above graph): F(true reserve) is less than 0.20 in 
19.58% of simulations and less than 0.10 in 12.08% of simulations, so Mack’s method seems 
better at assessing the chances of very low outcomes than the chances of very high outcomes. 

These and similar results are summarised below: 
Table B-3 – Further results of applying Mack’s method to data generated using Algorithm A 

p Chance that true out-turn exceeds F-1(1-p)

1% 10.1% 

5% 18.02% 

10% 24.55% 

20% 34.67% 

30% 42.66% 

50% 58.30% 

70% 72.84% 

80% 80.42% 

90% 87.92% 

95% 92.18% 

99% 96.48% 

 

To make absolutely clear what these results mean: the first row of the table shows there is 
approximately a 10% chance that the outcome will exceed the value that Mack’s method (with a 
Log-Normal distribution for the reserve) indicates is the 99th percentile. In other words: while 
Mack’s method indicates there is only a 1% chance that the outcome will exceed a certain value, 
there is actually a 10% chance.  

B.1.3.3 Results for further sets of 10,000 simulations 
To check that the above results are not unduly affected by sampling error, we repeated the 
calculations for several additional sets of 10,000 simulations, each time using the same 
parameters for the artificial data but a different seed for the random number generator. The 
results are summarised below: the first seven rows give mean values (over 10,000 simulations), 
the remaining rows give the actual proportion of simulations for which the ‘true’ ultimate 
exceeded the Mack percentile indicated. 
Table B-4 – Results of applying Mack’s method to data generated using Algorithm A 
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Results from different sets of 10,000 simulations  

Set 1 Set 2 Set 3 Set 4 

BCL estimate 77.74 76.78 77.55 78.18 

Indicator that (BCL > True) 47.25% 45.82% 46.44% 46.52% 

(BCL estimate – True reserve) 0.68 -1.08 0.28 0.55 

Mack standard error 27.88 27.41 27.88 28.46 

(BCL - True) / (Mack std error) -0.60 -0.66 -0.62 -0.63 

Square of the above 6.6 7.7 5.2 5.7 

Log-Normal F(true liability) 0.571 0.582 0.577 0.577 

1% 10.1% 10.3% 10.5% 10.4% 

5% 18.0% 18.8% 18.0% 18.9% 

10% 24.6% 26.0% 25.6% 25.2% 

20% 34.7% 35.9% 35.6% 35.0% 

30% 42.7% 44.5% 43.6% 43.8% 

50% 58.3% 59.7% 58.6% 59.2% 

70% 72.8% 73.9% 73.5% 73.4% 

80% 80.4% 81.0% 80.1% 80.8% 

90% 87.9% 88.2% 87.7% 87.9% 

95% 92.2% 92.1% 92.0% 92.0% 

99% 96.5% 96.2% 96.2% 96.2% 

 

These results show that the apparent anomalies in the initial 10,000 simulations do not result 
from sampling error: there is little difference between results from the four independent sets of 
10,000 simulations.  

B.1.3.4 Results based on alternative parameters in Algorithm A 
The particular parameters that gave the above results are the first set of parameters that we tried 
for constructing artificial triangles satisfying Mack’s assumptions. The use of a Log-Normal 
distribution with mean = variance = 1.0 to generate Cj1 (Step 3 of the data generation algorithm) 
tends to produce greater variation between origin years than in a typical real-world triangle. To 
test the sensitivity of the results to this aspect, we repeated the simulations, but this time with the 
variance of the Log-Normal distribution used at Step 3 reduced to 0.01. This produces more 
realistic looking triangles. Results are summarised in Table B-5 below.  

In this set of results, we have also calculated percentiles using a Normal predictive distribution 
(instead of a Log-Normal) in those simulations for which Mack’s standard error is less than 50% 
of the BCL reserve (as suggested by Mack).   



 B-7

 
Table B-5 – Further results of applying Mack’s method to data generated using Algorithm A 

Variation coefficient of Cj1 

reduced from 100% to 10%. 

Results from 10,000 simulations 

 

BCL estimate 78.0 

Indicator that (BCL > True) 48.1% 

(BCL estimate – True reserve) 0.93 

Mack standard error 29.52 

(BCL - True) / (Mack std error) -0.51 

Square of the above 4.2 

F(true liability) Log-Normal  
0.569 

Normal when (Std Error / BCL) < 50% 
0.555 

1% 8.4% 12.0% 

5% 16.3% 18.2% 

10% 22.5% 23.0% 

20% 32.6% 30.7% 

30% 41.2% 37.9% 

50% 57.8% 53.0% 

70% 73.9% 71.7% 

80% 81.9% 82.2% 

90% 90.0% 92.6% 

95% 93.8% 97.0% 

99% 97.8% 99.2% 

 

This set of results (using the Log-Normal predictive distribution) shows a slight improvement 
compared to the previous results. Using the Normal distribution for predictions when the 
predictive coefficient of variation is less than 50% produces a less accurate assessment of the 
chances of extreme adverse outcomes: the proportion of simulations in which the true outcome 
exceeds the 99th percentile increases from 8.4% when the Log-Normal is always used to 
calculated the 99th percentile, to 12.0% when the 99th percentile is sometimes calculated using a 
Normal distribution. The main conclusions are unchanged: even where its assumptions are 
perfectly satisfied, Mack’s method does not necessarily give a correct assessment of reserve 
uncertainty. For triangles constructed with the particular parameter values that we have used, 
Mack’s method significantly understates the chance of very adverse outcomes.  
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B.1.3.5 Independent checking of the above results 
Our main finding – that Mack’s method can substantially understate the chance of extreme 
adverse outcomes even if its assumptions are perfectly satisfied – is clearly important given the 
quite widespread use of Mack’s method and (with the advent of ICA and Solvency II) the 
increasing importance of accurately assessing the chances of extreme adverse outcomes. For this 
reason we carried out thorough checking of these results to ensure that they are genuine and not 
the result of errors in our implementation of Mack’s method or in our simulation of triangles that 
satisfy Mack’s assumptions.  

To provide a final comprehensive check, another member of the working party, who was not 
involved in the work described above, carried out a completely independent simulation exercise 
(working only from Mack’s 1993 paper and preceding sections of the present paper). All the 
simulation results described in preceding and later sections of the present paper were obtained 
using C++ programs (written by Tom Wright) to generate the artificial triangles and to apply 
Mack’s method (and other stochastic methods) to those triangles. For the independent exercise, 
Mack’s method and Algorithm A (as described above) were implemented by Gary Dunne in 
Miscrosoft Excel using VBA macros. This independent implementation was used to carry out a 
further 10,000 simulations with the same parameter values as those used (in the C++ programs) 
to produce the results in Table B-5 above. A Log-Normal predictive distribution was used in 
every simulation. The results are summarised below.      

  
Table B-6 –Results obtained from an independent simulation exercise (Mack’s method applied to 
data generated using Algorithm A, with same parameters as in Table B-5) 

 Results from 10,000 simulations

 

BCL estimate 76.8 

Indicator that (BCL > True) 47.3% 

(BCL estimate – True reserve) -0.34 

Mack standard error 29.12 

(BCL - True) / (Mack std error) -0.53 

Square of the above 3.7 

1% 8.4% 
5% 16.7% 
10% 23.5% 
20% 33.1% 
30% 41.7% 
50% 58.1% 
70% 74.2% 
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80% 82.6% 
90% 90.3% 
95% 94.8% 
99% 98.0% 
 

Differences between the results in the above two tables are not statistically significant: they are 
consistent with sampling variation resulting from the two sets of results being based on 
independent sets of 10,000 artificial triangles. (This is clear from the fact that the differences are 
of the same order of magnitude as differences in results from different sets of 10,000 triangles 
shown in Table B-4). 

Having obtained essentially the same results in two quite separate and independent simulation 
exercises, we are confident that these results are genuine.  

B.1.3.6 Results for triangles where not all increments are positive 
At Step 4 of Algorithm A, we chose initially to use shifted Log-Normals (such that the mean and 
variance after shifting were as required by Mack’s assumptions) so that the artificial data had 
only positive increments. To test the sensitivity of the results to this aspect, we have also 
generated artificial triangles using Log-Normal distributions directly for the cumulative amounts 
Cjk at Step 4 (so the increments will sometimes be negative, as might occur in incurred data). 
Results for 10,000 simulations are shown below. Note that the triangles generated in this way 
still perfectly satisfy Mack’s assumptions (as do all triangles analysed in Section 2.4.3). 
Table B-7 – Further results of applying Mack’s method to data generated using Algorithm A 

Simulated data with negative increments. Results from 10,000 simulations 

 

BCL estimate 77.8 

Indicator that (BCL > True) 47.2% 

(BCL estimate – True reserve) 0.76 

Mack standard error 55.4 

(BCL - True) / (Mack std error) -0.47 

Square of the above 4.3 

Log-Normal F(true liability) 0.582 

1% 13.4% 

5% 23.2% 

10% 30.6% 

20% 41.0% 

30% 48.3% 
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50% 60.8% 

70% 70.8% 

80% 76.0% 

90% 81.9% 

95% 85.6% 

99% 90.7% 

 

These results show the performance is worse here than when Mack’s method is applied to 
triangles that only have positive increments. Here, (with the possibility of negative increments) 
the method significantly understates the chances of extremely low outcomes as well as 
understating the chance of very high outcomes: in 9.3% of simulations the eventual outcome was 
lower than what was supposed to be the 1st percentile, and in 13.4% the eventual outcome was 
higher than what was supposed to be the 99th percentile.   

B.1.3.7 Possible explanation of our findings 
It is beyond the scope of this paper to definitively explain where Mack’s method goes wrong. 
One possibility is that significant bias is introduced by taking non-linear functions of unbiased 
parameter estimates. Mack’s formulas for the standard error have terms with fk

2 in the 
denominator. Mack uses unbiased (chain ladder) estimators for fk, but an unbiased estimate of fk 
does not give an unbiased estimate of 1/fk

2. Given the relatively large number of parameters 
estimated from the data (9 f-parameters and 9 α-parameters from 55 data points), the reliability 
of some of these will be relatively low, which could result in substantial bias in non-linear 
functions (such as 1/fk

2). In addition, the square root of an unbiased estimate of the mean-square 
prediction error is not an unbiased estimate of the root-mean-square prediction error (or 
‘standard error’) because square root is not a linear function. Further, even if the method did 
produce an unbiased estimate of the standard error, it would not necessarily give correct 
percentiles because the predictive distribution function is not linear (ie the predictive distribution 
is not uniform). 

We expect to find that other stochastic methods suffer from similar problems, but this should be 
less so for Bayesian methods because these do not focus on unbiased estimation of parameters of 
the predictive distribution: instead they aim to calculate the predictive distribution function 
directly. 

It would be interesting to investigate how Mack’s method performs on triangles constructed (by 
Algorithm A) using a wider range of parameter values (ie different values of fk, αk, and 
parameters of the loss distribution). 

B.1.4 Performance of Mack’s method where its assumptions are false 
Given the findings of the previous section, we should not expect that Mack’s method will 
perform well where its underlying assumptions are false. In his 1993 paper Mack advises against 
applying the method where the assumptions are believed to be false, and gives suggestions for 
checking the assumptions using the data. However, these diagnostic checks may not always be 
carried out, and even where they are, they may show no clear evidence that the assumptions are 
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false where this is in fact the case: this is quite possible given the small volume of data in many 
run-off triangles. Therefore, it is of interest to explore how the method performs when its 
assumptions are false. 

Testing of Mack’s method when its assumptions are false is carried out in later sections by 
applying Mack’s method to artificial triangles generated to satisfy the assumptions of other 
stochastic methods.  

B.2 Assessment of over-dispersed Poisson (ODP) methods by simulation 

B.2.1 Assumptions of the ODP model 
The over-dispersed Poisson (ODP) model (as described, for example by Renshaw and Verrall 
1998) is based on the following three assumptions (we use Yjk to denote the aggregate 
incremental amount paid in development period k of origin year j): 

1. E(Yjk) = xj.pk 

2. Var(Yjk) = φ.xj.pk 

3. The Yjk are stochastically independent (across all j and all k). 

If the parameters pk are normalised so that Σk pk = 1, then they represent the proportion of the 
ultimate paid amount expected to fall in each development year k, and xj represents the expected 
ultimate amount for origin year j (where all expectations here are those applying before any Yjk 
have been observed). 

Renshaw and Verrall’s version of the ODP method uses quasi-likelihood maximisation to 
estimate the parameters of the model and produces ‘best estimate’ reserves that are identical 
(provided the run-off array has no missing values) to those produced by the basic chain ladder 
method. Renshaw and Verrall give formulas for predictive standard errors of the BCL reserves 
incorporating parameter and process error. England and Verrall (1999) and England (2001) also 
consider the ODP model, and they describe a bootstrap procedure that is also intended to give 
predictive standard errors incorporating parameter and process error. Here, we consider both 
these methods which we call respectively the ‘analytic ODP method’ and the ‘bootstrap ODP 
method’. Both these methods are based on the same stochastic model, which is fully described 
by the above three assumptions. 

B.2.2 Artificial data satisfying ODP assumptions (Algorithm B) 
To test the ODP methods when the underlying assumptions are true, we generate artificial data 
that satisfy the above three assumptions. Since the assumptions say nothing about the distribution 
of the Yjk other than the constraints on the first two moments represented by assumptions 1 and 
2, we are free to use any distribution for this purpose. We have chosen to use a compound 
Poisson/Log-Normal distribution for each Yjk because it is possible that actual paid run-off data 
may approximate this. In other words, each Yjk is constructed as the sum of a number (Njk say) of 
independent Log-Normal amounts, where the number Njk is generated from a Poisson 
distribution. The parameters of the Log-Normal distribution used for the individual claim 
amounts are constant across all cells (j,k) of the run-off triangle: this ensures that the quantity 
Var(Yjk) / E(Yjk) is the same in all cells (as required by assumptions 1 and 2, where this ratio is 
denoted φ). 
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The algorithm we have used to generate the artificial data is as follows:  

 

Algorithm B for artificial run-off data: 

1. The ultimate number of claims in an origin year is generated by random sampling from a 
Poisson distribution (same parameters for each origin year, but independent sampling). 

2. Each claim is assumed to be settled by a single payment, and the development year of the 
payment determined by independent random sampling from a Multinomial distribution 
(same parameters for each origin year: these are the parameters denoted pk in the above 
assumptions of the ODP method). 

3. The amount of each individual claim payment is determined by independent random 
sampling from a Log-Normal distribution (same parameters in every cell of the triangle). 

4. The amounts of claims settling in the upper left triangle of the run-off array are 
accumulated to create this run-off triangle, and all claim  amounts (regardless of the 
development year when settled) are accumulated to obtain the ‘true’ ultimate position for 
each origin year. 

It is perhaps not immediately obvious that Steps 1 and 2 produce stochastically independent 
Poisson numbers (Njk) across all development years of a given origin year (which is required by 
Assumption 3 of the ODP method). However, this is quite a well known result: a proof is given 
in the last section of this appendix, which also shows that the constant φ of Assumption 2 is 
related to the mean μ and variance σ2 of the loss distribution used at Step 3 by φ = (μ2 + σ2) / μ. 

Algorithm B is clearly simpler in many ways than what typically occurs in reality, but is 
nevertheless more realistic than Algorithm A (used to generate data strictly in accordance with 
Mack’s assumptions). For this reason, as well as using data generated by Algorithm B to test the 
performance of the ODP methods where their assumptions are true, we have used the same 
artificial data to test Mack’s method where its assumptions are false. (It is easily proved that 
triangles generated using Algorithm B do not satisfy Mack’s assumptions – see the last section of 
this appendix.)  

B.2.3 Performance of analytic ODP method when its assumptions are true 
We carried out three sets of 10,000 independent simulations. In each simulation, a run-off 
triangle was generated using Algorithm B, and the analytic ODP method applied to produce 
reserve estimates (equal to BCL estimates) and root-mean-square prediction errors (called 
‘standard errors’ below) calculated as described by Renshaw and Verrall 1998. Again, we looked 
at only the total reserve for all years combined (rather than the estimates for separate origin 
years). In quasi-likelihood modelling, there are two commonly used methods for estimating the 
dispersion parameter (the parameter φ of ODP Assumption 2): using the sum of squared Pearson 
residuals, or using the deviance. As there is little theoretical basis for favouring one over the 
other, we have tested both methods: in each set of results below, the first column relates to the 
Pearson residual method, the second column to the deviance method. Since the ODP method 
does not produce a full predictive distribution, we have used a Log-Normal distribution fitted to 
the best estimate and standard error to obtain percentiles (in the same way as described earlier for 
Mack’s method). Results are summarised below.  
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Table B-8 – Results of applying the analytic ODP method to data generated using Algorithm B 

Results from different sets of 10,000 simulations  

Set 1 

 

Set 2 Set 3 

 

Best estimate reserve 3,668 3,654 3,632 

Best estimate > True 46.9% 46.8% 46.4% 

(Best estimate – True) 303.7 292.7 268.4 

ODP standard error 1,511 1,491 1,514 1,494 1,502 1,482 

(Best - True) / (std error) -0.271 -0.276 -0.263 -0.267 -0.280 -0.285 

Square of the above 1.48 1.51 1.46 1.50 1.45 1.49 

Log-Normal F(True) 0.571 0.570 0.568 0.568 0.574 0.573 

1% 2.4% 2.6% 2.7% 2.7% 2.6% 2.7% 

5% 9.5% 9.8% 9.1% 9.3% 9.9% 10.2% 

10% 17.1% 17.4% 16.4% 16.7% 17.2% 17.4% 

20% 29.8% 30.0% 29.0% 29.2% 29.7% 29.8% 

30% 41.0% 41.1% 40.3% 40.4% 41.1% 41.1% 

50% 60.4% 60.2% 60.3% 60.1% 60.9% 60.8% 

70% 77.3% 77.1% 76.6% 76.3% 77.6% 77.3% 

80% 84.1% 83.8% 84.1% 83.8% 84.8% 84.5% 

90% 90.8% 90.7% 91.0% 90.8% 91.4% 91.2% 

95% 94.4% 94.4% 94.8% 94.7% 94.7% 94.6% 

99% 97.9% 97.8% 98.1% 98.1% 98.2% 98.2% 

 

These results show that the analytic ODP method is biased upwards when applied to triangles 
generated using Algorithm B. Over all 30,000 simulations the ODP reserve overstates the true 
reserve by about 7.9% of the mean true reserve, and this occurs fairly consistently across the 
three sets of 10,000 simulations. Since the best estimate reserves produced by the ODP method 
are identical to those produced using the basic chain ladder (BCL) method, this means that the 
BCL method is biased upwards when applied to data of this type. The results in Table B-8 also 
show that, although the BCL estimate is positively biased, it exceeds the true reserve in only 
about 47% of simulations. It would be interesting to investigate to what extent this positive bias 
of the BCL depends on the particular parameter values used in generating the triangles.  

The fact that there is bias should not be surprising given that the assumptions Mack showed to be 
necessary for unbiasedness of the BCL are known to be violated here. The bias of the BCL 
method when applied to triangles with independent increments has previously been noted and 
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studied by Stanard (1985) (who used a numerical simulation method similar to that described 
here) and by Taylor (2001 and 2002) who derived approximate formulas for the bias. 

The positive bias of the BCL (and the less than 50% chance that the BCL estimate exceeds the 
true reserve) is evident from the following graph, which is the cumulative distribution function 
of the quantity (BCL estimate – True reserve): 
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The negative mean value of the ‘standardised predictive error’ implies (given that the ‘best 
estimate’ is positively biased) that when the method understates the true outcome, the analytic 
ODP standard error also tends to be understated.  

The distribution of the quantity F(true reserve) (where F(x) is the Log-Normal predictive 
distribution) shows that this method understates the chance of very adverse outcomes. For 
example, in about 2.6% of simulations the true outcome exceeded what was supposed to be the 
99th percentile. The full empirical distribution function of this quantity for the first set of 10,000 
simulations is shown below: it clearly differs significantly from a uniform distribution (which 
would be a straight line from (0,0) to (1,1)). 
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The analytic ODP method appears to perform slightly better when the dispersion parameter is 
estimated from the Pearson residuals (first column for each set of 10,000 simulations) than when 
it is estimated from the deviance (second column).  

B.2.4 Performance of bootstrap ODP method when its assumptions are true 

B.2.4.1 Two variants of bootstrap ODP method 
We have tested the performance of two variants of the bootstrap ODP method as described by 
England & Verrall (1999) and England (2001).  

In their 1999 paper England & Verrall describe a bootstrap procedure that is intended to give a 
probability distribution in respect of BCL parameter uncertainty only (ie not including future 
process uncertainty). They point out that the predictive standard error (including process as well 
as parameter uncertainty) can be obtained by adding the estimated process variance to the 
variance of the bootstrap distribution (representing parameter uncertainty only) then taking the 
square root. They propose estimating the process variance as φ times the BCL reserve, where φ 
is the estimated dispersion parameter of the ODP assumption. They found that, in the case of one 
particular triangle, this method gave a predictive standard error close to that given by the analytic 
ODP method. The 1999 paper does not describe a procedure for obtaining a full predictive 
probability distribution incorporating process and parameter uncertainty.  

In his 2001 paper, England outlines an ODP bootstrap procedure for obtaining a full predictive 
probability distribution (incorporating both parameter and process uncertainty). In this 
procedure, the allowance for future process variation is based on BCL projections from bootstrap 
pseudo-data (not on BCL projections of the original data as in the 1999 paper) and is simulated 
by adding process variation to each future cell of the pseudo-data triangle. In their 2002 paper, 
England and Verrall applied this method to one particular triangle and obtained a predictive 
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standard error somewhat higher than given by the analytic ODP method: the values were 19,267 
and 18,193 respectively (which they described as close). They also found that the mean of the 
bootstrap predictive distribution was higher than the BCL reserve: the values were 53,210 and 
52,135 (described as reassuringly close).  

We have tested both these variants of the bootstrap ODP method: referred to below as the “1999 
bootstrap ODP method” and “2001 bootstrap ODP method”.  

Our implementations of these methods are exactly as described in the papers by England and 
Verrall except in one respect: we ensure that all pseudo data triangles have no negative 
cumulative paid amounts. This is done by applying the algorithm to produce each pseudo 
triangle exactly as described by England and Verrall, but then rejecting any triangle that has any 
negative cumulatives. Each time a triangle is rejected another one is created and the final 
bootstrap predictive distribution is based on the outcomes from 1,000 pseudo-triangles in which 
all cumulative amounts are positive (1,000 is the number of bootstrap simulations suggested by 
England and Verrall). The reason we have made this modification is that we found the 
performance of the bootstrap method is sometimes extremely poor if pseudo-data triangles with 
negative cumulatives are allowed.  

For example, consider the following cumulative run-off triangle. This is an artificial triangle 
generated using Algorithm B. The final column gives basic chain ladder (BCL) ultimates.  

11.1 122.1 206.5 353.6 534.7 547.0 581.9 621.4 802.3 807.8
22.1 79.0 902.4 1,037.5 1,450.9 1,521.3 1,556.5 1,604.3 1,604.8 1,615.9
22.7 115.1 233.4 408.6 546.0 616.8 692.8 712.0   775.3

115.5 340.3 491.4 622.6 716.5 870.9 954.0     1,077.9
0.0 324.2 488.3 810.7 996.7 1,073.5       1,291.2

105.1 222.8 392.5 629.1 743.9         975.8
18.2 120.2 365.3 452.1           766.0
34.3 386.7 461.5             1,095.3

130.7 249.4               1,225.5
90.4                 1,892.9

    

The triangle below is a pseudo-data set produced by applying the bootstrap algorithm described 
by England and Verrall (1999) to the above triangle. The final column gives the BCL ultimates 
for this pseudo triangle.  
32.248 242.0 481.5 666.0 893.3 937.1 1,029.6 1,116.9 1,117.2 1,115.2
2.194 323.8 607.6 790.2 1,136.9 1,166.7 1,542.3 1,646.7 2,109.3 2,105.5

-4.485 -50.4 231.9 462.7 554.2 584.4 654.3 661.6   771.0
-42.552 85.5 215.7 498.7 505.8 728.7 820.0     1,014.5
32.145 95.6 232.1 381.9 528.5 617.7       905.1

-45.767 142.1 204.4 299.0 520.3         850.0
-10.300 97.9 220.4 297.1           648.4
27.423 176.9 517.4             1,747.8
9.118 133.5               1,098.4

192.355                 77,700,000.0
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There is nothing to prevent negative increments in pseudo data-triangles generated as described 
by England and Verrall, and negative increments may produce negative cumulatives. In this 
example, the pseudo data has several negatives in the first development period. As a result, the 
first BCL development factor is extremely large: (1246.9 / 0.025 = 49,097.8) which produces a 
very high BCL ultimate for the last origin year (77.7 million). If something like this occurs in 
one of 1,000 bootstrap simulations, it can have a massive impact on both the mean and the 
variance of the bootstrap distribution. Given that the original triangle has only positive 
increments, it would in most circumstances be unrealistic to allow for such extreme possibilities 
in bootstrap simulations. For this reason, in our implementation of the bootstrap methods, we 
reject any pseudo triangles in which the cumulative amounts are not all positive. Pseudo triangles 
with negative increments are accepted provided all cumulative figures are positive.    

To check that our bootstrap procedures are correct implementations of the methods described by 
England and Verrall we replicated their results as given in the table on page 293 of their 1999 
paper and in Appendix A of England 2001. Our bootstrap results differed from theirs by an 
amount consistent with bootstrap sampling error. The modification described above (rejection of 
pseudo-triangles with negative cumulatives) makes no difference to the results obtained for the 
particular two triangles analysed in the papers by England and Verrall.  

For each of the two variants of the bootstrap ODP method (1999 and 2001 variants) we have 
carried out three sets of 10,000 independent simulations, each based on a run-off triangle 
generated using Algorithm B. For each of the 30,000 artificial run-off triangles, we used 1,000 
bootstrap simulations (as suggested by England & Verrall). 

B.2.4.2 Performance of 1999 bootstrap ODP method when its assumptions are true 
Table B-9 below gives results of applying the 1999 bootstrap ODP method to data generated 
using Algorithm B. The 1999 bootstrap ODP method does not give a full predictive distribution 
so we have used a Log-Normal with mean equal to the BCL reserve and variance equal to the 
predictive variance (calculated as the bootstrap variance representing parameter uncertainty, plus 
φ times the BCL reserve). Note that the mean of the Log-Normal predictive distribution was set 
equal to the BCL estimate (that is, the ODP best estimate), not to the mean of the bootstrap 
distribution, because our purpose here is to assess the performance of published methods. 
Although England & Verrall do not suggest the use of a Log-Normal predictive distribution, they 
make it clear that the predictive variance calculated as described above is supposed to be the 
predictive variance of the ODP best estimate reserve (ie the BCL reserve): they ignore the 
difference between the BCL reserve and the mean of the bootstrap distribution on the grounds 
that these two quantities are close.     
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Table B-9 – Results of applying 1999 bootstrap ODP method to data generated using Algorithm B 

Results from different sets of 10,000 simulations  

Set 1 Set 2 Set 3 All combined 

BCL estimate 3,668 3,654 3,632 3,651 

Best estimate > True 46.9% 46.8% 46.4% 46.7% 

(BCL estimate – True reserve) 303.7 292.7 268.4 288.3 

Bootstrap mean 3,727 3,719 3,695 3,714 

Bootstrap standard error 1,304 1,302 1,295 1,300 

(BCL - True) / (BS std error) -0.251 -0.242 -0.261 -0.251 

Square of the above 1.727 1.722 1.703 1.717 

Log-Normal F(true liability) 0.559 0.556 0.562 0.559 

1% 3.1% 3.1% 3.0% 3.1% 

5% 10.6% 10.2% 11.1% 10.6% 

10% 18.4% 17.8% 18.6% 18.3% 

20% 31.1% 30.0% 30.8% 30.6% 

30% 41.4% 40.8% 41.4% 41.2% 

50% 58.8% 58.6% 59.3% 58.9% 

70% 74.3% 73.6% 74.4% 74.1% 

80% 80.9% 80.6% 81.5% 81.0% 

90% 87.7% 87.8% 88.2% 87.9% 

95% 91.8% 91.7% 92.1% 91.9% 

99% 96.1% 96.4% 96.4% 96.3% 

 

These results show that there is in fact a statistically significant difference between the BCL 
reserve and the mean of the bootstrap distribution in this case. Over all 30,000 artificial datasets, 
the mean of the bootstrap distribution exceeds the mean BCL reserve by about 1.7%. This 
difference occurs consistently across all three sets of 10,000 triangles, showing that it is 
statistically significant (ie is not just caused by bootstrap sampling error). The graph below 
shows the cumulative probability distribution (over all 30,000 triangles) for the ratio of bootstrap 
mean to BCL reserve. The bootstrap mean exceeds the BCL reserve for approximately 79% of 
the triangles we generated using Algorithm B.  
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Comparing Tables B-8 and B-9 we see that the 1999 bootstrap standard error tends to be lower 
than the analytic standard error, and percentiles based on the bootstrap standard error are less 
accurate. The graph below shows the cumulative probability distribution (over all 30,000 
triangles) for the ratio of bootstrap standard error to analytic ODP standard error. The bootstrap 
standard error is smaller than the analytic standard error for approximately 86% of the triangles 
generated using Algorithm B. 

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Ratio of bootstrap (1999) std error to analytic ODP std error

 



 B-20

In summary it seems that the bootstrap ODP method (as described by England & Verrall 1999) 
does not perform quite as well as the analytic ODP method when the ODP assumptions are 
perfectly satisfied. (At least, this is the case for triangles generated using the particular set of 
parameters in Algorithm B that we used here.)    

B.2.4.3 Performance of 2001 bootstrap ODP method when its assumptions are true 
The table below gives results of applying the 2001 bootstrap method to data generated using 
Algorithm B. The 2001 bootstrap method does give a full predictive distribution so we have not 
used a Log-Normal distribution for percentiles: we have calculated percentiles directly from the 
full predictive distribution given by the bootstrap method. 
Table B-10 – Results of applying 2001 bootstrap ODP method to data generated using Algorithm B 

Results from different sets of 10,000 simulations  

Set 1 Set 2 Set 3 All combined 

BCL estimate 3,668 3,654 3,632 3,651 

Best estimate > True 46.9% 46.8% 46.4% 46.7% 

(BCL estimate – True reserve) 303.7 292.7 268.4 288.3 

Bootstrap mean 3,727 3,719 3,695 3,714 

Bootstrap standard error 1,307 1,309 1,299 1,305 

(BCL - True) / (BS std error) -0.245 -0.237 -0.255 -0.246 

Square of the above 1.701 1.692 1.670 1.688 

F(true liability) 0.527 0.523 0.530 0.527 

1% 2.6% 2.8% 2.5% 2.6% 

5% 8.3% 8.0% 8.4% 8.2% 

10% 14.3% 13.7% 14.5% 14.2% 

20% 24.8% 24.4% 25.3% 24.8% 

30% 34.8% 34.2% 35.3% 34.8% 

50% 53.9% 53.4% 54.4% 53.9% 

70% 71.8% 71.2% 71.9% 71.6% 

80% 80.1% 79.8% 80.8% 80.2% 

90% 88.6% 88.4% 89.0% 88.7% 

95% 93.0% 93.1% 93.2% 93.1% 

99% 97.3% 97.5% 97.6% 97.5% 

 

The bootstrap 2001 standard error is smaller than the analytic ODP standard error in 82% of 
simulations. However, comparing the above results with Table B-8 we see that the assessment of 
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uncertainty for adverse outcomes, while not perfect, is about as good as provided by the analytic 
standard error. (Using either method the true outcome exceeds what is supposed to be the 99th 
percentile in approximately 2.6% of cases.) Since the standard error tends to be smaller but does 
not understate the chance of extreme adverse events any more than the analytic standard error, 
the 2001 bootstrap method appears to be the better method for assessing the reliability of BCL 
reserves when the ODP assumptions are perfectly satisfied. This may be because the method 
gives a full predictive distribution so it is not necessary to use an analytic predictive distribution 
(such as the Log-Normal) which may not have an appropriate shape at the extremes.   

B.2.5 Performance of Mack’s method when its assumptions are false 
We applied Mack’s method to the same artificial data (generated using Algorithm B) as used to 
test the performance of the ODP method when its assumptions are true. It is easily shown that 
data generate in this way do not satisfy Mack’s assumptions (see the last section of this 
appendix). Results are summarised below. The final column gives results for all 30,000 
simulations combined.  
Table B-11 – Results of applying Mack’s method to data generated using Algorithm B 

Results from different sets of 10,000 simulations  

Set 1 Set 2 Set 3 All combined 

BCL estimate 3,668 3,654 3,632 3,651 

Best estimate > True 46.9% 46.8% 46.4% 46.70% 

(BCL estimate – True reserve) 303.7 292.7 268.4 288.3 

Mack standard error 1,961 1,960 1,951 1,957 

(BCL - True) / (Mack std error) -0.222 -0.210 -0.227 -0.220 

Square of the above 1.11 1.10 1.08 1.10 

Log-Normal F(true liability) 0.586 0.583 0.589 0.586 

1% 1.4% 1.5% 1.4% 1.4% 

5% 6.8% 6.4% 6.7% 6.6% 

10% 13.1% 12.8% 13.5% 13.1% 

20% 27.2% 26.5% 27.4% 27.0% 

30% 41.2% 40.5% 41.2% 41.0% 

50% 64.7% 64.4% 64.5% 64.5% 

70% 81.4% 81.0% 82.1% 81.5% 

80% 87.8% 87.6% 88.5% 88.0% 

90% 93.4% 93.5% 93.7% 93.5% 

95% 96.0% 96.2% 96.3% 96.2% 

99% 98.3% 98.5% 98.4% 98.4% 
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The best estimate reserve (and the difference between the best estimate and true reserve) is the 
same as shown in the previous Table B-10: this is because the ODP method and Mack’s method 
give identical best estimates when fitted to triangles with no missing values (both give the BCL 
estimates).  

The negative mean value of the ‘standardised predictive error’ (-0.220) implies (given the 
positive bias) that when the BCL understates the true outcome, the Mack standard error also 
tends to be understated. The same occurred when Mack’s method was run on triangles that 
satisfy its assumptions. 

Despite the positive bias of the BCL estimates (or perhaps because of this bias), Mack’s standard 
errors appear to give a better assessment of overall predictive error here than in our simulations 
on triangles that satisfy Mack’s assumptions: the mean square of the ‘standardised predictive 
error’ is not much greater (at 1.10 over all 30,000 simulations) than the ideal value of one. 

The distribution of the quantity F(true reserve) (where F(x) is the Log-Normal predictive 
distribution) shows that the method slightly understates the chance of very adverse outcomes. 
For example, in 1.4% of simulations the true outcome exceeded the 99th percentile as given by 
Mack’s method. Clearly the performance of Mack’s method here is much better than on triangles 
constructed (using Algorithm A) to perfectly satisfy Mack’s assumptions! 

B.2.6 Performance of ODP method when its assumptions are false 
For completeness, we have also tested the ODP methods (analytic and bootstrap) on data 
produced using Algorithm A (satisfying the assumptions of Mack’s method). It is easily proven 
that data generated in this way do not satisfy the assumptions of the ODP method (see the last 
section of this appendix). Results (based on the same 10,000 data-sets as used for the results in 
Table B-4) are given below. The results obtained using Mack’s method are repeated here for 
comparison. As before, the results in the first column for the analytic ODP method are based on 
estimating the dispersion parameter using the Pearson residuals, and the second column using the 
deviance. For the bootstrap ODP results, the first column relates to the 1999 method, the second 
column to the 2001 method. 
Table B-12 – Results of applying Mack and ODP methods to data generated using Algorithm A 

 Mack analytic ODP bootstrap ODP 

BCL estimate 78.0 78.0 78.0 

BCL estimate > True reserve 48.1% 48.1% 48.1% 

(BCL estimate – True reserve) 0.93 0.93 0.93 

Standard error 29.52 30.8 31.02 26.81 27.07 

(BCL - True) / (Std error) -0.51 -0.40 -0.40 -0.41 -0.41 

Square of the above 4.2 2.9 2.8 3.5 3.5 

F(true liability) 0.569 0.569 0.570 0.558 0.526 

1% 8.4% 5.4% 5.4% 6.5% 5.9% 

5% 16.3% 12.8% 12.7% 14.7% 13.7%
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10% 22.5% 19.1% 19.0% 21.2% 20.1%

20% 32.6% 30.7% 30.6% 32.0% 29.9%

30% 41.2% 40.5% 40.5% 40.9% 38.1%

50% 57.8% 59.1% 59.1% 57.4% 52.9%

70% 73.9% 75.7% 75.9% 72.7% 68.3%

80% 81.9% 83.6% 84.0% 79.9% 75.6%

90% 90.0% 91.1% 91.4% 87.8% 84.5%

95% 93.8% 94.5% 94.8% 92.0% 89.8%

99% 97.8% 97.8% 97.9% 96.3% 95.4%

 

Although these results indicate that the analytic ODP methods perform better than Mack’s 
method when applied to triangles that satisfy Mack’s assumptions (and the analytic ODP method 
performs better than the bootstrap ODP methods), the results also show that the ODP methods do 
not perform particularly well on this type of data. However, it is difficult to imagine any real-life 
claims settlement process that would approximate Algorithm A: we think it is of greater value to 
test the ODP method on data that violate the assumptions of the method in more realistic ways. 
For this purpose, we have generated data by Algorithm C below. This is just like algorithm B 
except that the Negative Binomial distribution is used at Step 1 instead of the Poisson. It is easily 
shown (see the last section of this appendix) that data generated in this way do not have 
independent increments (Yjk) so Assumption 3 of the ODP method is violated. (In fact, the Yjk 
values generated in this way are positively correlated within any origin year j). 

 

Algorithm C for artificial run-off data: 

1. The ultimate number of claims in an origin year is generated by random sampling from a 
Negative Binomial distribution (same parameters for each origin year, but independent 
sampling). 

2. Each claim is assumed to be settled by a single payment, and the development year of the 
payment determined by independent random sampling from a Multinomial distribution 
(same parameters for each origin year: these are the parameters denoted pk in the above 
assumptions of the ODP method). 

3. The amount of each individual claim payment is determined by independent random 
sampling from a Log-Normal distribution (same parameters in every cell of the triangle). 

4. The amounts of claims settling in the upper left triangle of the run-off array are 
accumulated to create this run-off triangle, and all claim  amounts (regardless of the 
development year when settled) are accumulated to obtain the ‘true’ ultimate position for 
each origin year. 

The table below gives results for the analytic ODP method. As before, for each set of 10,000 
simulations, the first column gives results based on estimating the dispersion parameter using the 
Pearson residuals, and the second column using the deviance (this has been done for the first set 
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of 10,000 simulated triangles only). For the bootstrap ODP results, the first column relates to the 
1999 method, the second column to the 2001 method. 

 
Table B-13 – Results of applying analytic ODP method to data generated using Algorithm C  

Results from different sets of 10,000 simulations  

Set 1 

 

Set 2 Set 3 

 

Best estimate reserve 3,612 3,600 3,574 

Best estimate > True 45.5% 45.8% 44.8% 

(Best estimate – True) 244.1 229.0 211.8 

ODP standard error 1,487 1,467 1,489  1,483  

(Best - True) / (std error) -0.31 -0.31 -0.31  -0.32  

Square of the above 1.53 1.56 1.51  1.48  

Log-Normal F(True) 0.579 0.579 0.580  0.584  

1% 2.6% 2.8% 2.8%  2.5%  

5% 10.2% 10.3% 9.8%  9.7%  

10% 17.7% 17.9% 17.3%  17.7%  

20% 30.8% 31.0% 30.7%  30.7%  

30% 42.4% 42.3% 42.4%  42.8%  

50% 61.8% 61.6% 61.6%  62.3%  

70% 77.6% 77.4% 78.2%  78.3%  

80% 84.9% 84.6% 85.0%  85.4%  

90% 91.5% 91.4% 91.9%  92.0%  

95% 94.9% 94.8% 95.0%  95.3%  

99% 98.1% 98.1% 98.2%  98.3%  

 

Table B-14 below gives results for the bootstrap ODP method. As before, for each set of 10,000 
simulations, the first column relates to the 1999 method, the second column to the 2001 method. 
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Table B-14 – Results of applying bootstrap ODP methods to data generated using Algorithm C 

Results from different sets of 10,000 simulations  

Set 1 Set 2 Set 3 

Best estimate reserve 3,612 3,600 3,574 

Best estimate > True 45.5% 45.8% 44.8% 

(Best estimate – True) 244.1 229.0 211.8 

Bootstrap mean 3,675 3,676 3,668 3,668   

ODP standard error 1,284 1,289 1,284 1,290   

(Best - True) / (std error) -0.287 -0.281 -0.289 -0.284   

Square of the above 1.77 1.75 1.76 1.73   

F(True) 0.568 0.535 0.549 0.535   

1% 3.2% 2.8% 3.3% 2.9%   

5% 11.3% 8.8% 11.1% 8.7%   

10% 18.8% 14.7% 18.8% 14.7%   

20% 31.9% 25.6% 31.8% 25.8%   

30% 42.7% 36.2% 42.8% 36.1%   

50% 60.4% 55.2% 60.1% 55.4%   

70% 74.8% 72.6% 75.1% 72.4%   

80% 81.5% 80.9% 81.7% 80.7%   

90% 88.6% 89.4% 88.5% 89.4%   

95% 92.2% 93.5% 92.3% 93.7%   

99% 96.3% 97.6% 96.5% 97.7%   

 

These results show that the ODP methods performs nearly as well here as where the underlying 
assumptions are satisfied (ie when applied to data generated using Algorithm B). The results for 
the analytic ODP method again show slightly better performance when the dispersion parameter 
is estimated from Pearson residuals (first column) than when it is estimated from the deviance 
(second column). These results also show that the 1999 bootstrap ODP method performs worse 
than the analytic method, but the 2001 bootstrap method performs slightly better than the 
analytic method (which is the same ranking as when the ODP assumptions are satisfied). Clearly 
more testing is needed to see whether the performance of the analytic ODP method is generally 
insensitive to the ultimate claim number distribution. 
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B.2.7 Further results for Mack’s method when its assumptions are false 
We have also tested Mack’s method on the same data (generated using Algorithm C) and the 
results (below) again show that it performs surprisingly well given its poor performance on data 
that satisfies its assumptions precisely.   
Table B-15 – Results of applying Mack’s method to data generated using Algorithm C 

Results from different sets of 10,000 simulations  

Set 1 Set 2 Set 3 All combined 

BCL estimate 3,612 3,600 3,574 3,595 

BCL estimate > True reserve 45.5% 45.8% 44.8% 45.4% 

BCL estimate – True reserve 244.1 229.0 211.8 228.3 

Mack standard error 1,917 1,923 1,903 1,914 

(BCL - True) / (Mack std error) -0.248 -0.249 -0.256 -0.251 

Square of the above 1.15 1.14 1.12 1.14 

Log-Normal F(true liability) 0.593 0.594 0.597 0.595 

1% 1.7% 1.7% 1.5% 1.6% 

5% 6.8% 7.1% 6.8% 6.9% 

10% 13.8% 13.8% 13.9% 13.8% 

20% 27.9% 28.1% 28.0% 28.0% 

30% 42.4% 42.4% 43.1% 42.6% 

50% 65.8% 65.4% 65.8% 65.7% 

70% 82.0% 82.2% 82.4% 82.2% 

80% 88.5% 88.4% 88.9% 88.6% 

90% 93.7% 93.9% 94.0% 93.9% 

95% 96.4% 96.4% 96.6% 96.5% 

99% 98.5% 98.6% 98.6% 98.6% 

 

B.3 Summary of results so far for Mack and ODP methods 
Both Mack’s method and the ODP methods can be applied to any triangle and give exactly the 
same reserve estimates as the basic chain ladder (BCL) method. However, the two sets of 
assumptions (those underlying Mack’s method and those underlying the ODP methods) cannot 
both hold true. If Mack’s assumptions hold true, then the BCL estimates are unbiased, but 
Mack’s standard errors tend to understate the chance of extreme outcomes: substantially in the 
simulations we have carried out. If the ODP assumptions hold true, then the BCL estimates 
usually understate the true ultimates but when they overstate they do so on average by much 
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more than the average understatement, so that overall the BCL estimates are positively biased 
(by about 8% in simulations carried out so far). ODP standard errors (whether calculated 
analytically or by bootstrapping) understate the chances of extreme outcomes when the ODP 
assumptions are perfectly satisfied. Although the analytic and bootstrap methods of calculating 
ODP standard errors sometimes give very different results for the same triangle, there is little 
difference in the overall performance of the two methods in assessing reliability of BCL 
estimates when the ODP assumptions hold true.   

Given its poor performance when its assumptions are true, Mack’s method performs surprisingly 
well in the scenarios we have tested where its assumptions are false. Curiously, in the 
simulations carried out so far: Mack’s method performs better than the ODP methods when 
applied to triangles that satisfy the ODP assumptions (Algorithm B), and the ODP methods 
perform better than Mack’s method when applied to triangles that satisfy Mack’s assumptions 
(Algorithm A).  

Further results for Mack’s method and the ODP methods applied where their assumptions are 
false are given later (by applying these methods to triangles that satisfy the assumptions of 
Wright’s method).  
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B.4 Assessment of Wright’s 1992 (operational time) method  

B.4.1 Assumptions of Wright’s method 
The original paper (Wright 1992) describes several related stochastic methods for use in various 
different circumstances. What they all have in common is that they are average-cost-per-claim 
methods in which the mean and variance of individual claim payments are assumed to be 
functions of ‘operational time’ (the same functions of operational time across all origin years). 
Operational time is defined as the proportion of the ultimate number of claims that have been 
closed, so it increases from zero at the start of an origin year to one when a year reaches full 
development.  

Given a development triangle of aggregate claim amounts, and a corresponding triangle of the 
numbers of claims closed, the original paper describes how generalized linear modelling can be 
used to determine the relationship between mean claim amount and operational time, and how 
this can be used to forecast the total of future payments and its root-mean-square predictive error 
(allowing for both future process variation and parameter estimation uncertainty). 

Some of the different circumstances covered by the original paper are: 

• The individual payment amount distribution can be assumed to have the same coefficient 
of variation (ratio of standard deviation to mean) at all operational times, or this can be 
assumed to vary across operational times in a defined way. 

• Claims inflation can be assumed to be absent (on the grounds that the claim amounts 
triangle has been pre-adjusted perhaps) or the average rate of claims inflation can be 
estimated as one of the parameters of the generalized linear model. 

• The ultimate number of claims can be assumed known with certainty (as would be the 
case with reporting year cohorts or if there were no reporting delays in accident year 
cohorts) or uncertainty in ultimate numbers of claims can be taken into account. 

• Each claim payment in the amounts triangle can assumed to be separately counted in the 
claim numbers triangle (as when every claim is settled with a single payment) or there 
may be partial payments in the amounts triangle that are not separately counted in the 
claim numbers triangle.  

To date, we have tested the method by numerical simulation in only the simplest of these 
situations: 

• The coefficient of variation of individual claim payments is the same at all operational 
times. 

• There is no claims inflation. 

• The ultimate number of claims is fully known for each origin year. 

• All claims are settled by a single payment (so each payment contributing to the aggregate 
claim amounts triangle is counted in the triangle of numbers of claims closed).  
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B.4.2 Artificial data satisfying Wright’s assumptions (Algorithms D and E) 
To test the performance of the method when these assumptions are true, we generated artificial 
run-off datasets as follows: 

 

Algorithm D for artificial run-off data: 

1. The ultimate number of claims in an origin year is generated by random sampling from a 
Negative Binomial distribution (same parameters for each origin year but independent 
sampling). 

2. Each claim is assumed to be settled by a single payment, and the development year of the 
payment determined by independent random sampling from a multinomial distribution (same 
parameters for each origin year).  

3. The amount of each individual claim payment was determined by independent random 
sampling from a Log-Normal distribution. The mean of the Log-Normal distribution was 
determined, for each claim, from the operational time at which the claim settles. We used the 
formula: mean = exp(b0 + b1.t + b2.t2) where t is operational time (for example, the 86th claim 
to settle in an origin year in which the ultimate number of claim is 112 has t = 85.5 / 112). 
For the parameters, we used the values b0 = b1 = b2 = 1.0: the mean amount of individual 
payments then rises from 2.718 at t = 0 to 20.09 at t = 1. The shape of the Log-Normal 
distribution was kept the same for all claims: the dependence of the mean on operational time 
was achieved by scaling the entire distribution. We used Log-Normal distributions all with 
coefficient of variation equal to 2.528 and skewness coefficient equal to 23.7.    

4. The amounts of claims settling in the upper left triangle of the run-off array were 
accumulated to create this run-off triangle, and all claim  amounts (regardless of the 
development year when settled) were accumulated to obtain the ‘true’ ultimate position for 
each origin year. 

 

Note that it is only at Step 3 that this differs from Algorithm C (used in the previous section for 
testing the Mack and ODP methods). In Algorithm C the same probability distribution for 
individual payments is used at all stages of development: in Algorithm D this distribution is 
multiplied by a scaling factor that is a function of operational time. We used the same parameters 
in Steps 1 and 2 of Algorithm D as we used when generating data by Algorithm C to test the 
ODP and Mack methods. 

Because Wright’s method does not assume that the underlying run-off pattern (over real 
development time) is the same for all origin years, we have also generated data (by Algorithm E) 
in which the mean delay to settlement decreases across the origin years: 

 

Algorithm E for artificial run-off data: 

Algorithm E is the same as Algorithm D except that the probabilities of the multinomial 
distribution used at Step 2 are not the same for all origin years. The probabilities we used for 
each origin year are shown below (one row for each origin year: each row adds to 100%).  
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Table B-16 – Multinomial probabilities of claim settlement delay used in Algorithm E 

 1 2 3 4 5 6 7 8 9 10 
 OYr 1 4.3% 14.3% 19.8% 19.3% 15.5% 11.0% 7.2% 4.4% 2.6% 1.5% 

2 4.6% 15.0% 20.4% 19.5% 15.3% 10.7% 6.8% 4.1% 2.4% 1.3% 
3 5.0% 15.7% 20.9% 19.6% 15.1% 10.3% 6.4% 3.8% 2.1% 1.2% 
4 5.3% 16.5% 21.5% 19.6% 14.8% 9.9% 6.0% 3.5% 1.9% 1.0% 
5 5.7% 17.3% 22.0% 19.7% 14.5% 9.4% 5.6% 3.2% 1.7% 0.9% 
6 6.2% 18.2% 22.5% 19.7% 14.1% 9.0% 5.2% 2.9% 1.5% 0.8% 
7 6.6% 19.1% 23.1% 19.6% 13.7% 8.5% 4.8% 2.6% 1.3% 0.7% 
8 7.2% 20.0% 23.6% 19.5% 13.3% 8.0% 4.4% 2.3% 1.2% 0.6% 
9 7.7% 21.0% 24.1% 19.3% 12.8% 7.5% 4.1% 2.1% 1.0% 0.5% 

10 8.4% 22.1% 24.5% 19.1% 12.3% 7.0% 3.7% 1.8% 0.8% 0.4% 
 

Assuming origin years are accident years, this implies that mean delay between loss event and 
claim settlement steadily reduces from about 3.4 years in the first origin year to 2.6 years in the 
latest origin year.  

 

B.4.3 Performance of Wright’s method when its assumptions hold  
For testing Wright’s method, each dataset generated by Algorithm D or Algorithm E comprises: 

• Ultimate number of claims in each origin year (from Step 1)  

• Upper left triangle of numbers of claims closed (from Step 2) 

• Upper left triangle of aggregate claim amounts (from Step 4) 

• Ultimate aggregate claim amount for each origin year (from Step 4). 

The first three of these items were treated as if known, and were used to estimate the ultimate 
aggregate amount (and its standard error) using Wright’s operational time method. The last item 
is the ‘true’ ultimate aggregate amount which was compared to the estimate produced by 
Wright’s method. We compared only the estimated and true totals for the entire triangle, not the 
results for individual origin years. As in Mack’s method, we used a Log-Normal distribution 
(with mean equal to the best estimate reserve and standard deviation equal to the estimated 
predictive standard error) to determine the values F(true reserve) for comparison with a uniform 
distribution.  

The original paper (Wright, 1992, pages 270 to 272) describes two methods for estimating the 
dispersion parameter (the squared coefficient of variation of individual payments, denoted φ2 in 
the original paper). This can be estimated using the mean-squared Pearson residual or the mean-
squared deviance residual. As neither has a clear theoretical advantage, we have used both 
methods in these simulations to try to establish which performs better.  

Results are summarised below for three independent sets of 10,000 simulations. For each set of 
10,000 simulations, the first column gives results obtained using Pearson residuals to estimate 
the dispersion parameter; the second column gives results based on deviance residuals.   
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Table B-17 – Results of applying Wright’s method to data from Algorithm D (constant run-off 
pattern) 

Results from different sets of 10,000 simulations  

Set 1 

 

Set 2 Set 3 

 

Best estimate reserve 3,434 3,436 3,440 

Best estimate > True 49.6% 49.2% 49.5% 

Best estimate – True 37.4 21.7 39.4 

Wright standard error 763.7 673.2 764.8 673.0 765.8 674.1 

(Best - True) / (std error) -0.222 -0.227 -0.242 -0.248 -0.214 -0.218 

Square of the above 1.58 1.86 1.59 1.85 1.53 1.78 

Log-Normal F(True) 0.540 0.533 0.545 0.538 0.540 0.533 

1% 4.1% 5.0% 3.7% 5.1% 3.7% 4.5% 

5% 10.3% 11.7% 9.4% 12.2% 9.9% 11.3% 

10% 15.8% 17.5% 14.6% 18.3% 15.8% 17.7% 

20% 25.9% 27.7% 24.8% 28.6% 26.1% 27.7% 

30% 35.7% 36.7% 33.8% 37.6% 35.7% 36.6% 

50% 54.4% 53.5% 52.1% 54.0% 54.7% 53.8% 

70% 73.2% 70.6% 71.4% 70.8% 73.1% 70.5% 

80% 82.4% 79.3% 81.1% 79.6% 82.6% 79.2% 

90% 91.5% 88.6% 90.9% 89.0% 91.8% 88.8% 

95% 96.3% 94.2% 95.7% 94.3% 95.9% 94.0% 

99% 99.3% 98.5% 99.1% 98.7% 99.3% 98.6% 

 

These results suggest there may be a small positive bias in the best estimate of the reserve 
produced by Wright’s method in this case: over all 30,000 simulations, the mean estimation error 
is about 0.96% of the mean true reserve. This is not very consistent across all three sets of 10,000 
simulations (the mean error in Set 2 is about half the value in Set 1 or 3) so it might be caused by 
sampling error rather than being a bias. As well as being close to unbiased, estimates exceeded 
the true reserve in close to half (49.4%) of simulations. 

As with Mack’s method and the ODP method, there is clear evidence that Wright’s method tends 
to understate the predictive standard error when it understates the true reserve: the mean value of 
the ‘standardised predictive error’ is consistently negative (and its mean square significantly 
greater than one). The performance is slightly better when the dispersion parameter is estimated 
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from Pearson residuals (first column for each set 10,000 simulations) than when it is estimated 
from deviance residuals: Pearson residuals tend to give a higher estimate of the dispersion 
parameter, hence a higher predictive standard error (about 764 instead of 673 in this example) 
which more closely approximates the reliability of the best estimate reserve. 

The tendency of the method to understate the predictive standard error when it understates 
reserves is also apparent in the results based on a Log-Normal predictive distribution: in 3.8% of 
the simulations the true reserve exceeded what was supposed to be the 99th percentile (based on 
dispersion parameter estimated from Pearson residuals: this rises to 4.9% if deviance residuals 
are used). 

One possible explanation of why Wright’s method seems to understate the chance of adverse 
outcomes is that the method relies on asymptotic results for unbiasedness and standard errors of 
the parameter estimates of generalized linear models, and the volume of data may not be 
sufficiently large for the asymptotic results to work well. To investigate this further, we looked at 
the mean estimated values of the parameters (b0, b1, b2) across all simulations. It seems that the 
estimates are biased: the true values of these parameters were all exactly one, but the mean 
estimated values were (0.975, 1.113, 0.873) in the first set of 10,000 simulations, (0.977, 1.118, 
0.864) in the second set and (0.979, 1.107, 0.876) in the third: the differences between the 
estimated values and true values appear to be consistent and not just caused by sampling error. 

The table below only shows results with the dispersion parameter estimated from Pearson 
residuals (because the earlier results indicate this is slightly better than using the deviance). 

 
Table B-18 – Results of applying Wright’s method to data from Algorithm E (varying run-off 
pattern) 

Results from different sets of 10,000 simulations  

Set 1 Set 2 Set 3 All combined 

Best estimate 3,048 3,057 3,061 3,055 

Best estimate > True reserve 50.4% 49.6% 50.2% 50.1% 

Best estimate – True reserve 29.7 24.9 38.9 31.2 

Wright standard error 697.5 700.7 704.7 701 

(Best - True) / (Std error) -0.213 -0.222 -0.203 -0.213 

Square of the above 1.58 1.57 1.50 1.55 

Log-Normal F(true liability) 0.539 0.541 0.537 0.539 

1% 4.0% 4.0% 3.9% 4.0% 

5% 9.9% 10.2% 9.6% 9.9% 

10% 15.7% 16.5% 15.3% 15.8% 

20% 25.7% 26.8% 25.8% 26.1% 

30% 35.2% 36.2% 35.2% 35.5% 
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50% 53.9% 54.3% 54.0% 54.1% 

70% 73.6% 72.8% 72.9% 73.1% 

80% 82.7% 81.9% 82.2% 82.3% 

90% 92.0% 91.4% 91.8% 91.7% 

95% 96.1% 96.0% 96.1% 96.1% 

99% 99.1% 99.3% 99.2% 99.2% 

 

These results are very similar to those based on data from Algorithm D, and the same comments 
apply. This confirms that Wright’s method is not sensitive to whether or not the underlying run-
off pattern (across real development time) is the same for all origin years.  

 

Further work is needed to investigate: 

• The extent to which these conclusions depend on the particular set of parameters chosen 
in simulating the artificial data by Algorithms D and E. 

• How more general versions of Wright’s method perform in situations where the 
underlying assumptions are perfectly satisfied (for example, in situations of non-zero 
claims inflation, or where not all claims are settled by a single payment). 

• The performance of the method if applied where its underlying assumptions are not true. 

B.4.4 Performance of Mack’s method on data from Algorithms D and E 
As a further test of Mack’s method in situations where its underlying assumptions are false, we 
applied Mack’s method to the same claim amounts triangles (generated using Algorithms D and 
E) as using in testing Wright’s method when its assumption hold true. Results are summarised 
below: 
Table B-19 – Results of applying Mack’s method to data generated using Algorithm D 

Results from different sets of 10,000 simulations  

Set 1 Set 2 Set 3 All combined 

BCL estimate 3,654 3,659 3,666 3,660 

BCL estimate > True reserve 47.7% 46.4% 47.6% 47.2% 

BCL estimate – True reserve 257 245 265 256 

Mack standard error 1,856 1,855 1,865 1,859 

(BCL - True) / (Mack std error) -0.227 -0.241 -0.231 -0.233 

Square of the above 1.17 1.18 1.15 1.17 

Log-Normal F(true liability) 0.580 0.586 0.581 0.582 

1% 1.6% 1.8% 1.7% 1.7% 
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5% 6.8% 7.1% 7.3% 7.1% 

10% 13.8% 13.5% 13.7% 13.7% 

20% 27.5% 27.2% 27.0% 27.2% 

30% 40.3% 41.0% 40.1% 40.5% 

50% 62.4% 63.8% 62.9% 63.0% 

70% 80.5% 81.5% 80.8% 80.9% 

80% 87.7% 88.1% 88.2% 88.0% 

90% 93.5% 93.7% 93.9% 93.7% 

95% 96.4% 96.3% 96.5% 96.4% 

99% 98.7% 98.6% 98.7% 98.7% 

 

These results are very similar to those obtained by applying Mack’s method to data generated 
using Algorithm C. Compared to the results of applying Wright’s method to data generated using 
Algorithm D, we see that Mack’s method gives much higher predictive standard errors (mean of 
around 1,860 for Mack, compared to around 765 for Wright). This is to be expected because 
Mack’s method makes use of the claim amounts triangle only, whereas Wright’s method makes 
use of the claim amounts and claim numbers triangles. Clearly, in situations where claim 
numbers data are available, more reliable reserve estimates will usually be obtained by making 
use of this information rather than ignoring it. 

The following results show that Mack’s method (and the BCL method) breaks down badly if 
applied where the underlying run-off pattern is not the same for all origin years. The data 
simulated using Algorithm E has an accelerating development pattern. In this case, the BCL 
estimates exceed the true outcome in 84.5% of simulations, and on average overestimate the true 
reserves by 61%. In only 0.1% of simulations does the true ultimate exceed what Mack’s method 
indicates is the 99th percentile. None of this is at all surprising – a key assumption of all chain-
ladder methods (including Mack’s) is that the underlying run-off pattern is the same for all origin 
years. These results confirm that such methods should not be used where this is not the case.  

 
Table B-20 – Results of applying Mack’s method to data generated using Algorithm E 

 Results from 10,000 simulations

(Set 1) 

BCL estimate 4,873 

BCL estimate > True reserve 84.5% 

BCL estimate – True reserve 1,854 

Mack standard error 2,257 

(BCL - True) / (Mack std error) 0.665 
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Square of the above 0.985 

Log-Normal F(true liability) 0.295 

1% 0.1% 

5% 0.5% 

10% 1.4% 

20% 4.3% 

30% 8.8% 

50% 22.3% 

70% 42.1% 

80% 54.9% 

90% 70.9% 

95% 80.6% 

99% 92.1% 

 

B.4.5 Performance of ODP methods on data generated using Algorithms D and E 
As a further test of the ODP methods (analytic and bootstrap) in situations where the underlying 
assumptions are false, we have applied these methods to the same claim amounts triangles 
(generated using Algorithms D and E) as used in testing Wright’s method when its assumptions 
hold. We have done this for only the first set of 10,000 triangles produced by each algorithm. 
Results are summarised below. For the analytic ODP method, since earlier results show that 
estimating the dispersion parameter from Pearson residuals is generally better than estimating it 
from the deviance, results are given below for the Pearson residual method only. 
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Table B-21 – Results of applying ODP methods to data generated using Algorithm D 

 Analytic ODP Bootstrap 99 Bootstrap 01 

BCL estimate 3,654 3,654 3,654 

BCL estimate > True reserve 47.7% 47.7% 47.7% 

BCL estimate – True reserve 257 257 257 

Bootstrap mean  3,723 3,724 

ODP standard error 1,723 1,259 1,261 

(BCL - True) / (Std error) -0.278 -0.270 -0.270 

Square of the above 1.38 1.95 1.93 

F(true liability) 0.578 0.553 0.522 

1% 2.3% 3.6% 2.8% 

5% 8.5% 11.8% 9.2% 

10% 16.0% 19.7% 15.9% 

20% 28.6% 31.0% 26.4% 

30% 40.1% 41.0% 35.9% 

50% 61.2% 57.6% 52.9% 

70% 79.7% 72.4% 69.3% 

80% 87.0% 79.7% 78.4% 

90% 93.6% 87.3% 87.3% 

95% 96.8% 91.2% 92.2% 

99% 99.0% 96.1% 96.9% 

 

These results show that, while it does not perform as well as Mack’s method on triangles 
generated by Algorithm D, the analytic ODP method does perform almost as well here as where 
its assumptions are perfectly satisfied (Algorithm B, Table B-8). The parameters we have used in 
Algorithm D produce individual claim amounts with a mean value that increases by a factor of 
about seven between development periods 1 and 10, which implies that the parameter φ (defined 
as ratio of variance to mean of aggregate increments) increases by a similar factor. One of the 
ODP assumptions is that the value of φ is constant across the entire triangle. This assumption is 
far from true here, so it seems that the analytic ODP method is quite robust to violations of this 
assumption. The bootstrap methods appear to be less robust to violations of this assumption.  

In tests of the ODP methods where their assumptions are true (data generated using Algorithm 
B) we found that the 1999 bootstrap method gave a predictive standard error smaller than the 
analytic ODP standard error in 86% of simulations. Here (date generated using Algorithm D), the 
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1999 bootstrap method gave a smaller standard error than the analytic ODP standard error in 
96.2% of simulations, and the 2001 bootstrap standard error was smaller than the analytic 
standard error in 95.7% of simulations. It seems that the bootstrap methods tend to understate the 
predictive standard error when data are generated by Algorithm D.  

Another of the ODP assumptions is that the underlying run-off pattern across development 
periods is the same for all origin years: this assumption is satisfied in triangles generated by 
Algorithm D. However, the following results show that the analytic ODP method (like Mack’s 
method) are not robust to violations of this assumption: it performs very poorly when applied to 
data generated by Algorithm E.  

 
Table B-22 – Results of applying analytic ODP method to data generated using Algorithm E 

 Results from 10,000 simulations

(Set 1) 

BCL estimate 4,873 

BCL estimate > True reserve 84.5% 

BCL estimate – True reserve 1,854 

ODP standard error 2,154 

(BCL - True) / (ODP std error) 0.663 

Square of the above 0.990 

Log-Normal F(true liability) 0.287 

1% 0.1% 

5% 0.7% 

10% 1.8% 

20% 4.6% 

30% 8.8% 

50% 21.0% 

70% 39.4% 

80% 52.7% 

90% 69.2% 

95% 80.4% 

99% 93.0% 
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B.5  Provisional conclusions 
Much more work is needed before we can formulate definitive conclusions, but based on the 
simulations carried out so far it seems (provisionally) that: 

• When the basic chain ladder method is applied to triangles where the underlying run-off 
pattern is the same for all origin years, it understates the true reserve more often than not. 
However, the mean value of BCL reserves exceeds the mean value of true outcomes: in 
other words, the BCL is positively biased. These results apply when the data are 
generated using a range of simplified but reasonably realistic algorithms (subject to the 
constraint that the underlying run-off pattern is the same for all origin years). 

• When calculated from triangles where the underlying run-off pattern is the same for all 
origin years (this being an example of when the conditions are NOT satisfied), Mack’s 
standard errors, used in conjunction with positively biased BCL estimates, provide 
reasonably accurate assessments of the chances of very adverse outcomes. This applies 
when the data are generated using a range of increasingly realistic algorithms that do not 
satisfy Mack’s explicit assumption (but do have the same underlying run-off pattern 
across all origin years). 

• Strangely however, Mack’s method performs very poorly on data generated in such a 
way that Mack’s explicit assumptions are perfectly satisfied. (This is perhaps because the 
BCL estimates are not biased in this case, but the Mack standard errors tend to be 
understated.) As it is difficult to imagine any real-world claim settlement process that 
would approximate Mack’s assumptions, this may not be a major drawback of the 
method. 

• Given the above, there seems to be little value in trying to check (through diagnostics) 
that Mack’s explicit assumptions hold true when applying Mack’s method (or perhaps the 
assumptions should be checked and the method used only where the assumptions appear 
to be false!) It is however important to check that the run-off pattern does not differ 
significantly between origin years. 

• Standard errors for BCL estimates calculated using the over-dispersed Poisson (ODP) 
method can understate the chance of adverse outcomes even where the explicit 
assumptions of the ODP method are perfectly satisfied: in simulations carried out so far, 
what was supposed to be the 95th percentile was exceeded in nearly 10% of simulations, 
and what was supposed to be the 99th percentile was exceeded in 2.6% of simulations. 

• The performance of the analytic OPD method is insensitive to the probability distribution 
of the ultimate number of claims in an origin year (even if this is such as to violate the 
assumptions of the method) and insensitive to the relationship between mean size of 
claim payment and delay to settlement (provided this is the same for all origin years).  

• The bootstrap ODP method does not in general give the same predictive standard error as 
the analytic ODP method, even where the ODP assumptions are perfectly satisfied. 

• The bootstrap ODP method is more sensitive than the analytic ODP method to violations 
in the ODP assumptions: its performance deteriorates if there is a strong relationship 
between the mean claim size and the delay to settlement (such that the ratio of variance to 
mean is not the same for all aggregate increments in the paid claims triangle). 
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• When applied to triangles for which the underlying run-off pattern is not the same for all 
origin years, the BCL method can give very poor estimates, and both Mack’s method and 
the ODP methods give very unreliable standard errors. (Neither method was ever 
intended to be used in these circumstances, of course.)  

• Wright’s operational time method also tends to understate the chances of adverse 
outcomes: in simulations carried out so far, what was supposed to be the 95th percentile 
was exceeded in about 10% of simulations, and what was supposed to be the 99th 
percentile was exceeded in 3.9% of simulations.   

• Provided the assumptions of the method continue to hold, the performance of Wright’s 
method is not sensitive to variation in the underlying run-off pattern between origin 
years. 

• We have not yet done any testing of the sensitivity of Wright’s method to violations of its 
assumptions. 

 

B.6 Technical results for Mack and ODP methods 

B.6.1 Mutually exclusivity of assumptions 
Here we show that the assumptions of Mack’s (1993) method and the over-dispersed Poisson 
(ODP) method are mutually exclusive, that is, the two sets of assumptions cannot both be true 
simultaneously. This explains how it is that - when applied to triangles with no missing data - 
both methods produce ‘best estimates’ identical to those given by the basic chain ladder (BCL) 
method, yet the two methods give different root-mean-square predictive errors (or ‘standard 
errors’ for short). Since the two methods rely on two mutually exclusive sets of assumptions, 
both have the potential to give correct standard errors in different circumstances, but they can 
never both be correct.  

Mack’s assumptions are:  

M1: There exist parameters fk such that: E(Cj,k+1 | Cj1,…Cjk) = fk.Cjk 

M2: There exist parameters αk such that: Var(Cj,k+1 | Cj1,…Cjk) = αk
2.Cjk 

M3: Accident years are stochastically independent. 

The ODP assumptions are: 

P1: E(Yjk) = xj.pk 

P2: Var(Yjk) = φ.xj.pk 

P3: The Yjk are stochastically independent (across all j and all k). 

 

First we show that if P1 and P3 hold, then M1 necessarily does not hold. 

From the definitions of Cjk and Yjk as respectively cumulative and incremental aggregate paid 
amounts: 

E(Cj,k| Cj,k-1)  = Cj,k-1 + E(Yj,k | Cj,k-1) 
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= Cj,k-1 + E(Yj,k) by assumption P3 (independent increments) 

= Cj,k-1 + xj .pk by assumption P1 

= (1 + xj .pk / Cj,k-1).Cj,k-1  

Comparing this to assumption M1 we see that assumption M1 cannot hold because the quantity 
in parentheses in the last equation is a function of the random variable Cj,k-1 so cannot be a 
constant fk (the same for all origin years). 

 

Next we show that if M1 holds, then P3 necessarily does not. 

Assumption M1 implies that E(Yj,k+1 | Cj1…Cj,k) = (fk -1).Cjk 

Putting k = 1, this implies:  E(Yj2 | Yj1) = (f1 -1).Yj1 

which implies that Yj2 and Yj1 are not stochastically independent, contradicting P3. 

B.6.2 Algorithm B satisfies the ODP assumptions 
We next show that Algorithm B satisfies the ODP assumptions (and therefore, by the above 
results, does not satisfy Mack’s assumptions).  

Algorithm B is: 

1. Generate the ultimate number of claims Nj from a Poisson distribution with parameter λ 
say. 

2. Find numbers Njk settled in each development year k by splitting Nj using a multinomial 
distribution, with probabilities pk, where sum is 1. 

3. Generate the amount of each claim Zjki (i = 1 to Njk) by independent sampling from a 
distribution with mean μ and variance σ2 say. 

4. Calculate Yjk = Σi Zjki 

 

First we show that Steps 1 and 2 produce independent Poisson numbers Njk. We consider just 
two development years (the argument easily generalises to more than two). The joint probability 
density function of Nj1 and Nj2 is given by: 

f(Nj1, Nj2)  = f(Nj1, Nj2 | Nj) . f(Nj) 

= multinomial * Poisson 

= product of two Poisson pdfs for Nj1 and Nj2. 

Since their joint pdf factorises, Nj1 and Nj2 are stochastically independent.  

Clearly Yj1 and Yj2 generated by Steps 3 and 4 of Algorithm B are therefore also independent, so 
assumption P3 is satisfied.  

To show that P1 and P2 are also satisfied we must consider E(Yjk) and Var(Yjk): 

 E(Yjk) = E(E(Yjk | Njk))     

  = E(μ.Njk)  from Step 4 of Algorithm B  
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  = μ.λ.pk  because Njk is Poisson(λ.pk)   

from which we see that P1 holds, with xj = μ.λ (ie expected ultimate is expected number of 
claims λ multiplied by expected amount μ of each one). 

 Var(Yjk)  = E(Var(Yjk | Njk)) + Var(E(Yjk | Njk))   

  = E(σ2.Njk) + Var(μ.Njk) from Step 4 of Algorithm B  

  = σ2.λ.pk + μ 2.λ.pk
  because Njk is Poisson(λ.pk) 

  = (σ2 + μ 2).λ.pk
    

from which we see that P2 holds with φ = (σ2 + μ2) / μ. 

If algorithm B were generalised to have a different ultimate expected number of claims λj for 
each origin year, the above argument is unaffected and the ODP assumptions continue to hold 
(with xj = μ.λj). 

B.6.3 Algorithm C does not satisfy ODP or Mack assumptions 
Algorithm C is the same as Algorithm B except that the distribution used in Step 1 is Negative 
Binomial instead of Poisson. It is easily shown (by replacing the Poisson pdf with the Negative 
Binomial pdf in the above) that in this case, the join distribution f(Nj1, Nj2) does not factorise, 
which implies that Nj1 and Nj2 are stochastically dependent, which in turn implies that 
assumption P3 does not hold. It is also easy to show that assumption M1 does not hold in this 
case. 
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No. Category Paper / Workshop / Reference name Link 

1 Mack 

Mack, T. (1993). Distribution Free 
Calculation of the Standard Error of Chain 

Ladder Reserve Estimates. ASTIN Bulletin, 
23, pp. 213-225. 

http://www.casact.org/library/astin/vol2
3no2/213.pdf 

2 Mack 

Mack, T. (1999). The Standard Error of Chain 
Ladder Reserve Estimates: Recursive 

Calculation and Inclusion of a Tail Factor. 
ASTIN Bulletin, 29, pp. 361-366. 

http://www.casact.org/library/astin/vol2
9no2/361.pdf 

3  Over Dispersed Poisson, including GLM  
4  Benchmarking  

5  

McLennan, A. & Murphy, K. P. (2006). A 
Method For Projecting Individual Large 
Claims. Casualty Actuarial Society, Fall 

Forum 2006, pp. 205-236. 

http://www.casact.org/pubs/forum/06ff
orum/209.pdf 

6 
Individual 

Level Claim 
Reserving 

Guszcza, J. C. & Lommele, J. (2006). Loss 
Reserving Using Claim-Level Data. Casualty 
Actuarial Society, Fall Forum 2006, pp. 111-

140. 

http://www.casact.org/pubs/forum/06ff
orum/115.pdf 

7  

Patel, C. C., & Raws, A. (1998). Statistical 
Modeling Techniques for Reserve Ranges: A 

Simulation Approach. Casualty Actuarial 
Society, Fall Forum 1998, pp. 229-255. 

http://www.casact.org/pubs/forum/98ff
orum/patel.pdf 

8  Extrapolation - Curve Fitting for the Tail  
9  Taylor (check CAS - Australian)  

10  

Halliwell, L. J. (1996). Loss Prediction by 
Generalized Least Squares. Proceedings of 
the Casualty Actuarial Society 83, pp. 436-

489. 

http://www.casact.org/pubs/proceed/pr
oceed96/96436.pdf 

11  Deterministic - Curve Fit  
12  Historical Ults - Restating  
13  Stressing - Best Estimate and Scenario  

14  McLennan - Fitting Curves to Loss 
Development Factors  

5  
Panning, W. H.(2006). Measuring Loss 
Reserve Uncertainty. Casualty Actuarial 
Society, Fall Forum 2006, pp. 237-267. 

http://www.casact.org/pubs/forum/06ff
orum/241.pdf 

16  Scenarios Using Exposure Based Methods  

17  

Meyers, G. G. (2006). Estimating Predictive 
Distributions for Loss Reserve Models. 

Casualty Actuarial Society, Fall Forum 2006, 
pp. 159-203. 

http://www.casact.org/pubs/forum/06ff
orum/163.pdf 



 

18  
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Economics Vol. 37, pp. 355-370. 
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Annals of Actuarial Science  

20  

Renshaw, A. E. & Verrall, R. J. (1994). The 
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Ladder Technique. Proceedings of the ASTIN 
Colloquium. 
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22 
Bootstrap / 
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England, P. D. & Verrall, R. J. (2002). 
Stochastic Claims Reserving in General 

Insurance. British Actuarial Journal Vol. 8, 
pp. 443-544. 

 

23 Operational 
Time 

Wright, T. S. (1992). Stochastic Claims 
Reserving When Past Claim Numbers Are 

Known. Proceedings of the Casualty 
Actuarial Society 79, pp. 255-361. 

http://www.casact.org/pubs/proceed/pr
oceed92/92255.pdf 

24  
Reid, D. H. (1997). Reid's Method: Claims 
Reserving Manual Vol. 2. London: Institute 

of Actuaries. 
 

25  

Reid, D. H. (1997). Operational Time and a 
Fundamental Problem of Insurance in a Data-
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26 Regression 
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Benjamin, S. & Eagles, L. (1997). A Curve 
Fitting Method and a Regression Method. 
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Lowe, J. (1994). A Practical Guide to 
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Convention 2002. 
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ro2002/Lyons.pdf 
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Convention 2002. 

http://www.actuaries.org.uk/files/pdf/gi
ro2002/Skinner.pdf 

35  Brix, A. et al (2000). Stochastic Reserving. 
General Insurance Convention 2000. 

http://www.actuaries.org.uk/files/pdf/lib
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Appendix E: Detailed Survey Results 
 
This appendix has two components: Appendix E1 and Appendix E2. 



Appendix E1 - ROC Working Party Questionnaire

1) In order to classify responses, please identify the type of organisation you represent:
Insurance company
Reinsurance company
Lloyd's syndicate
Consultancy
1a) Where is your company based?
UK
Overseas

2) What are your key products/classes of business that you perform reserving for? (Please select a maximum of three)
Personal lines - property
Personal lines - motor
Commercial lines - property
Commercial lines - motor
Commercial lines - liability
Health insurance
Credit insurance
Marine/aviation/transport
Reinsurance - Property
Reinsurance - Motor
Reinsurance - Liability
Other - please state

3) For the classes above please check the appropriate box in relation to the following questions:

a) Method not used
b) Method partially used (for background)
c) Method is a key supplementary method
d) Key/principal method

3a) What are the methods and models you use to determine best estimate values?
(In respect of each of the lines of business selected above).
Name of method/model a) b) c) d)
Mack
Overdispersed Poisson stochastic chain ladder/ 
Bootstrap
Transaction level/ individual claim
Operational time
Regression/Curve fitting
Bayesian/BF method
Basic Chain Ladder - paid
Basic Chain Ladder - incurred
Bornhuetter Fergusson
Average cost per claim
Judgement
Scenarios
Other - please state

3b What are the methods and models you use to determine uncertainty?

Name of model
Mack
Overdispersed Poisson stochastic chain ladder/ 
Bootstrap
Transaction level/ individual claim
Operational time
Regression/Curve fitting
Bayesian/BF method
Basic Chain Ladder - paid
Basic Chain Ladder - incurred
Bornhuetter Fergusson
Average cost per claim
Judgement
Scenarios
Other - please state

4 When determining uncertainty what are your key requirements - please state in order of importance
Identifying variability around the best estimate
Identifying the complete distribution
Identifying the tail of the distribution (above 95th percentile).

5 When determining which model/method to use in assessing uncertainty, what are the key criteria you use (in order of importance)?
Ease of use
Quality of results
Communicability
Practical issues - relating to available data
Time/ resource constraints
Knowledge of actuarial staff

6 When modelling uncertainty do you use?
In-house models
Off-the shelf packages
A combination of in house models/ off the shelf packages
If "off the shelf" packages are used - please list them:

The following survey has been developed to assist the Reserving Oversight Committee (ROC) in the 
formulation of its conclusions relating to the working parties 'Best estimates and estimating uncertainty' 
and 'Effectiveness of reserving methods'.
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7 When communicating uncertainty in the reserves to excutives/senior managers within the organisation, what methods are used (in order of importance)
Quantitative using percentiles
Quantitative using everyday English
Whole account scenarios with indication of likelihood
Whole account scenarios without indication of likelihood
Scenarios relating to parts of the reserves with indication of likelihood
Scenarios relating to parts of the reserves without indication of likelihood
Stress tests
Other (please specify)
Uncertainty only communicated qualitatively
Uncertainty not communicated

8 Does your communication of uncertainty cover? (select all that apply)
Process uncertainty
Parameter uncertainty
Model uncertainty

9a When calculating best estimates what grouping of data do you use by origin period?
Monthly
Quarterly
Half-yearly
Annual

9b When calculating best estimates what grouping of data do you use by development period?
Monthly
Quarterly
Half-yearly
Annual

10a When calculating uncertainty what grouping of data do you use by origin period?
Monthly
Quarterly
Half-yearly
Annual

10b When calculating uncertainty what grouping of data do you use by development period?
Monthly
Quarterly
Half-yearly
Annual

11 How frequently do you reserve each class of business mentioned in 2) above?
Monthly
Quarterly 
Half-yearly
Annually

12 If you reserve monthly - do you carry out a full analysis or a reduced analysis each month?
Full analysis
Reduced analysis

13 If you reserve quarterly - do you carry out a full analysis or a reduced analysis each quarter?
Full analysis
Reduced analysis

This questionnaire may be repeated annually to monitor the take-up of new methodology.

Thank you for completing this survey. Your results will be kept anonymous and used to assist the ROC 
working party's work.
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Appendix F: Insureware Submission 
 
 
This appendix contains the Insureware submission in the full form received by the 
working party. It is written by Insureware, not by the working party. The approaches 
are described in more detail than we have described the methods tested by the 
working groups, although we have referenced relevant papers in relation to those 
methods. Some of the material is beyond the scope of the working party. 
 
This appendix has six components as follows: 
 
F1. Uncertainty Working Group Test Template.doc 
 
F2. Variability and Uncertainty.doc 
 
F3. Employers Liability_UC_O110.xls 
 
F4. ELRF study.xls 
 
F5. EmployersLiabilityUC01100012.xls 
 
F6. MarineCargoGrossvNet.xls 
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Appendix F

Best Estimate & Uncertainty Working Group

Method Evaluation Template

Name of Method:

We do not advise a method. We use modelling frameworks to identify the structure in
the data. In actuarial parlance, we design a method that is appropriate for the data.

There are three modelling frameworks we typically use, Probabilistic Trend Family
(PTF), Multiple Probabilistic Trend Family (MPTF), and the Extended Link Ratio
Family (ELRF).

The PTF and ELRF frameworks are discussed in the paper ‘Best Estimates for
Reserves’ (available on the CAS website at:
www.casact.org/pubs/proceed/proceed00/00245.pdf). The paper has been on the CAS
syllabus since January 2005.

PTF Modelling Framework

In the PTF modelling framework an optimal model is identified, equivalently, built or
designed that captures the variability (volatility) in the incremental loss development
array. The variability is described using four components of interest. Namely, trends
in the three directions: development period, accident period and calendar period,
and the variability of the data about the trend structure. The (process) variability is an
integral part of the model.

A PTF model is succinctly described by four graphs; three graphs describe the trend
structure in the three directions, the fourth graph depicts the process variability. The
identified model is tested to ensure that the model assumptions are consistent with the
data; including validation testing (by removal of years). The triangle is regarded as a
sample path from the fitted model. Thus data simulated from the model should not be
distinguishable from the original data in respect of trend structure and volatility about
the trend structure.

MPTF Modelling Framework

The MPTF modelling framework is used to design (build) an optimal composite
model for multiple incremental loss development arrays. The identified composite
model captures (describes) the variability in each loss development array (a la PTF)
and the relationships between them.
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This has applications to modelling multiple lines of business, multiple segments,
multiple layers and credibility modelling.

Relationships between lines of business, for example, involve two types of
correlations; process correlation and parameter correlation.

ELRF Modelling Framework

The ELRF modelling framework in the first instance formalizes average link ratios
(Age-to-age development factors) as regression estimators through the origin. It is
also extended to include intercepts and constant trends for each development period
across the accident periods. The framework provides statistical tests of link ratio
methods including Mack, Murphy, and many extensions thereof.

The ELRF regression framework provides the ability to determine statistically
whether the selected link ratios quantify salient features of the data and whether they
have any predictive power.

It is very important to recognize that apart from the many failings of link ratio
methods the actuary has no control over assumptions going forward in respect of
projections. Indeed, there are no simple descriptors of the volatility in the data
including how much inflation has been captured by the method!

By contrast, a PTF or MPTF has simple descriptors of the volatility in the data and
assumptions made in deriving reserve distributions by accident year, calendar year
and total are explicit and can be controlled (chosen).

Datasets used:

We have used the Employers’ Liability and Marine Cargo data sets.

The Employers’ Liability data is sub-divided into three data sets. As noted in Section
5, no information is available on the nature of these data sets. We have used two of
these datasets to demonstrate the application of the modelling frameworks.

We have also tested a composite model created by combining the two subclasses of
Employers’ Liability data already used.

Marine Cargo paid loss data was available gross and net of reinsurance.

We have only modelled a small number of datasets to illustrate the rich statistical
ideas incorporated in the above mentioned modelling frameworks.

General Comments on the Method

Does the Method produce a complete distribution of Outcomes?

Yes. The PTF and MPTF identified models forecast distributions for every cell in the
future and their correlations, conditional on an explicit set of easily interpretable
assumptions. These distributions include both process variability and parameter
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uncertainty. Distributions of aggregates across accident periods and calendar periods
can also be obtained.

Would the Method be acceptable to the Profession?

Yes.

What Uncertainty has been measured by the method?

PTF and MPTF models include both process and parameter uncertainty.

There is an important distinction between variability and uncertainty and the two
should not be used interchangeably.

"Variability is a phenomenon in the physical world to be measured, analyzed and
where appropriate explained. By contrast uncertainty is an aspect of knowledge."

Sir David Cox.

For further details see:
http://www.insureware.com/Library/Technical/VariabilityandUncertainty.doc

Comment on difficulty of method to program & run

It is extremely difficult to program (but theoretically possible) in a spreadsheet form,
but is easy to run in ICRFS-Plus as all the programming has been pre-specified.
ICRFS-Plus is a point and click system with extremely fast algorithms.

How long did the tests take to program and complete.

Individual tests do not need to be programmed. It takes seconds for individual tests
to be completed.

How difficult is it to apply judgement and / or amendments to the results within
the program

It is not difficult. Judgement is made on the basis of accurate information about the
volatility in the business.

How do the Class by Class results compare to the Aggregated results.

We do not believe in aggregating data across classes (and usually not even segments).
We design a composite model that captures the variability and trend structure in each
class and the relationships between classes. For example, see the composite model:
Appendix F5

However, if two segments exhibit the same trend structure then it might make sense to
aggregate the data.
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Qualitative Results:

Qualitative results are provided for each dataset as follows.

Appendix F3: Employers Liability subclass “a”.

Appendix F4: Employers Liability subclass “b”.

Appendix F5: Employers Liability Composite Model.

Appendix F6: Marine Cargo Gross and Net.

The Employers’ Liability data used was provided sub-divided between three sub-
classes. Two of those subclasses have been used in developing the results shown in
this appendix. For the purpose of this appendix only these two sub-classes have been
referred to as “a” and “b”. No information has been available regarding the nature of
these Employers’ liability sub-classes as explained in Section 5.

Quantitative Results

All quantitative results are included in the same workbooks as the qualitative results.
Please see corresponding Quantile and model diagnostic spreadsheets.

Tests to establish if model is reasonable

Comment on validity of underlying model on data set.

All the models we have produced for the datasets on the accompanying spreadsheets
are statistically valid. The model assumptions have been tested and met. In one case
we simulated three triangles from the (PTF identified) model for the real data. It is
almost impossible to distinguish the simulated triangles and the real data in respect of
salient features. See: Appendix F3

Comments on results by accident year

The forecast means and standard deviations of distributions by accident year have
been included. They are based on explicit easily interpretable assumptions that can be
related to the historical experience.

Comments on Coefficient of Variations (COV) & standard deviation measured
by accident year

The coefficient of variations decrease as the accident year increases for all our PTF
and MPTF based models as should often be expected of a good model. Similarly, the
standard deviation of the reserves also increases. HOWEVER, this is not true for an
Extended Link Ratio Family (ELRF) based models that also include average link
ratios!
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Comments on correlations of standard error & COV when aggregating classes
together compared to class by class results.

As mentioned above, we do not aggregate the data. We design a composite model for
the individual classes that captures the volatility in each class and their inter
relationships (two types of correlations). For an example of a composite model: See:
Appendix F5

Comment on how stable results are when development factors or residuals are
changed

A PTF or an MPTF based model captures the volatility in the data in respect of trend
structure and volatility about the trend structure, called process variability.
Assumptions in respect of future trend (and uncertainty thereof) and process
variability are explicit and need to be argued for in respect of past volatility. To
illustrate this very important point, suppose the calendar year trend has been relatively
stable in the last seven years and its estimate is 10%+_3%. Typically when doing a
projection of reserve distributions you would assume that the true trend is a random
number from a normal distribution with mean .10 and std. dev. 0.03. That is, all the
reserve distributions by Calendar year, accident year and Total are based on this
explicit assumption. Suppose we now change the assumption to 15%+_ 3%, all the
resulting distributions will be different.

Incidentally, if the trend has been relatively stable for the last seven years (as in this
example) then removal of years (diagonals) should yield statistically stable reserve
distributions beyond the last year and the volatility of the numbers in the cells
removed should have been predicted years ago by the then-estimated model.
See: Appendix F3

Tests for Goodness of Fit and Prediction Error.

Comment on tests of Standardised Residuals

Normality tests were applied to all residuals including during validation analysis
where normality tests were applied to the residuals not used during model estimation.

Comment on tests of residual patterns

In model identification various discriminatory statistical criteria are used to ensure
parsimony. All remaining patterns in the residuals are random.

We also perform validation analysis and simulate triangles from fitted models to
ensure that the real data is indistinguishable from the simulated data.

Test the Amended Model Fit by Removing 2 diagonals

Removal of calendar years (diagonals) is called validation analysis, and is part of
extracting information from the data. In order to observe stability in the reserve
distributions the most recent trends must be stable. If you do have stability of most
recent trends, then the most important test is whether the model years ago predicted
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the volatility of the numbers in the years that have been removed. Results of these
kinds of critical tests are done shown in Appendix F3
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Variability and Uncertainty

There is an important distinction between variability and uncertainty and the two should
not be used interchangeably.

"Variability is a phenomenon in the physical world to be measured, analyzed and
where appropriate explained. By contrast uncertainty is an aspect of knowledge."

Sir David Cox.

Uncertainty and variability are philosophically very different and it is common for them
to be kept separate in risk analyses modeling.

Variability is the effect of chance and a function of the system. It is not reducible
through either study or further measurement (may be reduced through changing the
system).

Uncertainty is the assessor's lack of knowledge (level of ignorance) about the parameters
that characterize the physical system that is being modeled. It is sometimes reducible
through further measurement or study.

Uncertainly has also been called "fundamental uncertainly" or "degree of belief".

Simple examples

Suppose a symmetric coin is tossed 100 times and X denotes the no. of heads.

The mean number of heads (the mean of X) is 50. The SD of X is 5. The Binomial
probability of each possible outcome of X (0, 1, 2,..100) is known precisely. There is no
uncertainty about the coin's variability.

A 100% confidence interval for the mean is [50, 50]. There is no uncertainty in the mean
and indeed in any of the probabilities of the outcome X. The probability that X=50 (the
mean) is approximately 0.08. A 95% prediction interval for the outcome X is [40,60].
This 95% prediction interval cannot be shortened.

Suppose we do not know the true probability of a head, p, because the coin is mutilated.
Suppose also that before the coin is tossed 100 times, it is tossed 10 times to get an
estimate of the probability p. Suppose for the sake of argument 5 heads are observed.
Now the estimate of .5 of the probability of a head (in one toss) is uncertain.

We can create a confidence interval (CI) for p, and also for the mean 100p of the number
of heads in 100 tosses. The CI is an interval around the estimated mean, namely,
50=100*.5. The CI is not the same as a prediction interval for the outcome in 100 tosses.
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A prediction interval includes process variability and is wider than a confidence interval.
A confidence interval is for a parameter, which is a constant. A prediction interval is for a
random variable. [The loss reserve is a random variable].

Now, a 95% prediction interval for the number of heads in 100 tosses will be wider than
[40, 60], say, [35, 65]. This interval can only be reduced to at best [40, 60] by reducing
the parameter uncertainty through more (prior) sampling. But you cannot make a 95%
prediction interval narrower than [40, 60].

Consider another example with the same mean. A symmetric roulette wheel, numbered,
0, 1, 2, 3,....., 100 that is turned only once, and let X be the random variable that
represents the outcome. The mean of X is 50, SD is 29. There is no uncertainty about the
variability in the outcome X. The probability that X=50 is 1/101.

A 100% confidence interval for the mean is [50, 50] (just like the coin). A 95%
prediction interval for the outcome X is [2, 97], for example.

Each process (symmetric coin and symmetric roulette wheel) has the same mean, or if
you like the same "best estimate". Which one requires more capital?

So "best estimate" is pretty useless and a "range of estimates”, also pretty useless,
notwithstanding the fact that how do you know if an estimate is "best"?

In general, only in the presence of a probabilistic framework can you assess "best".
Indeed it is only in a probabilistic framework that you identify (build) a model that
represents the variability in the data.

Probabilistic Trend Family (PTF) of models described in the paper “Best Estimates
for Reserves”

In the PTF modeling framework a model is identified (built) that quantifies the variability
in the data.

Variability is decomposed into Trends + Process Variability. You cannot reduce process
variability. You can reduce parameter uncertainty (for the past) by having a larger
triangle or a related triangle so that you can do some credibility modeling. Future
variability on a log scale= parameter uncertainty + process variability.

In general, parameter uncertainty increases the length of a prediction interval,
alternatively, the skewness (both mean and coefficient of variation of the loss reserve
distribution). In the case of no parameter uncertainty the prediction distribution’s
skewness is determined by only the process variability inherent in the data that cannot be
reduced.
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Summary of Appendix F3

Appendix F3 is outputs from the model for Paid Losses adjusted by number of claims reported in
first Development year for Employers' Liability subclass "a". (Note Appendix F4 is based on a
different subclass of Employers' Liability data referred to as subclass "b".)

Appendix F3.2 provides the model displays

Appendices F3.3 and F3.4 give forecast distributions under two different future scenarios, based
on the volatility found in the data.

Appendix F3.5 summarises validation analysis based on removal of the last three Calendar years.
Whether a model validates well or not depends on the trend structure in the data.

Appendix F3.6 demonstrates that the fitted model captures accurately the volatility in the data.
Three triangles are simulated from the fitted model and are seen to be indistinguishable from the
real data. Moreover forecast distributions are the same.

Appendix F3.7 shows the relationship between the Paid Losses and the Case Reserve Estimates.
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Dataset: Employers Liability: Forecast Model: PTF-good1

The model display depicts the trends in the three directions plus the process variability about the trend structure.

Note that Weighted Std Residuals are normally distributed - see Normality display below
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Another scenario that can easily be considered is the 17.5%+-
2.3% at least for the next two years.

More importantly it would be important to investigate what
might have caused the huge drop from 2001-2002 and the
relatively constant trend from 1995-2001

Note that all forecasts distributions are conditional on an
explicit, easily interpretable set of assumptions. Two key
assumptions involve the future Calendar year trend volatility
and the process variability in the past data depicted by the
bottom right graph in the model display.

The volatility of the residuals (process variability) is an
integral part of the model.

Note that in respect of Calendar year trends, there is a huge
drop in respect of 2001/2002 and the more recent trend is
zero.

To assume that the trend will be zero for the next 20 years is
very optimistic. We call this scenario 1.

Scenario 2 assumes that the trend for the next six years is
7.16%+-0.78% and thereafter reduces to zero.
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Dataset: Employers Liability: Forecast Distributions Model: PTF-good1

Scenario 1: Inflation continues with zero trend
Reserve Forecast Table

Cal. Per. Total 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Reserve Ultimate
327,998 327,998 2,822,314 4,286,674 5,005,747 4,429,542 2,695,789 1,994,968 1,447,601 902,569 572,356 298,319 167,149 118,820 66,699 37,476 21,076 11,864 2,506 1,315 691 363 0 25,580,529
363,421 363,421 2,823,353 3,740,983 4,851,694 4,302,127 3,337,231 2,176,450 1,561,371 1,390,771 628,642 87,377 200,919 39,315 23,958 29,482 9,494 11,340 0 3,845 0 -1,245 0 0

3,137,155 314,841 2,709,078 4,114,650 4,804,828 4,251,711 3,082,343 2,282,197 1,389,616 866,408 549,417 307,566 172,337 122,512 68,775 38,644 21,734 4,588 2,405 1,262 663 348 348 23,570,729
3,165,803 342,451 2,787,749 3,771,543 4,460,001 4,101,358 2,822,690 2,145,689 1,196,979 827,302 537,642 372,893 48,850 -7,546 123,409 51,765 -13,445 215 0 237 600 487 487 487
7,323,749 327,998 2,822,314 4,286,674 5,005,747 5,276,625 3,826,934 2,377,407 1,447,601 902,569 614,748 344,160 192,853 137,106 76,972 43,252 9,126 4,780 2,506 1,315 691 363 1,054 26,164,111
6,900,955 372,223 2,597,547 4,597,842 4,439,529 4,171,869 4,073,713 2,327,095 1,894,814 807,301 428,835 165,943 100,930 94,769 1,811 88,567 269 0 0 0 951 507 1,103 1,103

12,304,967 362,256 3,117,370 4,735,250 6,584,540 6,941,315 4,224,345 2,624,591 1,598,294 1,070,395 729,103 408,206 228,757 162,641 91,313 19,252 10,076 5,278 2,767 1,452 763 401 2,616 32,732,389
11,547,134 326,349 3,172,571 5,176,011 5,379,296 6,387,889 4,521,772 2,811,563 1,323,411 1,445,179 311,985 562,611 405,192 31,637 434,136 433,892 7,580 2,729 -4,029 1,973 1,050 560 2,388 2,388
16,990,391 351,978 3,028,922 5,478,566 7,621,744 6,744,373 4,104,489 2,550,125 1,667,891 1,117,061 760,927 426,045 238,766 169,766 35,773 18,706 9,790 5,128 2,689 1,411 741 390 5,230 34,488,631
16,930,957 398,416 3,384,938 6,261,944 7,232,344 6,056,747 4,172,737 2,638,001 1,999,745 1,280,583 518,592 432,369 47,274 15,294 16,795 199 4,548 22,876 3,611 1,917 1,020 544 4,416 4,416
20,097,157 379,738 3,890,728 7,039,194 8,219,945 7,273,483 4,426,533 2,953,994 1,932,258 1,294,265 881,725 493,729 276,725 73,872 38,592 20,180 10,561 5,532 2,900 1,522 799 420 11,174 39,101,530
20,777,343 338,276 3,981,902 7,269,814 7,273,202 6,764,962 4,663,626 3,778,364 1,786,086 2,035,300 966,986 143,383 21,026 -117 20,750 28,458 18,336 7,353 3,896 2,069 1,101 587 8,988 8,988
26,697,014 389,243 3,989,913 6,059,969 7,076,465 6,261,666 4,093,134 2,731,640 1,786,901 1,196,962 815,477 456,656 96,124 63,595 33,224 17,372 9,092 4,763 2,497 1,310 688 362 18,712 33,795,441
25,151,751 357,601 3,930,777 6,254,476 7,270,856 5,543,963 4,385,023 2,271,060 2,163,980 1,131,551 314,255 -113,095 -18,502 267,189 15,518 2,076 11,973 6,330 3,354 1,781 948 505 14,566 14,566
33,503,376 354,477 3,050,078 4,632,526 5,409,584 5,141,467 3,361,048 2,243,179 1,467,447 983,024 669,757 140,906 73,482 48,615 25,398 13,280 6,950 3,641 1,909 1,002 526 277 27,585 27,187,447
33,007,909 406,312 3,485,198 4,787,544 6,016,700 4,772,276 3,259,134 1,978,110 1,388,877 645,655 305,919 90,952 22,476 12,200 -11,490 17,351 9,153 4,839 2,564 1,361 724 386 20,975 20,975
33,263,505 295,203 2,540,061 3,857,901 4,838,880 4,599,349 3,006,808 2,006,857 1,312,915 879,548 225,216 117,345 61,195 40,486 21,151 11,060 5,788 3,032 1,590 834 438 230 44,123 24,957,383
32,793,140 286,900 2,500,351 4,252,026 5,428,687 4,340,034 3,008,771 2,731,563 1,181,851 728,782 371,273 68,942 10,783 3,295 27,456 14,450 7,622 4,030 2,135 1,134 603 322 32,974 32,974
31,473,817 335,836 2,889,680 4,714,267 5,913,229 5,620,882 3,674,814 2,452,831 1,604,758 404,177 256,216 133,496 69,618 46,059 24,062 12,582 6,585 3,449 1,808 949 498 262 96,255 27,930,657
32,018,107 359,335 2,940,485 4,749,103 5,360,802 5,962,373 4,131,260 2,780,882 1,056,343 386,307 226,250 -15,475 -103,263 59,485 31,235 16,439 8,671 4,584 2,429 1,290 686 366 71,008 71,008
29,114,365 370,278 3,422,255 5,583,414 7,003,692 6,657,867 4,352,989 2,905,638 715,087 445,629 282,493 147,187 76,757 50,782 26,530 13,872 7,260 3,803 1,994 1,046 550 289 182,884 29,632,347
29,082,604 272,072 3,351,803 5,088,547 7,048,157 6,656,030 3,895,374 1,595,575 794,846 513,843 47,316 185,902 62,026 65,586 34,439 18,125 9,561 5,054 2,678 1,422 757 404 101,046 101,046
29,365,438 373,692 3,453,624 5,634,678 7,067,685 6,718,980 4,392,885 1,103,615 671,648 418,554 265,331 138,246 72,095 47,698 24,919 13,030 6,819 3,572 1,873 983 516 271 310,023 32,887,118
31,282,166 369,338 3,373,646 5,580,846 7,733,248 9,576,139 4,414,667 466,863 777,454 204,599 80,294 111,281 58,242 61,592 32,342 17,022 8,979 4,747 2,515 1,336 711 379 147,766 147,766
30,508,236 452,194 4,179,321 6,819,032 8,553,572 8,132,086 2,002,289 1,243,249 756,628 471,512 298,902 155,738 81,217 53,733 28,072 14,679 7,682 4,024 2,110 1,107 582 306 648,151 32,400,477
27,665,268 339,282 3,732,991 5,227,094 9,228,797 8,435,768 2,888,546 1,135,434 547,640 216,773 240,279 125,361 65,611 69,385 36,434 19,175 10,115 5,348 2,833 1,505 801 427 294,613 294,613
32,778,418 457,495 4,228,506 6,899,649 8,655,029 3,100,593 1,885,782 1,170,908 712,602 444,076 281,510 146,676 76,491 50,607 26,438 13,824 7,235 3,790 1,987 1,043 548 288 1,054,514 39,515,120
32,987,794 278,722 3,494,212 5,806,965 11,247,156 10,692,710 4,906,059 1,673,282 361,501 147,905 226,298 118,066 61,793 65,347 34,314 18,060 9,526 5,036 2,669 1,417 754 402 318,921 318,921
36,465,760 1,566,708 14,482,146 23,629,812 11,083,082 9,807,436 5,968,885 3,708,648 2,258,555 1,408,419 893,178 465,557 242,881 160,753 84,015 43,948 23,009 12,058 6,324 3,320 1,744 917 5,604,680 46,760,396
34,807,630 261,587 3,279,725 6,885,099 10,432,638 11,101,285 6,269,954 2,925,429 532,779 463,153 716,414 374,293 196,167 207,678 109,162 57,510 30,367 16,070 8,523 4,530 2,413 1,288 1,155,713 1,155,713
49,001,211 1,397,800 12,921,401 7,882,100 9,204,080 8,144,705 4,956,933 3,079,892 1,875,645 1,169,639 741,750 386,627 201,704 133,499 69,771 36,497 19,109 10,013 5,252 2,757 1,449 762 7,734,366 41,191,749
37,162,551 167,544 3,509,353 6,962,743 9,221,279 9,569,081 4,027,383 718,487 442,452 384,631 594,954 310,836 162,909 172,468 90,655 47,760 25,218 13,346 7,078 3,762 2,004 1,070 1,223,561 1,223,561
66,251,939 1,389,714 4,802,771 7,293,884 8,517,209 7,536,891 4,587,013 2,850,049 1,735,671 1,082,352 686,396 357,774 186,651 123,537 64,564 33,773 17,683 9,266 4,860 2,551 1,341 705 11,744,187 37,391,773
38,780,673 158,189 2,663,632 6,601,908 8,424,381 7,799,475 498,312 664,868 409,434 355,928 550,555 287,639 150,752 159,598 83,890 44,196 23,336 12,350 6,550 3,481 1,854 990 1,268,375 1,268,375
32,258,341 557,264 4,794,893 7,281,920 8,503,238 7,524,529 4,579,489 2,845,374 1,732,824 1,080,577 685,270 357,188 186,345 123,334 64,458 33,718 17,654 9,251 4,852 2,547 1,338 704 19,249,453 38,546,594
36,338,872 155,809 3,402,607 7,405,743 8,332,982 821,511 497,495 663,778 408,762 355,344 549,652 287,168 150,504 159,336 83,752 44,123 23,298 12,329 6,539 3,476 1,851 988 1,548,518 1,548,518
36,334,581 401,468 3,454,371 5,246,093 6,125,964 5,420,875 3,299,188 2,049,885 1,248,374 778,477 493,687 257,328 134,248 88,853 46,438 24,291 12,718 6,665 3,496 1,835 964 507 19,993,792 29,515,092
38,753,674 476,574 3,196,497 5,848,228 669,867 591,839 358,409 478,204 294,483 255,999 395,984 206,883 108,427 114,790 60,337 31,788 16,785 8,882 4,711 2,504 1,334 712 1,339,824 1,339,824
36,625,332 313,423 2,696,799 4,095,582 4,782,489 4,232,032 2,575,649 1,600,328 974,595 607,751 385,418 200,894 104,806 69,367 36,253 18,964 9,929 5,203 2,729 1,433 753 396 19,704,570 22,920,584
37,600,773 203,281 3,012,732 448,295 522,960 462,044 279,807 373,330 229,901 199,857 309,141 161,512 84,648 89,616 47,105 24,816 13,104 6,934 3,678 1,955 1,041 556 1,168,228 1,168,228
34,703,794 284,888 2,451,278 3,722,712 4,347,083 3,846,740 2,341,157 1,454,631 885,866 552,420 350,328 182,604 95,265 63,052 32,953 17,238 9,025 4,729 2,481 1,302 684 360 20,361,907 20,635,105
32,991,052 273,198 270,806 407,481 475,349 419,978 254,333 339,341 208,970 181,661 280,997 146,808 76,942 81,457 42,816 22,557 11,911 6,303 3,343 1,777 946 505 1,119,926 1,119,926

Total Fitted/Paid 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 Total Reserve Total Ultimate
598,526,543 31,181,087 25,252,076 18,851,459 12,677,799 7,692,458 4,668,475 2,777,393 1,633,673 940,569 509,561 280,703 159,942 83,535 43,601 22,373 11,337 5,581 2,562 1,080 360 106,795,624 666,905,202
560,109,578 1,751,257 1,534,726 1,457,655 1,198,589 976,256 859,996 641,822 492,459 397,906 233,529 146,915 105,717 56,116 29,878 15,888 8,435 4,441 2,275 1,127 505 4,607,172 4,607,172

Inside the table the blues are the observed, the black are means of log-normal distributions and the reds are the corresponding Std Devs of the log-normals.

Given that on the log-scale we have normal distributions in every cell about the trend structure, the corresponding distributions on the dollar scale are log-
normals (that are correlated via the parameter estimates).

The predictive log-normal distributions include parameter uncertainty and process variability.

1994

1995

1996

1989

1990

1 Unit = $1

2005

Cal. Per.
Total

2004

1997

1998

1999

2000

Accident Period vs Development Period

2001

2002

2003

1993

1991

1992

1985

1986

1987

1988
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Summaries by Year

Reserve Ultimate Reserve Ultimate
1985 0 25,580,529 0 **** 0 2006 31,181,087 1,751,257 0.06
1986 348 23,570,729 487 1.4 0 2007 25,252,076 1,534,726 0.06
1987 1,054 26,164,111 1,103 1.05 0 2008 18,851,459 1,457,655 0.08
1988 2,616 32,732,389 2,388 0.91 0 2009 12,677,799 1,198,589 0.09
1989 5,230 34,488,631 4,416 0.84 0 2010 7,692,458 976,256 0.13
1990 11,174 39,101,530 8,988 0.8 0 2011 4,668,475 859,996 0.18
1991 18,712 33,795,441 14,566 0.78 0 2012 2,777,393 641,822 0.23
1992 27,585 27,187,447 20,975 0.76 0 2013 1,633,673 492,459 0.3
1993 44,123 24,957,383 32,974 0.75 0 2014 940,569 397,906 0.42
1994 96,255 27,930,657 71,008 0.74 0 2015 509,561 233,529 0.46
1995 182,884 29,632,347 101,046 0.55 0 2016 280,703 146,915 0.52
1996 310,023 32,887,118 147,766 0.48 0 2017 159,942 105,717 0.66
1997 648,151 32,400,477 294,613 0.45 0.01 2018 83,535 56,116 0.67
1998 1,054,514 39,515,120 318,921 0.3 0.01 2019 43,601 29,878 0.69
1999 5,604,680 46,760,396 1,155,713 0.21 0.02 2020 22,373 15,888 0.71
2000 7,734,366 41,191,749 1,223,561 0.16 0.03 2021 11,337 8,435 0.74
2001 11,744,187 37,391,773 1,268,375 0.11 0.03 2022 5,581 4,441 0.8
2002 19,249,453 38,546,594 1,548,518 0.08 0.04 2023 2,562 2,275 0.89
2003 19,993,792 29,515,092 1,339,824 0.07 0.05 2024 1,080 1,127 1.04
2004 19,704,570 22,920,584 1,168,228 0.06 0.05 2025 360 505 1.4
2005 20,361,907 20,635,105 1,119,926 0.06 0.05

Total 106,795,624 4,607,172 0.04
Total 106,795,624 666,905,202 4,607,172 0.04 0.01

The sample quantiles (percentiles) below are based on 10,000 simulations of the forecast triangle.

Note that the distributions are slightly skewed.

However, note that the means and Std Devs of the distributions of aggregates are computed via the model using second order moments,

The Kernel is fitted to the sample frequency plot whereas the log-normal and gamma are just based on the means and std. devs. of the actual
forecast distributions.

In order to find distributions of aggregates by accident year, calendar year and total of all years, we simulate from the predictive log-normal
distributions of each cell, incorporating their correlations.

Standard
Dev.

Calendar Yr Summary
Calendar

Yr
Mean

Reserve
Standard

Dev.
CV

Reserve

Accident Yr Summary
Mean CV

Acc. Yr

1 Unit = $1
1 Unit = $1

We do this because there is no analytical form for the sum of log-normals.
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Below are the quantiles (percentiles) for the Aggregate Reserve Distribution predicted by the model.

Quantiles and VaR Mean = 106.796, S.D. = 4.607, Provision = 106.796, 1 Unit = $1,000,000

Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R
99.995 124.733 3.893 17.937 125.664 4.095 18.869 126.185 4.209 19.39 125.664 4.095 18.868
99.99 124.519 3.847 17.723 125.259 4.007 18.463 125.256 4.007 18.46 124.786 3.905 17.99
99.98 124.349 3.81 17.554 124.752 3.898 17.957 124.293 3.798 17.498 123.874 3.707 17.078
99.97 124.185 3.774 17.389 124.386 3.818 17.59 123.713 3.672 16.918 123.323 3.587 16.528
99.96 124.104 3.757 17.309 124.083 3.752 17.287 123.294 3.581 16.498 122.924 3.501 16.129
99.95 123.393 3.603 16.598 123.815 3.694 17.02 122.963 3.509 16.168 122.61 3.432 15.814
99.94 123.114 3.542 16.319 123.58 3.643 16.784 122.69 3.45 15.894 122.349 3.376 15.553
99.93 123.108 3.541 16.313 123.366 3.597 16.571 122.456 3.399 15.66 122.126 3.328 15.33
99.92 122.869 3.489 16.073 123.172 3.555 16.377 122.252 3.355 15.456 121.931 3.285 15.135
99.91 122.833 3.481 16.037 122.995 3.516 16.199 122.07 3.315 15.274 121.758 3.248 14.962
99.9 122.422 3.392 15.626 122.831 3.481 16.036 121.906 3.28 15.11 121.601 3.214 14.805
99.8 121.548 3.202 14.753 121.605 3.214 14.809 120.797 3.039 14.001 120.539 2.983 13.744
99.7 120.51 2.977 13.714 120.732 3.025 13.937 120.12 2.892 13.324 119.889 2.842 13.094
99.6 119.768 2.816 12.972 120.095 2.887 13.299 119.625 2.785 12.829 119.414 2.739 12.618
99.5 119.334 2.722 12.539 119.619 2.783 12.824 119.232 2.699 12.437 119.036 2.657 12.24
99.4 119.034 2.656 12.239 119.238 2.701 12.443 118.905 2.628 12.11 118.721 2.588 11.925
99.3 118.738 2.592 11.943 118.92 2.632 12.124 118.624 2.567 11.829 118.45 2.53 11.654
99.2 118.52 2.545 11.725 118.644 2.572 11.848 118.377 2.514 11.582 118.211 2.478 11.416
99.1 118.24 2.484 11.445 118.401 2.519 11.606 118.157 2.466 11.361 117.998 2.432 11.202
99 117.946 2.42 11.15 118.184 2.472 11.388 117.957 2.423 11.161 117.805 2.39 11.009
98 116.635 2.136 9.839 116.785 2.168 9.989 116.578 2.123 9.783 116.469 2.1 9.674
97 115.812 1.957 9.017 115.93 1.983 9.134 115.712 1.935 8.916 115.627 1.917 8.832
96 115.125 1.808 8.33 115.271 1.84 8.475 115.065 1.795 8.269 114.996 1.78 8.201
95 114.638 1.702 7.842 114.728 1.722 7.933 114.541 1.681 7.745 114.485 1.669 7.689
94 114.156 1.598 7.361 114.266 1.621 7.47 114.096 1.585 7.301 114.051 1.575 7.255
93 113.735 1.506 6.94 113.867 1.535 7.071 113.708 1.5 6.913 113.671 1.492 6.876
92 113.411 1.436 6.615 113.513 1.458 6.718 113.362 1.425 6.566 113.332 1.419 6.536
91 113.101 1.369 6.305 113.196 1.389 6.401 113.048 1.357 6.252 113.024 1.352 6.228
90 112.795 1.302 5.999 112.907 1.326 6.111 112.759 1.294 5.964 112.741 1.29 5.945
89 112.542 1.247 5.747 112.64 1.268 5.844 112.492 1.236 5.696 112.478 1.233 5.683
88 112.319 1.199 5.524 112.39 1.214 5.594 112.242 1.182 5.446 112.233 1.18 5.437
87 112.097 1.151 5.302 112.154 1.163 5.358 112.007 1.131 5.211 112.001 1.13 5.206
86 111.863 1.1 5.068 111.929 1.114 5.134 111.784 1.083 4.989 111.782 1.082 4.987
85 111.637 1.051 4.841 111.716 1.068 4.92 111.573 1.037 4.777 111.574 1.037 4.778
84 111.445 1.009 4.65 111.51 1.023 4.714 111.371 0.993 4.575 111.375 0.994 4.579
83 111.278 0.973 4.483 111.311 0.98 4.516 111.177 0.951 4.382 111.184 0.953 4.389
82 111.095 0.933 4.3 111.119 0.938 4.324 110.991 0.911 4.196 111.001 0.913 4.205
81 110.88 0.887 4.084 110.934 0.898 4.138 110.812 0.872 4.017 110.824 0.874 4.028
80 110.705 0.849 3.909 110.754 0.859 3.958 110.639 0.834 3.843 110.653 0.837 3.857
79 110.503 0.805 3.707 110.579 0.821 3.783 110.471 0.798 3.675 110.487 0.801 3.691
78 110.351 0.772 3.556 110.408 0.784 3.612 110.308 0.762 3.512 110.325 0.766 3.53
77 110.182 0.735 3.386 110.242 0.748 3.446 110.149 0.728 3.354 110.168 0.732 3.373
76 110.051 0.707 3.255 110.079 0.713 3.284 109.995 0.694 3.199 110.015 0.699 3.22
75 109.894 0.673 3.099 109.921 0.678 3.125 109.844 0.662 3.048 109.866 0.666 3.07
74 109.728 0.636 2.932 109.765 0.645 2.97 109.696 0.63 2.901 109.72 0.635 2.924
73 109.573 0.603 2.777 109.613 0.612 2.818 109.552 0.598 2.756 109.577 0.604 2.781
72 109.435 0.573 2.639 109.464 0.579 2.669 109.41 0.567 2.615 109.436 0.573 2.641
71 109.285 0.54 2.49 109.318 0.548 2.523 109.271 0.537 2.476 109.298 0.543 2.503
70 109.153 0.512 2.357 109.175 0.516 2.379 109.135 0.508 2.339 109.163 0.514 2.367

TABLE CONTINUED ON NEXT PAGE
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Appendix F3.3.4

Quantiles and VaR Mean = 106.796, S.D. = 4.607, Provision = 106.796, 1 Unit = $1,000,000

Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R
69 108.999 0.478 2.203 109.035 0.486 2.239 109 0.479 2.205 109.029 0.485 2.234
68 108.823 0.44 2.028 108.897 0.456 2.101 108.868 0.45 2.072 108.898 0.456 2.102
67 108.698 0.413 1.903 108.762 0.427 1.966 108.738 0.422 1.942 108.768 0.428 1.973
66 108.565 0.384 1.769 108.629 0.398 1.834 108.609 0.394 1.813 108.64 0.4 1.845
65 108.454 0.36 1.658 108.499 0.37 1.703 108.482 0.366 1.686 108.514 0.373 1.718
64 108.346 0.336 1.55 108.37 0.342 1.574 108.356 0.339 1.561 108.389 0.346 1.593
63 108.209 0.307 1.414 108.243 0.314 1.447 108.232 0.312 1.436 108.265 0.319 1.469
62 108.094 0.282 1.299 108.118 0.287 1.323 108.109 0.285 1.313 108.142 0.292 1.347
61 107.976 0.256 1.18 107.995 0.26 1.199 107.987 0.259 1.192 108.021 0.266 1.225
60 107.861 0.231 1.066 107.872 0.234 1.077 107.866 0.232 1.071 107.9 0.24 1.105
59 107.734 0.204 0.938 107.751 0.207 0.955 107.747 0.206 0.951 107.781 0.214 0.985
58 107.611 0.177 0.815 107.631 0.181 0.835 107.628 0.181 0.832 107.662 0.188 0.866
57 107.5 0.153 0.705 107.511 0.155 0.716 107.509 0.155 0.714 107.544 0.162 0.748
56 107.389 0.129 0.594 107.392 0.129 0.597 107.392 0.129 0.596 107.426 0.137 0.631
55 107.265 0.102 0.47 107.274 0.104 0.478 107.275 0.104 0.479 107.309 0.111 0.514
54 107.151 0.077 0.356 107.156 0.078 0.36 107.158 0.079 0.363 107.193 0.086 0.397
53 107.045 0.054 0.249 107.038 0.053 0.242 107.042 0.054 0.247 107.076 0.061 0.281
52 106.915 0.026 0.119 106.92 0.027 0.124 106.927 0.028 0.131 106.961 0.036 0.165
51 106.799 0.001 0.004 106.802 0.001 0.007 106.811 0.003 0.016 106.845 0.011 0.049
50 106.684 -0.024 -0.112 106.684 -0.024 -0.111 106.696 -0.022 -0.099 106.729 -0.014 -0.066

Quantile Statistics and Value at Risk (Acc Year: Total)
%

Sample Kernel LogNormal Gamma



Appendix F3.3.5

Below are qunatiles and VaR statistics for the next calendar year 2006

Note that the distributions here are more skewed than for the aggregate reserves.

Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R
99.95 37.521 3.62 6.34 37.663 3.701 6.482 37.447 3.578 6.265 37.268 3.476 6.087
99.9 37.109 3.385 5.928 37.222 3.449 6.041 37.028 3.339 5.847 36.874 3.251 5.693
99.8 36.577 3.081 5.396 36.739 3.174 5.558 36.59 3.089 5.409 36.461 3.015 5.28
99.7 36.371 2.964 5.19 36.464 3.017 5.283 36.323 2.936 5.142 36.208 2.871 5.027
99.6 36.185 2.857 5.004 36.264 2.902 5.083 36.129 2.825 4.948 36.023 2.765 4.842
99.5 36.114 2.817 4.933 36.102 2.81 4.921 35.975 2.737 4.794 35.877 2.681 4.695
99.4 35.846 2.664 4.665 35.967 2.733 4.785 35.846 2.664 4.665 35.754 2.611 4.573
99.3 35.771 2.621 4.59 35.851 2.666 4.67 35.736 2.601 4.555 35.649 2.551 4.468
99.2 35.678 2.568 4.497 35.749 2.608 4.567 35.639 2.546 4.458 35.557 2.499 4.376
99.1 35.523 2.48 4.342 35.659 2.557 4.478 35.553 2.496 4.372 35.474 2.451 4.293
99 35.492 2.462 4.311 35.579 2.511 4.397 35.475 2.452 4.293 35.399 2.409 4.218
98 34.968 2.163 3.787 35.015 2.189 3.834 34.936 2.144 3.755 34.882 2.113 3.701
97 34.596 1.95 3.415 34.653 1.982 3.472 34.599 1.951 3.417 34.557 1.928 3.376
96 34.338 1.803 3.157 34.39 1.832 3.209 34.347 1.808 3.166 34.314 1.789 3.133
95 34.143 1.691 2.962 34.182 1.714 3.001 34.143 1.691 2.962 34.116 1.676 2.935
94 33.964 1.589 2.783 34.01 1.615 2.829 33.971 1.593 2.79 33.949 1.581 2.768
93 33.82 1.507 2.639 33.859 1.529 2.678 33.821 1.507 2.64 33.803 1.497 2.622
92 33.683 1.428 2.501 33.724 1.452 2.543 33.687 1.431 2.506 33.673 1.423 2.491
91 33.578 1.368 2.396 33.601 1.382 2.42 33.565 1.361 2.384 33.554 1.355 2.373
90 33.464 1.304 2.283 33.486 1.316 2.305 33.454 1.298 2.273 33.445 1.293 2.264
89 33.366 1.247 2.185 33.378 1.254 2.197 33.351 1.239 2.17 33.345 1.235 2.163
88 33.256 1.185 2.074 33.277 1.197 2.096 33.254 1.184 2.073 33.25 1.182 2.069
87 33.134 1.115 1.953 33.181 1.142 2 33.164 1.132 1.983 33.162 1.131 1.98
86 33.052 1.068 1.871 33.092 1.091 1.911 33.078 1.083 1.897 33.078 1.083 1.896
85 32.975 1.024 1.794 33.007 1.042 1.826 32.996 1.037 1.815 32.998 1.037 1.817
84 32.888 0.975 1.707 32.926 0.996 1.745 32.919 0.992 1.738 32.921 0.994 1.74
83 32.819 0.935 1.638 32.85 0.953 1.669 32.844 0.95 1.663 32.848 0.952 1.667
82 32.749 0.895 1.568 32.777 0.911 1.596 32.773 0.909 1.592 32.778 0.912 1.597
81 32.681 0.857 1.5 32.707 0.871 1.526 32.704 0.87 1.523 32.71 0.873 1.529
80 32.619 0.821 1.438 32.639 0.833 1.458 32.637 0.832 1.456 32.645 0.836 1.464
79 32.562 0.789 1.381 32.574 0.796 1.393 32.573 0.795 1.392 32.581 0.799 1.4
78 32.485 0.745 1.304 32.511 0.76 1.33 32.51 0.759 1.329 32.519 0.764 1.338
77 32.423 0.709 1.242 32.45 0.725 1.269 32.45 0.724 1.268 32.459 0.73 1.278
76 32.367 0.677 1.186 32.391 0.691 1.21 32.39 0.69 1.209 32.401 0.697 1.22
75 32.308 0.643 1.127 32.333 0.658 1.152 32.332 0.657 1.151 32.344 0.664 1.163
74 32.255 0.613 1.074 32.277 0.626 1.096 32.276 0.625 1.095 32.288 0.632 1.107
73 32.204 0.584 1.023 32.221 0.594 1.04 32.221 0.594 1.04 32.233 0.601 1.052
72 32.149 0.553 0.968 32.167 0.563 0.986 32.166 0.563 0.985 32.18 0.57 0.998
71 32.106 0.528 0.925 32.114 0.533 0.933 32.113 0.532 0.932 32.127 0.54 0.946
70 32.056 0.5 0.875 32.062 0.503 0.88 32.061 0.503 0.88 32.075 0.511 0.894
69 32.004 0.47 0.823 32.01 0.473 0.829 32.01 0.473 0.829 32.024 0.481 0.843
68 31.958 0.443 0.777 31.959 0.444 0.778 31.959 0.444 0.778 31.974 0.453 0.793
67 31.91 0.416 0.729 31.909 0.415 0.728 31.909 0.416 0.728 31.925 0.425 0.744
66 31.85 0.382 0.669 31.859 0.387 0.678 31.86 0.388 0.679 31.876 0.397 0.695
65 31.8 0.354 0.619 31.81 0.359 0.629 31.812 0.36 0.631 31.828 0.369 0.646
64 31.747 0.323 0.566 31.762 0.332 0.581 31.764 0.333 0.583 31.78 0.342 0.599
63 31.701 0.297 0.52 31.714 0.304 0.533 31.716 0.306 0.535 31.733 0.315 0.552
62 31.648 0.267 0.467 31.666 0.277 0.485 31.67 0.279 0.488 31.686 0.288 0.505
61 31.607 0.243 0.426 31.62 0.25 0.439 31.623 0.252 0.442 31.64 0.262 0.459
60 31.558 0.215 0.377 31.574 0.224 0.392 31.577 0.226 0.396 31.594 0.236 0.413
59 31.508 0.187 0.327 31.528 0.198 0.347 31.531 0.2 0.35 31.548 0.21 0.367
58 31.473 0.167 0.292 31.482 0.172 0.301 31.486 0.174 0.305 31.503 0.184 0.322
57 31.43 0.142 0.249 31.437 0.146 0.256 31.441 0.148 0.26 31.458 0.158 0.277
56 31.39 0.119 0.209 31.393 0.121 0.212 31.396 0.123 0.215 31.413 0.133 0.232
55 31.351 0.097 0.17 31.348 0.096 0.167 31.352 0.098 0.171 31.369 0.107 0.188
54 31.313 0.075 0.132 31.304 0.07 0.123 31.308 0.072 0.126 31.324 0.082 0.143
53 31.263 0.047 0.082 31.26 0.045 0.079 31.263 0.047 0.082 31.28 0.057 0.099
52 31.213 0.019 0.032 31.216 0.02 0.035 31.22 0.022 0.038 31.236 0.031 0.055
51 31.174 -0.004 -0.007 31.172 -0.005 -0.009 31.176 -0.003 -0.005 31.192 0.006 0.011
50 31.128 -0.03 -0.053 31.128 -0.03 -0.053 31.132 -0.028 -0.049 31.148 -0.019 -0.033

Mean = 31.181, S.D. = 1.751, Provision = 31.181, 1 Unit = $1,000,000

Quantile Statistics and Value at Risk (Cal. Yr: 2006)
% Sample Kernel LogNormal Gamma



Appendix F3.4.1

Dataset: Employers Liability: Forecast Model: PTF-good1

Scenario 2: Inflation at 7.18%+-0.78% for 6 years then drops to zero.
Reserve Forecast Table

Cal. Per. Total 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Reserve Ultimate
327,998 327,998 2,822,314 4,286,674 5,005,747 4,429,542 2,695,789 1,994,968 1,447,601 902,569 572,356 298,319 167,149 118,820 66,699 37,476 21,076 11,864 2,506 1,315 691 363 0 25,580,529
363,421 363,421 2,823,353 3,740,983 4,851,694 4,302,127 3,337,231 2,176,450 1,561,371 1,390,771 628,642 87,377 200,919 39,315 23,958 29,482 9,494 11,340 0 3,845 0 -1,245 0 0

3,137,155 314,841 2,709,078 4,114,650 4,804,828 4,251,711 3,082,343 2,282,197 1,389,616 866,408 549,417 307,566 172,337 122,512 68,775 38,644 21,734 4,588 2,405 1,262 663 374 374 23,570,755
3,165,803 342,451 2,787,749 3,771,543 4,460,001 4,101,358 2,822,690 2,145,689 1,196,979 827,302 537,642 372,893 48,850 -7,546 123,409 51,765 -13,445 215 0 237 600 523 523 523
7,323,749 327,998 2,822,314 4,286,674 5,005,747 5,276,625 3,826,934 2,377,407 1,447,601 902,569 614,748 344,160 192,853 137,106 76,972 43,252 9,126 4,780 2,506 1,315 742 419 1,161 26,164,218
6,900,955 372,223 2,597,547 4,597,842 4,439,529 4,171,869 4,073,713 2,327,095 1,894,814 807,301 428,835 165,943 100,930 94,769 1,811 88,567 269 0 0 0 1,021 585 1,206 1,206

12,304,967 362,256 3,117,370 4,735,250 6,584,540 6,941,315 4,224,345 2,624,591 1,598,294 1,070,395 729,103 408,206 228,757 162,641 91,313 19,252 10,076 5,278 2,767 1,560 880 497 2,937 32,732,711
11,547,134 326,349 3,172,571 5,176,011 5,379,296 6,387,889 4,521,772 2,811,563 1,323,411 1,445,179 311,985 562,611 405,192 31,637 434,136 433,892 7,580 2,729 -4,029 2,120 1,212 695 2,637 2,637
16,990,391 351,978 3,028,922 5,478,566 7,621,744 6,744,373 4,104,489 2,550,125 1,667,891 1,117,061 760,927 426,045 238,766 169,766 35,773 18,706 9,790 5,128 2,888 1,628 919 519 5,954 34,489,355
16,930,957 398,416 3,384,938 6,261,944 7,232,344 6,056,747 4,172,737 2,638,001 1,999,745 1,280,583 518,592 432,369 47,274 15,294 16,795 199 4,548 22,876 3,879 2,213 1,266 725 4,903 4,903
20,097,157 379,738 3,890,728 7,039,194 8,219,945 7,273,483 4,426,533 2,953,994 1,932,258 1,294,265 881,725 493,729 276,725 73,872 38,592 20,180 10,561 5,943 3,347 1,887 1,065 602 12,844 39,103,200
20,777,343 338,276 3,981,902 7,269,814 7,273,202 6,764,962 4,663,626 3,778,364 1,786,086 2,035,300 966,986 143,383 21,026 -117 20,750 28,458 18,336 7,899 4,497 2,566 1,468 841 10,003 10,003
26,697,014 389,243 3,989,913 6,059,969 7,076,465 6,261,666 4,093,134 2,731,640 1,786,901 1,196,962 815,477 456,656 96,124 63,595 33,224 17,372 9,767 5,497 3,096 1,746 985 557 21,647 33,798,376
25,151,751 357,601 3,930,777 6,254,476 7,270,856 5,543,963 4,385,023 2,271,060 2,163,980 1,131,551 314,255 -113,095 -18,502 267,189 15,518 2,076 12,863 7,307 4,160 2,374 1,358 779 16,221 16,221
33,503,376 354,477 3,050,078 4,632,526 5,409,584 5,141,467 3,361,048 2,243,179 1,467,447 983,024 669,757 140,906 73,482 48,615 25,398 14,266 8,021 4,514 2,543 1,434 809 425 32,014 27,191,877
33,007,909 406,312 3,485,198 4,787,544 6,016,700 4,772,276 3,259,134 1,978,110 1,388,877 645,655 305,919 90,952 22,476 12,200 -11,490 18,641 10,565 6,002 3,418 1,951 1,116 595 23,349 23,349
33,263,505 295,203 2,540,061 3,857,901 4,838,880 4,599,349 3,006,808 2,006,857 1,312,915 879,548 225,216 117,345 61,195 40,486 22,722 12,764 7,177 4,039 2,276 1,283 674 354 51,289 24,964,549
32,793,140 286,900 2,500,351 4,252,026 5,428,687 4,340,034 3,008,771 2,731,563 1,181,851 728,782 371,273 68,942 10,783 3,295 29,496 16,680 9,455 5,373 3,060 1,747 930 496 36,675 36,675
31,473,817 335,836 2,889,680 4,714,267 5,913,229 5,620,882 3,674,814 2,452,831 1,604,758 404,177 256,216 133,496 69,618 49,479 27,770 15,601 8,773 4,938 2,782 1,460 767 403 111,973 27,946,374
32,018,107 359,335 2,940,485 4,749,103 5,360,802 5,962,373 4,131,260 2,780,882 1,056,343 386,307 226,250 -15,475 -103,263 63,905 36,056 20,392 11,561 6,571 3,743 1,987 1,058 564 78,900 78,900
29,114,365 370,278 3,422,255 5,583,414 7,003,692 6,657,867 4,352,989 2,905,638 715,087 445,629 282,493 147,187 82,457 58,608 32,896 18,482 10,393 5,850 3,067 1,610 845 444 214,653 29,664,117
29,082,604 272,072 3,351,803 5,088,547 7,048,157 6,656,030 3,895,374 1,595,575 794,846 513,843 47,316 185,902 66,637 75,707 42,721 24,166 13,703 7,789 4,127 2,191 1,166 622 116,174 116,174
29,365,438 373,692 3,453,624 5,634,678 7,067,685 6,718,980 4,392,885 1,103,615 671,648 418,554 265,331 148,512 83,205 59,144 33,199 18,653 10,490 5,495 2,881 1,512 794 417 364,303 32,941,398
31,282,166 369,338 3,373,646 5,580,846 7,733,248 9,576,139 4,414,667 466,863 777,454 204,599 80,294 119,554 67,238 76,404 43,122 24,397 13,836 7,315 3,876 2,058 1,095 584 169,269 169,269
30,508,236 452,194 4,179,321 6,819,032 8,553,572 8,132,086 2,002,289 1,243,249 756,628 471,512 321,098 179,737 100,705 71,587 40,186 22,580 11,818 6,190 3,246 1,703 895 470 760,216 32,512,542
27,665,268 339,282 3,732,991 5,227,094 9,228,797 8,435,768 2,888,546 1,135,434 547,640 216,773 258,142 144,724 81,411 92,511 52,220 29,549 15,587 8,240 4,366 2,318 1,234 658 332,390 332,390
32,778,418 457,495 4,228,506 6,899,649 8,655,029 3,100,593 1,885,782 1,170,908 712,602 477,052 324,891 181,872 101,907 72,446 40,671 21,266 11,130 5,830 3,057 1,604 842 443 1,243,012 39,703,619
32,987,794 278,722 3,494,212 5,806,965 11,247,156 10,692,710 4,906,059 1,673,282 361,501 158,936 261,252 146,499 82,427 93,662 52,878 27,830 14,680 7,761 4,112 2,184 1,162 620 377,154 377,154
36,465,760 1,566,708 14,482,146 23,629,812 11,083,082 9,807,436 5,968,885 3,708,648 2,426,272 1,625,458 1,107,499 620,249 347,698 247,291 129,242 67,606 35,396 18,549 9,729 5,107 2,684 1,411 6,644,190 47,799,907
34,807,630 261,587 3,279,725 6,885,099 10,432,638 11,101,285 6,269,954 2,925,429 572,672 535,192 888,941 499,279 281,364 320,036 168,220 88,623 46,794 24,763 13,133 6,981 3,718 1,985 1,420,868 1,420,868
49,001,211 1,397,800 12,921,401 7,882,100 9,204,080 8,144,705 4,956,933 3,308,599 2,164,683 1,450,298 988,214 553,478 310,286 205,366 107,331 56,144 29,395 15,404 8,079 4,241 2,229 1,172 9,204,920 42,662,303
37,162,551 167,544 3,509,353 6,962,743 9,221,279 9,569,081 4,027,383 772,295 511,812 478,261 793,627 445,841 251,302 265,778 139,700 73,598 38,861 20,565 10,907 5,797 3,088 1,648 1,512,375 1,512,375
66,251,939 1,389,714 4,802,771 7,293,884 8,517,209 7,536,891 4,927,636 3,289,244 2,152,151 1,441,989 982,613 550,374 287,131 190,040 99,321 51,954 27,201 14,254 7,476 3,925 2,062 1,085 14,028,458 39,676,043
38,780,673 158,189 2,663,632 6,601,908 8,424,381 7,799,475 536,710 769,132 510,309 476,553 789,680 443,717 232,548 245,943 129,275 68,105 35,961 19,030 10,093 5,365 2,857 1,525 1,636,505 1,636,505
32,258,341 557,264 4,794,893 7,281,920 8,503,238 8,083,287 5,285,193 3,528,131 2,308,596 1,546,904 1,054,169 549,471 286,660 189,728 99,158 51,869 27,157 14,231 7,464 3,918 2,059 1,083 23,039,079 42,336,220
36,338,872 155,809 3,402,607 7,405,743 8,332,982 884,791 580,119 827,409 549,591 512,646 847,908 442,990 232,167 245,540 129,063 67,994 35,902 18,999 10,076 5,356 2,853 1,523 2,022,154 2,022,154
36,334,581 401,468 3,454,371 5,246,093 6,580,867 6,256,237 4,090,840 2,731,007 1,787,114 1,197,552 759,452 395,854 206,517 136,685 71,436 37,368 19,565 10,252 5,377 2,823 1,483 780 24,291,210 33,812,510
38,753,674 476,574 3,196,497 5,848,228 721,461 690,062 454,725 643,081 427,612 398,210 610,856 319,142 167,259 176,894 92,980 48,984 25,865 13,687 7,259 3,858 2,055 1,097 1,780,645 1,780,645
36,625,332 313,423 2,696,799 4,399,712 5,519,476 5,247,523 3,431,468 2,290,956 1,499,245 934,919 592,898 309,040 161,226 106,709 55,770 29,173 15,274 8,004 4,198 2,204 1,158 609 24,609,562 27,825,576
37,600,773 203,281 3,012,732 482,820 609,733 586,081 388,030 542,265 360,943 310,879 476,890 249,151 130,578 138,099 72,589 38,242 20,192 10,686 5,667 3,012 1,604 856 1,631,864 1,631,864
34,703,794 284,888 2,633,305 4,296,386 5,390,180 5,124,909 3,351,493 2,237,698 1,362,751 849,802 538,919 280,904 146,548 96,994 50,692 26,517 13,883 7,275 3,816 2,003 1,053 554 26,415,683 26,688,881
32,991,052 273,198 291,649 475,084 602,916 582,197 387,120 532,990 328,082 282,576 433,473 226,468 118,690 125,527 65,980 34,760 18,354 9,713 5,151 2,738 1,458 778 1,687,389 1,687,389

Total Fitted/Paid 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 Total Reserve Total Ultimate
598,526,543 33,496,540 29,143,446 23,374,930 16,890,292 11,012,169 7,181,639 4,272,538 2,513,123 1,446,903 783,871 431,813 246,042 128,505 67,072 34,417 17,440 8,586 3,941 1,662 554 131,055,481 691,165,059
560,109,578 1,899,416 1,828,862 1,888,870 1,682,334 1,463,129 1,366,430 1,008,458 767,469 616,515 361,506 227,152 163,213 86,629 46,120 24,521 13,015 6,851 3,508 1,737 778 6,580,520 6,580,520

1 Unit = $1

2004

1997

1998

1999

2000

1996

1989

1990

1985

1986

1987

1988

1991

1992

2005

Cal. Per.
Total

Accident Period vs Development Period

2001

2002

2003

1993

1994

1995

Inside the table the blues are the observed, the black are means of log-normal distributions and the reds are the corresponding Std Devs of the log-
normals.

Given that on the log-scale we have normal distributions in every cell about the trend structure, the corresponding distributions on the dollar scale
are log-normals (that are correlated via the parameter estimates).

The predictive log-normal distributions include parameter uncertainty and process variability.
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Summaries by Year

Reserve Ultimate Reserve Ultimate
1985 0 25,580,529 0 **** 0 2006 33,496,540 1,899,416 0.06
1986 374 23,570,755 523 1.4 0 2007 29,143,446 1,828,862 0.06
1987 1,161 26,164,218 1,206 1.04 0 2008 23,374,930 1,888,870 0.08
1988 2,937 32,732,711 2,637 0.9 0 2009 16,890,292 1,682,334 0.1
1989 5,954 34,489,355 4,903 0.82 0 2010 11,012,169 1,463,129 0.13
1990 12,844 39,103,200 10,003 0.78 0 2011 7,181,639 1,366,430 0.19
1991 21,647 33,798,376 16,221 0.75 0 2012 4,272,538 1,008,458 0.24
1992 32,014 27,191,877 23,349 0.73 0 2013 2,513,123 767,469 0.31
1993 51,289 24,964,549 36,675 0.72 0 2014 1,446,903 616,515 0.43
1994 111,973 27,946,374 78,900 0.7 0 2015 783,871 361,506 0.46
1995 214,653 29,664,117 116,174 0.54 0 2016 431,813 227,152 0.53
1996 364,303 32,941,398 169,269 0.46 0.01 2017 246,042 163,213 0.66
1997 760,216 32,512,542 332,390 0.44 0.01 2018 128,505 86,629 0.67
1998 1,243,012 39,703,619 377,154 0.3 0.01 2019 67,072 46,120 0.69
1999 6,644,190 47,799,907 1,420,868 0.21 0.03 2020 34,417 24,521 0.71
2000 9,204,920 42,662,303 1,512,375 0.16 0.04 2021 17,440 13,015 0.75
2001 14,028,458 39,676,043 1,636,505 0.12 0.04 2022 8,586 6,851 0.8
2002 23,039,079 42,336,220 2,022,154 0.09 0.05 2023 3,941 3,508 0.89
2003 24,291,210 33,812,510 1,780,645 0.07 0.05 2024 1,662 1,737 1.05
2004 24,609,562 27,825,576 1,631,864 0.07 0.06 2025 554 778 1.41
2005 26,415,683 26,688,881 1,687,389 0.06 0.06

Total 131,055,481 6,580,520 0.05
Total 131,055,481 691,165,059 6,580,520 0.05 0.01

We do this because there is no analytical form for the sum of log-normals.

Note that the distributions are slightly skewed.

1 Unit = $1

Calendar Yr Summary
Calendar Yr

Mean
Reserve

Standard
Dev.

CV
Reserve

1 Unit = $1

Accident Yr Summary
Acc. Yr

In order to find distributions of aggregates by accident year, calendar year and total of all years, we simulate from the predictive log-normal
distributions of each cell, incorporating their correlations.

Standard Dev.
CVMean

However, note that the means and Std Devs of the distributions of aggregates are computed via the model using second order moments, including
covariances.

The sample quantiles (percentiles) below are based on 10,000 simulations of the forecast triangle.

The Kernel is fitted to the sample frequency plot whereas the log-normal and gamma are just based on the means and std. devs. of the actual
forecast distributions.
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Below are the quantiles (percentiles) for the Aggregate Reserve Distribution predicted by the model.

Quantiles and VaR Mean = 131.055, S.D. = 6.581, Provision = 131.055, 1 Unit = $1,000,000

Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R
99.995 159.428 4.312 28.372 161.013 4.552 29.957 159.11 4.263 28.054 158.228 4.129 27.173
99.99 157.901 4.08 26.846 159.712 4.355 28.657 157.746 4.056 26.691 156.953 3.935 25.897
99.98 157.823 4.068 26.768 158.143 4.116 27.087 156.337 3.842 25.281 155.63 3.734 24.574
99.97 156.612 3.884 25.557 157.161 3.967 26.106 155.488 3.713 24.433 154.831 3.613 23.776
99.96 155.929 3.78 24.873 156.376 3.848 25.32 154.875 3.62 23.819 154.253 3.525 23.197
99.95 154.8 3.608 23.745 155.73 3.75 24.674 154.392 3.546 23.336 153.797 3.456 22.741
99.94 154.564 3.572 23.508 155.205 3.67 24.149 153.992 3.486 22.937 153.419 3.398 22.364
99.93 154.201 3.517 23.146 154.774 3.604 23.719 153.651 3.434 22.595 153.096 3.349 22.041
99.92 153.971 3.482 22.915 154.424 3.551 23.368 153.352 3.388 22.297 152.814 3.306 21.758
99.91 153.801 3.456 22.745 154.124 3.506 23.068 153.087 3.348 22.032 152.562 3.268 21.507
99.9 153.21 3.367 22.155 153.864 3.466 22.808 152.848 3.312 21.793 152.336 3.234 21.28
99.8 151.838 3.158 20.783 152.276 3.225 21.22 151.231 3.066 20.175 150.799 3 19.743
99.7 151.185 3.059 20.13 151.336 3.082 20.28 150.245 2.916 19.189 149.859 2.857 18.804
99.6 150.313 2.926 19.258 150.614 2.972 19.558 149.525 2.807 18.469 149.172 2.753 18.116
99.5 149.797 2.848 18.742 150.014 2.881 18.959 148.954 2.72 17.899 148.626 2.67 17.57
99.4 149.328 2.777 18.272 149.494 2.802 18.439 148.479 2.648 17.423 148.171 2.601 17.115
99.3 148.859 2.706 17.804 149.035 2.732 17.98 148.071 2.586 17.015 147.779 2.541 16.724
99.2 148.435 2.641 17.379 148.624 2.67 17.568 147.712 2.531 16.656 147.435 2.489 16.379
99.1 148.155 2.598 17.099 148.256 2.614 17.201 147.391 2.482 16.336 147.127 2.442 16.072
99 147.576 2.511 16.521 147.92 2.563 16.864 147.101 2.438 16.046 146.848 2.4 15.793
98 145.333 2.17 14.277 145.675 2.222 14.619 145.103 2.135 14.047 144.922 2.107 13.866
97 144.227 2.002 13.171 144.376 2.024 13.321 143.849 1.944 12.793 143.708 1.923 12.653
96 143.289 1.859 12.234 143.407 1.877 12.351 142.912 1.802 11.857 142.8 1.785 11.745
95 142.514 1.741 11.459 142.587 1.752 11.532 142.155 1.687 11.1 142.064 1.673 11.009
94 141.726 1.621 10.67 141.869 1.643 10.814 141.514 1.589 10.458 141.44 1.578 10.384
93 141.096 1.526 10.04 141.237 1.547 10.182 140.954 1.504 9.898 140.893 1.495 9.838
92 140.536 1.441 9.481 140.682 1.463 9.626 140.454 1.428 9.399 140.406 1.421 9.35
91 139.982 1.356 8.926 140.186 1.387 9.13 140.001 1.359 8.946 139.963 1.354 8.907
90 139.6 1.299 8.545 139.739 1.32 8.683 139.586 1.296 8.53 139.556 1.292 8.501
89 139.137 1.228 8.082 139.33 1.257 8.275 139.201 1.238 8.145 139.179 1.234 8.124
88 138.795 1.176 7.74 138.954 1.2 7.899 138.841 1.183 7.785 138.826 1.181 7.771
87 138.494 1.13 7.438 138.602 1.147 7.547 138.502 1.132 7.447 138.494 1.13 7.439
86 138.193 1.085 7.138 138.271 1.096 7.215 138.182 1.083 7.127 138.18 1.083 7.125
85 137.906 1.041 6.85 137.956 1.049 6.9 137.878 1.037 6.823 137.881 1.037 6.826
84 137.608 0.996 6.552 137.656 1.003 6.6 137.588 0.993 6.532 137.596 0.994 6.54
83 137.279 0.946 6.223 137.369 0.959 6.314 137.31 0.95 6.254 137.322 0.952 6.266
82 136.964 0.898 5.908 137.094 0.918 6.039 137.042 0.91 5.987 137.059 0.912 6.003
81 136.682 0.855 5.626 136.83 0.877 5.774 136.785 0.871 5.729 136.805 0.874 5.749
80 136.44 0.818 5.385 136.575 0.839 5.52 136.536 0.833 5.48 136.559 0.836 5.504
79 136.213 0.784 5.158 136.329 0.801 5.274 136.295 0.796 5.239 136.321 0.8 5.266
78 135.997 0.751 4.942 136.091 0.765 5.036 136.06 0.761 5.005 136.09 0.765 5.035
77 135.809 0.722 4.754 135.86 0.73 4.804 135.833 0.726 4.777 135.865 0.731 4.81
76 135.6 0.691 4.544 135.635 0.696 4.579 135.611 0.692 4.555 135.646 0.698 4.591
75 135.392 0.659 4.337 135.415 0.662 4.359 135.394 0.659 4.339 135.432 0.665 4.376
74 135.172 0.626 4.117 135.199 0.63 4.144 135.183 0.627 4.127 135.223 0.633 4.167
73 134.958 0.593 3.903 134.988 0.598 3.933 134.976 0.596 3.92 135.017 0.602 3.962
72 134.722 0.557 3.666 134.781 0.566 3.726 134.773 0.565 3.717 134.816 0.572 3.761
71 134.52 0.526 3.464 134.577 0.535 3.522 134.574 0.535 3.518 134.619 0.542 3.563
70 134.325 0.497 3.269 134.377 0.505 3.322 134.378 0.505 3.322 134.425 0.512 3.369

TABLE CONTINUES ON NEXT PAGE

Quantile Statistics and Value at Risk (Acc Year: Total)
%

Sample Kernel LogNormal Gamma
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Quantiles and VaR Mean = 131.055, S.D. = 6.581, Provision = 131.055, 1 Unit = $1,000,000

Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R
69 134.136 0.468 3.081 134.18 0.475 3.125 134.185 0.476 3.13 134.234 0.483 3.178
68 133.936 0.438 2.881 133.986 0.445 2.931 133.996 0.447 2.94 134.046 0.454 2.99
67 133.714 0.404 2.659 133.795 0.416 2.739 133.809 0.418 2.754 133.86 0.426 2.805
66 133.545 0.378 2.49 133.607 0.388 2.551 133.625 0.39 2.569 133.677 0.398 2.622
65 133.378 0.353 2.323 133.421 0.36 2.366 133.443 0.363 2.388 133.496 0.371 2.441
64 133.19 0.324 2.134 133.238 0.332 2.183 133.263 0.336 2.208 133.317 0.344 2.262
63 133.005 0.296 1.949 133.057 0.304 2.001 133.086 0.308 2.03 133.14 0.317 2.085
62 132.847 0.272 1.792 132.877 0.277 1.822 132.91 0.282 1.854 132.965 0.29 1.909
61 132.69 0.248 1.635 132.7 0.25 1.645 132.735 0.255 1.68 132.791 0.264 1.736
60 132.544 0.226 1.488 132.524 0.223 1.469 132.562 0.229 1.507 132.619 0.238 1.563
59 132.366 0.199 1.311 132.35 0.197 1.294 132.391 0.203 1.336 132.448 0.212 1.392
58 132.187 0.172 1.132 132.176 0.17 1.121 132.221 0.177 1.165 132.278 0.186 1.222
57 131.993 0.142 0.938 132.004 0.144 0.949 132.052 0.151 0.996 132.109 0.16 1.053
56 131.796 0.112 0.74 131.833 0.118 0.778 131.884 0.126 0.828 131.941 0.135 0.885
55 131.635 0.088 0.58 131.663 0.092 0.608 131.717 0.1 0.661 131.774 0.109 0.718
54 131.447 0.059 0.391 131.495 0.067 0.439 131.55 0.075 0.495 131.607 0.084 0.552
53 131.296 0.037 0.241 131.327 0.041 0.271 131.385 0.05 0.329 131.441 0.059 0.386
52 131.136 0.012 0.08 131.16 0.016 0.105 131.22 0.025 0.164 131.276 0.033 0.22
51 130.99 -0.01 -0.065 130.995 -0.009 -0.061 131.055 0 -0.001 131.11 0.008 0.055
50 130.836 -0.033 -0.219 130.83 -0.034 -0.226 130.891 -0.025 -0.165 130.945 -0.017 -0.11

Quantile Statistics and Value at Risk (Acc Year: Total)
%

Sample Kernel LogNormal Gamma
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Below are quantiles and VaR statistics for the next calendar year 2006

Note that the distributions here are more skewed than for the aggregate reserves.

Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R
99.95 40.089 3.471 6.592 40.21 3.535 6.714 40.297 3.581 6.801 40.101 3.477 6.605
99.9 39.58 3.203 6.084 39.814 3.326 6.317 39.843 3.341 6.346 39.674 3.252 6.178
99.8 39.291 3.05 5.794 39.437 3.128 5.941 39.367 3.091 5.871 39.225 3.016 5.729
99.7 39.12 2.96 5.623 39.207 3.007 5.711 39.077 2.938 5.581 38.951 2.872 5.455
99.6 38.984 2.889 5.488 39.029 2.913 5.533 38.866 2.827 5.37 38.75 2.766 5.254
99.5 38.816 2.801 5.32 38.879 2.834 5.383 38.699 2.739 5.202 38.591 2.682 5.095
99.4 38.683 2.731 5.186 38.747 2.764 5.251 38.559 2.665 5.063 38.458 2.612 4.962
99.3 38.567 2.67 5.071 38.629 2.702 5.133 38.44 2.602 4.943 38.344 2.552 4.848
99.2 38.445 2.605 4.949 38.522 2.646 5.026 38.334 2.547 4.838 38.244 2.499 4.747
99.1 38.346 2.553 4.849 38.424 2.594 4.928 38.241 2.498 4.744 38.154 2.452 4.658
99 38.276 2.516 4.78 38.335 2.548 4.839 38.156 2.453 4.659 38.073 2.409 4.576
98 37.607 2.164 4.111 37.697 2.212 4.201 37.571 2.145 4.074 37.512 2.114 4.015
97 37.234 1.967 3.737 37.284 1.994 3.788 37.204 1.952 3.708 37.159 1.928 3.662
96 36.924 1.804 3.427 36.978 1.833 3.482 36.931 1.808 3.434 36.895 1.789 3.398
95 36.672 1.672 3.175 36.739 1.707 3.242 36.71 1.692 3.214 36.681 1.676 3.184
94 36.486 1.574 2.99 36.543 1.604 3.046 36.523 1.593 3.027 36.499 1.581 3.003
93 36.312 1.482 2.815 36.376 1.516 2.879 36.36 1.508 2.864 36.341 1.497 2.844
92 36.182 1.414 2.686 36.229 1.439 2.733 36.215 1.431 2.718 36.199 1.423 2.703
91 36.069 1.355 2.573 36.098 1.369 2.601 36.083 1.362 2.586 36.071 1.355 2.574
90 35.933 1.283 2.436 35.978 1.306 2.481 35.962 1.298 2.465 35.953 1.293 2.456
89 35.824 1.225 2.328 35.866 1.247 2.369 35.85 1.239 2.353 35.843 1.235 2.347
88 35.728 1.175 2.231 35.762 1.193 2.265 35.745 1.184 2.249 35.741 1.182 2.244
87 35.633 1.125 2.137 35.663 1.141 2.167 35.647 1.132 2.15 35.645 1.131 2.148
86 35.539 1.076 2.043 35.57 1.092 2.074 35.554 1.083 2.057 35.553 1.083 2.057
85 35.461 1.034 1.964 35.481 1.045 1.985 35.466 1.037 1.969 35.467 1.037 1.97
84 35.372 0.987 1.875 35.396 1 1.9 35.381 0.992 1.885 35.384 0.994 1.887
83 35.289 0.944 1.793 35.314 0.957 1.818 35.3 0.95 1.804 35.305 0.952 1.808
82 35.205 0.899 1.708 35.236 0.916 1.739 35.223 0.909 1.726 35.228 0.912 1.732
81 35.139 0.865 1.642 35.16 0.876 1.663 35.148 0.87 1.652 35.155 0.873 1.658
80 35.067 0.827 1.57 35.086 0.837 1.59 35.076 0.831 1.579 35.084 0.836 1.587
79 34.989 0.786 1.492 35.015 0.799 1.519 35.006 0.795 1.509 35.015 0.799 1.518
78 34.92 0.749 1.424 34.946 0.763 1.45 34.938 0.759 1.442 34.948 0.764 1.451
77 34.867 0.721 1.37 34.879 0.728 1.382 34.872 0.724 1.376 34.883 0.73 1.386
76 34.804 0.688 1.307 34.814 0.693 1.317 34.808 0.69 1.311 34.819 0.696 1.323
75 34.722 0.645 1.225 34.75 0.66 1.254 34.745 0.657 1.248 34.757 0.664 1.261
74 34.663 0.614 1.166 34.688 0.627 1.192 34.684 0.625 1.187 34.697 0.632 1.2
73 34.603 0.582 1.106 34.627 0.595 1.131 34.624 0.593 1.127 34.637 0.601 1.141
72 34.557 0.558 1.06 34.568 0.564 1.072 34.565 0.562 1.068 34.579 0.57 1.083
71 34.501 0.529 1.004 34.51 0.534 1.013 34.507 0.532 1.011 34.522 0.54 1.026
70 34.438 0.496 0.942 34.453 0.503 0.956 34.451 0.502 0.954 34.466 0.51 0.969
69 34.376 0.463 0.879 34.397 0.474 0.9 34.395 0.473 0.898 34.411 0.481 0.914
68 34.322 0.434 0.825 34.341 0.445 0.845 34.34 0.444 0.844 34.356 0.453 0.86
67 34.274 0.409 0.777 34.287 0.416 0.791 34.286 0.416 0.789 34.303 0.424 0.806
66 34.222 0.382 0.725 34.234 0.388 0.737 34.233 0.388 0.736 34.25 0.397 0.753
65 34.173 0.356 0.676 34.181 0.36 0.684 34.18 0.36 0.684 34.197 0.369 0.701
64 34.125 0.331 0.628 34.129 0.333 0.632 34.128 0.333 0.632 34.146 0.342 0.649
63 34.07 0.302 0.574 34.077 0.306 0.58 34.077 0.305 0.58 34.095 0.315 0.598
62 34.02 0.275 0.523 34.026 0.279 0.529 34.026 0.279 0.529 34.044 0.288 0.547
61 33.963 0.245 0.466 33.975 0.252 0.479 33.975 0.252 0.479 33.994 0.262 0.497
60 33.907 0.216 0.41 33.925 0.226 0.428 33.926 0.226 0.429 33.944 0.236 0.447
59 33.868 0.195 0.371 33.875 0.199 0.379 33.876 0.2 0.379 33.894 0.209 0.398
58 33.827 0.174 0.33 33.826 0.173 0.329 33.827 0.174 0.33 33.845 0.184 0.349
57 33.78 0.149 0.284 33.776 0.147 0.28 33.778 0.148 0.281 33.797 0.158 0.3
56 33.722 0.119 0.225 33.727 0.122 0.231 33.73 0.123 0.233 33.748 0.132 0.251
55 33.678 0.095 0.181 33.679 0.096 0.182 33.681 0.097 0.185 33.7 0.107 0.203
54 33.633 0.072 0.137 33.63 0.07 0.134 33.633 0.072 0.137 33.652 0.082 0.155
53 33.586 0.047 0.089 33.582 0.045 0.085 33.585 0.047 0.089 33.604 0.056 0.107
52 33.531 0.018 0.035 33.533 0.019 0.037 33.538 0.022 0.041 33.556 0.031 0.059
51 33.484 -0.007 -0.013 33.485 -0.006 -0.011 33.49 -0.003 -0.006 33.508 0.006 0.012
50 33.429 -0.035 -0.067 33.437 -0.031 -0.06 33.443 -0.028 -0.054 33.461 -0.019 -0.036

Mean = 33.497, S.D. = 1.899, Provision = 33.497, 1 Unit = $1,000,000

Quantile Statistics and Value at Risk (Cal. Yr: 2006)
% Sample Kernel LogNormal Gamma
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Dataset: Employers Liability: Forecast Model: PTF-good1
Forecasts from model omitting data from one to three calendar years.

The graph below depicts the how the means and std. devs. of the reserve distributions (beyond 2005) change as years are removed, assuming that
Calendar year trend of zero continues.

The pair of numbers for any particular year represent the mean and std. dev. of the reserve distribution as predicted at that year's end. For example
this would mean that at year end 2003 the data for 2004 and 2005 are not used in estimating the parameters of the model, including process
variability.

The prinicipal reasons for stability are that 1. the Calendar year trend since 2002 is zero 2. the decay parameter has been stable for many years and
3. the recent accident years have been flat.

Note that the slightly lower mean value at year end 2002 does not represent significant instability if you also consider the std. devs. of the
distributions.
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The most important question now is, would the model estimated at year end 2003 predict the volatility of the paid losses in 2004 and 2005.

Prediction error vs. calendar year as of year end 2002 are displayed below.

Forecast Means and Standard Deviations vs Last Calendar Period

1 Unit = $1
2002 2003 2004 2005

88,000,000
90,000,000
92,000,000
94,000,000
96,000,000
98,000,000

100,000,000
102,000,000
104,000,000
106,000,000
108,000,000
110,000,000
112,000,000

94,751,981
+- 7,216,781

105,661,099
+- 5,659,382

107,687,239
+- 4,942,103

106,795,624
+- 4,607,172
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Note from the display below that the estimated model at year end 2002 predicts accurately the volatility of the paid losses left out.

At year end 2003 the estimated model predicts (different) normal distributions for each cell, that is, it predicts the volatility of the Paid
Losses for the years that have been validated (removed).
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Appendix F3.5.4

Prediction Errors Normality Plot

N = 45, P-value is greater than 0.5, R^2 = 0.9862
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Appendix F3.5.5

Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R

99.995 159.34 3.844 29.615 160.836 4.038 31.111 163.128 4.335 33.404 161.881 4.173 32.156

99.99 158.399 3.721 28.674 159.985 3.927 30.26 161.476 4.121 31.752 160.355 3.975 30.63

99.98 157.578 3.615 27.853 159.025 3.803 29.3 159.771 3.9 30.046 158.774 3.77 29.049

99.97 157.464 3.6 27.739 158.408 3.723 28.683 158.747 3.767 29.022 157.821 3.646 28.096

99.96 157.101 3.553 27.376 157.934 3.661 28.209 158.006 3.67 28.281 157.131 3.557 27.406

99.95 157.056 3.547 27.331 157.539 3.61 27.814 157.423 3.595 27.698 156.586 3.486 26.862

99.94 156.937 3.532 27.212 157.192 3.565 27.468 156.942 3.532 27.217 156.136 3.428 26.411

99.93 156.921 3.53 27.196 156.881 3.525 27.157 156.531 3.479 26.806 155.751 3.378 26.026

99.92 156.032 3.414 26.307 156.598 3.488 26.873 156.171 3.432 26.446 155.414 3.334 25.69

99.91 155.991 3.409 26.266 156.335 3.454 26.61 155.852 3.391 26.127 155.115 3.295 25.39

99.9 155.864 3.392 26.139 156.089 3.422 26.364 155.564 3.354 25.839 154.845 3.26 25.12

99.8 153.791 3.123 24.066 154.261 3.184 24.536 153.619 3.101 23.894 153.015 3.023 23.29

99.7 152.622 2.972 22.897 153.067 3.029 23.342 152.435 2.947 22.71 151.897 2.878 22.172

99.6 151.91 2.879 22.185 152.191 2.916 22.466 151.572 2.835 21.847 151.079 2.771 21.354

99.5 151.118 2.777 21.393 151.51 2.827 21.785 150.888 2.747 21.163 150.43 2.687 20.705

99.4 150.385 2.681 20.66 150.962 2.756 21.237 150.319 2.673 20.594 149.89 2.617 20.165

99.3 149.963 2.627 20.238 150.503 2.697 20.778 149.83 2.609 20.105 149.425 2.557 19.7

99.2 149.744 2.598 20.019 150.099 2.644 20.374 149.401 2.554 19.676 149.016 2.504 19.291

99.1 149.367 2.549 19.642 149.74 2.598 20.015 149.018 2.504 19.293 148.651 2.456 18.926

99 149.089 2.513 19.364 149.413 2.555 19.688 148.671 2.459 18.946 148.32 2.413 18.595

98 146.744 2.209 17.019 146.967 2.238 17.242 146.285 2.149 16.56 146.036 2.117 16.311

97 145.092 1.994 15.367 145.341 2.027 15.616 144.791 1.955 15.066 144.599 1.93 14.874

96 143.919 1.842 14.194 144.164 1.874 14.439 143.677 1.811 13.952 143.524 1.791 13.799

95 143.086 1.734 13.361 143.229 1.753 13.504 142.777 1.694 13.053 142.653 1.678 12.928

94 142.253 1.626 12.528 142.441 1.65 12.716 142.016 1.595 12.291 141.915 1.582 12.19

93 141.521 1.531 11.796 141.759 1.562 12.034 141.352 1.509 11.627 141.27 1.498 11.545

92 140.928 1.454 11.203 141.155 1.483 11.43 140.759 1.432 11.034 140.694 1.424 10.969

91 140.431 1.389 10.706 140.612 1.413 10.887 140.223 1.362 10.498 140.172 1.356 10.447

90 140.004 1.334 10.279 140.113 1.348 10.388 139.731 1.299 10.006 139.692 1.294 9.967

89 139.513 1.27 9.788 139.647 1.288 9.922 139.275 1.239 9.55 139.247 1.236 9.522

88 139.147 1.223 9.422 139.205 1.23 9.48 138.849 1.184 9.124 138.831 1.182 9.106

87 138.656 1.159 8.931 138.783 1.176 9.058 138.449 1.132 8.724 138.44 1.131 8.715

86 138.353 1.12 8.628 138.379 1.123 8.654 138.071 1.083 8.346 138.07 1.083 8.345

85 137.874 1.058 8.149 137.99 1.073 8.265 137.711 1.037 7.987 137.717 1.037 7.992

84 137.517 1.011 7.792 137.615 1.024 7.891 137.369 0.992 7.644 137.381 0.994 7.656

83 137.15 0.964 7.425 137.255 0.977 7.53 137.04 0.949 7.315 137.059 0.952 7.334

82 136.811 0.92 7.086 136.908 0.932 7.183 136.725 0.908 7 136.749 0.912 7.024

81 136.476 0.876 6.752 136.575 0.889 6.85 136.421 0.869 6.696 136.45 0.873 6.725

80 136.16 0.835 6.436 136.254 0.847 6.529 136.127 0.831 6.402 136.161 0.835 6.436

79 135.788 0.787 6.063 135.945 0.807 6.22 135.843 0.794 6.118 135.881 0.799 6.156

78 135.491 0.748 5.766 135.648 0.769 5.923 135.567 0.758 5.842 135.609 0.764 5.884

77 135.239 0.716 5.514 135.361 0.731 5.636 135.299 0.723 5.574 135.345 0.729 5.62

TABLE CONTINUES ON NEXT PAGE

Quantiles after removing two years then forecasting using scenario 2 (all quantiles are stable compared with the Quantile results obtained
on 4 Forecast Sc.2)

Quantile Statistics and Value at Risk (Acc Year: Total)

%
Sample Kernel LogNormal Gamma



Appendix F3.5.6

Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R

76 134.973 0.681 5.248 135.084 0.696 5.36 135.038 0.69 5.313 135.087 0.696 5.362

75 134.714 0.648 4.989 134.817 0.661 5.092 134.783 0.656 5.058 134.835 0.663 5.111

74 134.488 0.618 4.763 134.558 0.627 4.833 134.534 0.624 4.809 134.589 0.631 4.864

73 134.218 0.583 4.493 134.306 0.595 4.581 134.29 0.592 4.565 134.348 0.6 4.623

72 133.965 0.55 4.24 134.061 0.563 4.336 134.051 0.561 4.326 134.112 0.569 4.387

71 133.716 0.518 3.991 133.822 0.532 4.097 133.817 0.531 4.092 133.88 0.539 4.155

70 133.516 0.492 3.791 133.588 0.501 3.863 133.587 0.501 3.862 133.652 0.51 3.927

69 133.313 0.466 3.588 133.359 0.472 3.634 133.361 0.472 3.636 133.428 0.481 3.703

68 133.072 0.434 3.347 133.134 0.443 3.41 133.138 0.443 3.413 133.207 0.452 3.482

67 132.851 0.406 3.126 132.913 0.414 3.188 132.918 0.414 3.193 132.989 0.424 3.264

66 132.646 0.379 2.921 132.695 0.386 2.97 132.702 0.386 2.977 132.774 0.396 3.049

65 132.439 0.352 2.714 132.48 0.358 2.756 132.488 0.359 2.763 132.562 0.368 2.837

64 132.206 0.322 2.481 132.268 0.33 2.543 132.277 0.331 2.552 132.352 0.341 2.627

63 131.999 0.295 2.274 132.059 0.303 2.334 132.069 0.304 2.344 132.144 0.314 2.42

62 131.848 0.276 2.123 131.851 0.276 2.126 131.862 0.277 2.137 131.939 0.287 2.214

61 131.644 0.249 1.919 131.645 0.249 1.92 131.658 0.251 1.933 131.735 0.261 2.01

60 131.435 0.222 1.71 131.441 0.223 1.716 131.455 0.225 1.73 131.533 0.235 1.808

59 131.239 0.196 1.514 131.238 0.196 1.513 131.254 0.198 1.529 131.332 0.209 1.607

58 131.02 0.168 1.295 131.036 0.17 1.311 131.055 0.173 1.33 131.133 0.183 1.408

57 130.849 0.146 1.124 130.836 0.144 1.111 130.857 0.147 1.132 130.935 0.157 1.21

56 130.608 0.115 0.883 130.637 0.118 0.912 130.66 0.121 0.935 130.738 0.132 1.013

55 130.422 0.09 0.697 130.439 0.093 0.714 130.464 0.096 0.739 130.542 0.106 0.817

54 130.226 0.065 0.501 130.242 0.067 0.517 130.269 0.071 0.544 130.347 0.081 0.622

53 130.021 0.038 0.296 130.046 0.042 0.321 130.075 0.045 0.35 130.153 0.056 0.428

52 129.829 0.014 0.105 129.851 0.016 0.126 129.882 0.02 0.157 129.959 0.03 0.234

51 129.656 -0.009 -0.069 129.657 -0.009 -0.068 129.689 -0.005 -0.036 129.766 0.005 0.041

50 129.438 -0.037 -0.287 129.463 -0.034 -0.262 129.497 -0.03 -0.228 129.572 -0.02 -0.153

49 129.228 -0.064 -0.497 129.27 -0.059 -0.455 129.305 -0.055 -0.42 129.379 -0.045 -0.345

48 129.053 -0.087 -0.672 129.078 -0.084 -0.647 129.113 -0.079 -0.612 129.187 -0.07 -0.538

47 128.905 -0.106 -0.82 128.886 -0.109 -0.839 128.921 -0.104 -0.804 128.994 -0.095 -0.731

46 128.707 -0.132 -1.018 128.694 -0.134 -1.031 128.729 -0.129 -0.996 128.801 -0.12 -0.924

45 128.492 -0.16 -1.233 128.503 -0.159 -1.222 128.537 -0.154 -1.188 128.607 -0.145 -1.118

44 128.297 -0.185 -1.428 128.311 -0.183 -1.414 128.344 -0.179 -1.381 128.413 -0.17 -1.311

43 128.133 -0.207 -1.592 128.119 -0.208 -1.606 128.151 -0.204 -1.574 128.219 -0.195 -1.506

42 127.961 -0.229 -1.764 127.927 -0.233 -1.798 127.957 -0.229 -1.768 128.024 -0.221 -1.701

41 127.769 -0.254 -1.956 127.734 -0.258 -1.991 127.763 -0.255 -1.962 127.828 -0.246 -1.897

40 127.563 -0.281 -2.162 127.54 -0.284 -2.185 127.567 -0.28 -2.157 127.631 -0.272 -2.093

39 127.398 -0.302 -2.327 127.344 -0.309 -2.381 127.371 -0.305 -2.354 127.434 -0.297 -2.291

38 127.236 -0.323 -2.489 127.147 -0.335 -2.578 127.174 -0.331 -2.551 127.234 -0.323 -2.49

37 127.029 -0.35 -2.695 126.948 -0.36 -2.777 126.975 -0.357 -2.75 127.034 -0.349 -2.691

36 126.813 -0.378 -2.912 126.748 -0.386 -2.977 126.774 -0.383 -2.95 126.832 -0.375 -2.893

35 126.582 -0.408 -3.143 126.545 -0.413 -3.18 126.573 -0.409 -3.152 126.628 -0.402 -3.097

34 126.382 -0.434 -3.343 126.34 -0.439 -3.385 126.369 -0.436 -3.356 126.422 -0.429 -3.302

33 126.205 -0.457 -3.52 126.132 -0.466 -3.592 126.163 -0.462 -3.562 126.215 -0.456 -3.51

32 125.992 -0.484 -3.733 125.922 -0.494 -3.803 125.955 -0.489 -3.77 126.005 -0.483 -3.72

31 125.752 -0.516 -3.973 125.709 -0.521 -4.016 125.745 -0.517 -3.98 125.792 -0.51 -3.933

30 125.547 -0.542 -4.178 125.492 -0.549 -4.233 125.532 -0.544 -4.193 125.576 -0.538 -4.148

TABLE CONTINUES ON NEXT PAGE

Quantile Statistics and Value at Risk (Acc Year: Total)

%
Sample Kernel LogNormal Gamma



Appendix F3.5.7

Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R

29 125.334 -0.57 -4.391 125.272 -0.578 -4.453 125.316 -0.572 -4.409 125.358 -0.567 -4.367

28 125.101 -0.6 -4.623 125.048 -0.607 -4.677 125.097 -0.601 -4.628 125.136 -0.596 -4.589

27 124.898 -0.626 -4.827 124.82 -0.637 -4.905 124.875 -0.63 -4.85 124.911 -0.625 -4.814

26 124.684 -0.654 -5.041 124.588 -0.667 -5.137 124.648 -0.659 -5.077 124.682 -0.655 -5.043

25 124.446 -0.685 -5.279 124.35 -0.698 -5.375 124.418 -0.689 -5.307 124.448 -0.685 -5.277

24 124.205 -0.716 -5.52 124.107 -0.729 -5.618 124.183 -0.719 -5.542 124.21 -0.716 -5.515

23 123.953 -0.749 -5.772 123.858 -0.761 -5.867 123.943 -0.75 -5.782 123.966 -0.747 -5.758

22 123.699 -0.782 -6.026 123.603 -0.795 -6.122 123.698 -0.782 -6.027 123.717 -0.78 -6.008

21 123.414 -0.819 -6.311 123.341 -0.829 -6.384 123.447 -0.815 -6.278 123.462 -0.813 -6.263

20 123.162 -0.852 -6.563 123.071 -0.864 -6.654 123.189 -0.848 -6.536 123.2 -0.847 -6.525

19 122.848 -0.893 -6.877 122.794 -0.9 -6.931 122.924 -0.883 -6.801 122.93 -0.882 -6.795

18 122.593 -0.926 -7.132 122.508 -0.937 -7.217 122.651 -0.918 -7.074 122.652 -0.918 -7.073

17 122.326 -0.96 -7.399 122.211 -0.975 -7.513 122.368 -0.955 -7.356 122.364 -0.955 -7.361

16 122.006 -1.002 -7.719 121.905 -1.015 -7.82 122.076 -0.993 -7.649 122.065 -0.994 -7.659

15 121.686 -1.043 -8.039 121.588 -1.056 -8.137 121.772 -1.032 -7.953 121.755 -1.034 -7.97

14 121.355 -1.086 -8.37 121.256 -1.099 -8.469 121.455 -1.073 -8.27 121.431 -1.076 -8.294

13 120.977 -1.135 -8.748 120.91 -1.144 -8.815 121.123 -1.116 -8.602 121.092 -1.12 -8.633

12 120.692 -1.172 -9.033 120.545 -1.191 -9.179 120.774 -1.162 -8.951 120.735 -1.167 -8.99

11 120.316 -1.221 -9.409 120.163 -1.241 -9.562 120.405 -1.21 -9.32 120.356 -1.216 -9.368

10 119.864 -1.28 -9.86 119.757 -1.294 -9.968 120.012 -1.261 -9.713 119.954 -1.268 -9.771

9 119.424 -1.337 -10.301 119.325 -1.35 -10.4 119.591 -1.315 -10.134 119.521 -1.324 -10.204

8 118.969 -1.396 -10.755 118.864 -1.41 -10.861 119.135 -1.374 -10.59 119.053 -1.385 -10.672

7 118.51 -1.456 -11.215 118.367 -1.474 -11.358 118.636 -1.439 -11.089 118.539 -1.452 -11.186

6 117.958 -1.527 -11.767 117.82 -1.545 -11.905 118.081 -1.511 -11.644 117.967 -1.526 -11.758

5 117.442 -1.594 -12.283 117.206 -1.625 -12.519 117.451 -1.593 -12.274 117.317 -1.61 -12.408

4 116.726 -1.687 -12.999 116.481 -1.719 -13.244 116.716 -1.688 -13.009 116.556 -1.709 -13.169

3 115.782 -1.81 -13.943 115.573 -1.837 -14.152 115.818 -1.805 -13.907 115.625 -1.83 -14.1

2 114.53 -1.972 -15.195 114.365 -1.993 -15.36 114.635 -1.958 -15.09 114.396 -1.989 -15.329

1 112.741 -2.204 -16.984 112.582 -2.225 -17.143 112.796 -2.197 -16.929 112.476 -2.239 -17.249

Kernel Gamma
%

Mean = 129.725, S.D. = 7.705, Provision = 129.725, 1 Unit = $1,000,000

LogNormal

Quantile Statistics and Value at Risk (Acc Year: Total)
Sample



Appendix F3.6.1

The real paid loss array is regarded as a sample path from the fitted model depicted in sheet 2 under Model Displays.

It is almost impossible to distinguish in patterns between the real data and the three simulated triangles.

This demonstrates that the features in the model, fitted to the real data correspond to the features in the data.

Moreover the forecast distributions for the simulated triangles and the real data are statistically the same.

Mean Reserve SD Reserve
Real data 106,795,624 4,607,172
Sim 1 103,514,833 4,431,096
Sim 2 105,497,719 4,222,907
Sim 3 105,890,574 4,324,997

These features in the real data cannot be replicated by any link-ratio method or any derivative thereof, period.

Below are the residual graphs for a model that has only one parameter in each direction for each of four triangles, the real
data and three simulated triangles from the fitted model.



Appendix F3.6.2



Appendix F3.7

Dataset: Employers Liability: Comparison of models for PL(I) and CRE(I)
Model: MPTF-optimal1

Final Correlations Final Weighted Residual Correlations Between Datasets
6 iterations were executed

PL(I)1 CRE(I)1
PL(I)1 1 0.20364 CRE = Case Reserve Estimates
CRE(I)1 0.20364 1 PL = Paid Losses

CRE Model PL Model

1

The following comments are pertinent:

4. There is no overall indication that the PL have been increasing at a higher rate than the CRE.

1. Along the calendar periods there some similarity in trend patterns, for example a drop from 2001, an increase around 1990, and both are
zero from around 2003. Quite often the PL lag the CRE.

However the PL are growing from 95-01 and the CRE are not - they are decreasing.

2. Along the Accident years the total increase from 97-03 is about the same in both loss development arrays

3. The process correlation between the two loss development arrays is 0.203. This means that if a random outcome in a cell in one array is
above its trend line the probability that it is above the trend line in the other array is no longer 0.5
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Appendix F4.1

Summary of Appendix F4

Here we use the ELRF modelling framework to model the cumulative Paid Losses.

We show that the features in the data cannot be captured by any link-ratio method.

The accident years were adjusted by the exposures below.

Appendix F4 is uses data from Employers' Liability subclass "b".

Subclass of Employers Liability

Accident Exposures
Period

1985 446
1986 512
1987 883
1988 1171
1989 1381
1990 962
1991 651
1992 612
1993 443
1994 325
1995 286
1996 336
1997 503
1998 301
1999 240
2000 152
2001 113
2002 130
2003 92
2004 88
2005 66

Note that for any of the models in the ELRF framework the modeller cannot choose nor has control
over the salient assumptions in the projections. This is further discussed in Uncertainty Working
Group Test Template.doc

We only illustrate this with volume-weighted averages, but all our arguments apply
to any average link-ratios.



Appendix F4.2

An average ratio is a regression through the origin, yet for these data it is
obvious that an intercept is needed.

Incrementals in Dev Yr.1 are not correlated to the cumulatives in Dev. Yr.
zero, so any link ratio from zero to one has no predictive power.



Appendix F4.3.1

The weighted residuals below represent the residuals of fitting volume-weighted averages (as regression estimators).

Note that the trend structure in the data is not captured. Moreover we showed in the previous sheet that for some periods link ratios have no predictive power whatsoever.

Employers Liability S/c "b":PL(C)1:ELRF[1]::Wtd Std Res vs Dev. Yr
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Appendix F4.3.2

Residuals are not normally distributed.

Employers Liability S/c "b":PL(C)1:ELRF[1]::Wtd Res Normality Plot

N = 209, P-value is less than 0.01, R^2 = 0.9532
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5
3



Appendix F4.4

Employers' Liability:Forecast:Reserve Forecast Summaries:Accident Periods

Reserve Ultimate Reserve Ultimate
1985 0 2,681,470 0 **** 0
1986 207,382 4,260,652 53,256 0.26 0.01
1987 377,929 4,064,324 118,813 0.31 0.03
1988 739,274 5,747,407 197,551 0.27 0.03
1989 1,010,346 6,619,931 243,124 0.24 0.04
1990 1,132,616 6,379,035 217,777 0.19 0.03
1991 1,403,619 7,005,605 203,861 0.15 0.03
1992 1,294,431 5,716,867 202,417 0.16 0.04 Note that the CVs increase as we go down the accident years.
1993 1,114,836 4,532,711 160,100 0.14 0.04
1994 1,156,373 4,271,824 151,558 0.13 0.04 This is because the model has not related the numbers in the triangle
1995 1,410,553 4,730,236 164,061 0.12 0.03 in any meaningful way to each other.
1996 1,710,512 5,241,271 208,552 0.12 0.04
1997 2,438,467 6,956,118 306,944 0.13 0.04 Typically for a parsimonious model that capture the features of the data
1998 2,127,977 5,372,060 234,747 0.11 0.04 the CVs will decrease.
1999 2,350,370 5,136,188 273,875 0.12 0.05
2000 2,969,212 5,713,587 292,897 0.1 0.05 The latest accident years have more cells to be forecast and therefore
2001 3,305,219 5,417,264 308,274 0.09 0.06 the CV of the aggregate should decrease rather than increase.
2002 3,198,321 4,320,671 450,185 0.14 0.1
2003 3,430,801 3,963,033 742,660 0.22 0.19
2004 1,551,995 1,622,149 699,885 0.45 0.43
2005 1,410,124 1,421,962 1,980,809 1.4 1.39

Total 34,340,358 101,174,366 2,989,449 0.09 0.03

All the above answers are meaningless because the features of the model have nothing to do with features in the data.

Accident Yr Summary

1 Unit = $1
CV of forecast for last accident yr is 140.47 %

Model may be inappropriate

Mean CVAcc. Yr
Standard

Dev.



Appendix F5.1

Summary of Appendix F5

The forecast scenario used included continuing calendar trends as follows.
For Employers Liability subclass "a"
2005-2011 8.39% +- 0.76% These assumptions are discussed in Appendix F5.3.
2011-2025 0% +- 0%
For Employers Liability subclass "b"
2005-2006 24% +- 2.7% These assumptions are discussed in Appendix F5.4.
2006-2025 0% +- 0%

The forecasts for the reserve distribution for the subclasses are shown below.
Mean of Reserve Dsn. Std. Dv. Of Reserve Dsn. CoV

Subclass "a" 131,366,189 6,202,006 0.04721159
Subclass "b" 37,154,492 3,429,684 0.09230873

Appendix F5.1 Quantiles and V@R for the aggregate reserve for both LOBs.

Appendix F5.2 Process correlation between the two LOBs

Appendices F5.3
and F5.4

Model displays for the two LOBs.

Appendix F5.5

Appendix F 5.6 Accident year summaries of the aggregate of the two LOBs and for each LOB

Appendix F5.7 Calendar year summaries of the aggregate of the two LOBs and for each LOB

Appendix F5.8 Capital allocation by LOB based on a covariance formula.

This appendix provides the forecasted reserve distribution and quantiles for the aggregate of the two subclasses of
business Employers' Liability business.

The aggregate distribution of two lines is obtained by designing a composite model for the two lines which
includes correlations between the lines of business (the data are not aggregated).

There are two types of correlations between two lines of business; process correlation and parameter correlation.
Process correlation is the correlation between two sets of residuals. When you run the individual PTF models in
MPTF for the two lines of business, the process correlation is 22%.

This means that if in one line of business an observation in a particular cell is above the trend line, then the
likelihood that it is above the trend line in the other line of business is greater than 50%. Process correlation
induces parameter correlation because composite model estimates parameters in one line of business also using
the data in the other line of business.

Process correlation and parameter correlation induce correlations between all pairs of accident years, calendar
years, and aggregates in the two lines of business. The correlation between the reserves is 7.7%. As a result of this
low correlation, the required capital for the two lines of business at the 95th percentile, say, is almost the same as
if they were independent.

It is important to recognise that all forecast distributions are conditional on an explicit set of assumptions that are
easily interpretable. If any of these assumptions are varied then the resulting predictive distributions will be
different.

Forecast table for the aggregate of the two LOBs. Means and SDs of distributions
are displayed for each cell and for aggregates across cells.



Appendix F5.2.1

Employers Liability:Composite DS:MPTF[optimal-1]:PALD:Acc. Yr:Total:Quantiles & VAR

Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R

99.995 196.92 3.883 28.399 198.44 4.091 29.92 199.318 4.211 30.797 198.485 4.097 29.964

99.99 195.655 3.71 27.134 197.454 3.956 28.934 197.84 4.009 29.32 197.089 3.906 28.569

99.98 195.51 3.69 26.99 196.346 3.804 27.825 196.311 3.8 27.79 195.641 3.708 27.12

99.97 195.25 3.654 26.729 195.65 3.709 27.129 195.39 3.674 26.869 194.766 3.588 26.246

99.96 194.611 3.567 26.091 195.119 3.636 26.598 194.723 3.582 26.202 194.132 3.502 25.612

99.95 194.141 3.503 25.62 194.676 3.576 26.155 194.198 3.511 25.677 193.633 3.433 25.112

99.94 193.931 3.474 25.41 194.291 3.523 25.77 193.763 3.451 25.242 193.219 3.377 24.698

99.93 193.69 3.441 25.169 193.949 3.477 25.428 193.392 3.4 24.871 192.865 3.328 24.344

99.92 193.11 3.362 24.589 193.644 3.435 25.124 193.067 3.356 24.546 192.555 3.286 24.034

99.91 192.773 3.316 24.252 193.369 3.397 24.848 192.778 3.317 24.258 192.279 3.248 23.759

99.9 192.635 3.297 24.114 193.118 3.363 24.597 192.518 3.281 23.997 192.031 3.214 23.51

99.8 190.948 3.066 22.428 191.421 3.131 22.901 190.755 3.04 22.235 190.344 2.984 21.823

99.7 190.165 2.959 21.644 190.372 2.987 21.851 189.68 2.893 21.159 189.312 2.843 20.791

99.6 189.156 2.821 20.635 189.596 2.881 21.075 188.894 2.785 20.373 188.557 2.739 20.036

99.5 188.629 2.749 20.108 188.982 2.797 20.461 188.27 2.7 19.75 187.957 2.657 19.436

99.4 188.236 2.696 19.715 188.472 2.728 19.951 187.751 2.629 19.23 187.456 2.589 18.935

99.3 187.689 2.621 19.169 188.032 2.668 19.511 187.305 2.568 18.784 187.026 2.53 18.505

99.2 187.344 2.574 18.823 187.646 2.615 19.125 186.912 2.515 18.392 186.647 2.478 18.126

99.1 187.101 2.54 18.581 187.296 2.567 18.775 186.562 2.467 18.041 186.308 2.432 17.788

99 186.728 2.489 18.207 186.979 2.524 18.458 186.244 2.423 17.723 186.001 2.39 17.481

98 184.469 2.18 15.948 184.667 2.208 16.146 184.054 2.124 15.534 183.88 2.1 15.36

97 182.91 1.967 14.39 183.08 1.99 14.559 182.679 1.936 14.158 182.543 1.917 14.022

96 181.586 1.786 13.065 181.865 1.824 13.345 181.65 1.795 13.129 181.541 1.78 13.021

95 180.689 1.664 12.168 180.915 1.695 12.394 180.818 1.681 12.297 180.729 1.669 12.208

94 179.837 1.547 11.316 180.14 1.589 11.619 180.112 1.585 11.592 180.04 1.575 11.519

93 179.269 1.469 10.748 179.486 1.499 10.965 179.496 1.501 10.975 179.437 1.492 10.916

92 178.74 1.397 10.219 178.916 1.421 10.395 178.946 1.425 10.425 178.898 1.419 10.377

91 178.227 1.327 9.707 178.408 1.352 9.887 178.447 1.357 9.926 178.409 1.352 9.888

90 177.775 1.265 9.254 177.947 1.289 9.427 177.989 1.295 9.468 177.96 1.29 9.439

89 177.395 1.213 8.875 177.524 1.231 9.003 177.564 1.236 9.044 177.543 1.233 9.022

88 176.97 1.155 8.449 177.132 1.177 8.611 177.167 1.182 8.647 177.152 1.18 8.632

87 176.665 1.113 8.144 176.764 1.127 8.244 176.794 1.131 8.273 176.785 1.13 8.265

86 176.278 1.061 7.758 176.418 1.08 7.897 176.441 1.083 7.92 176.438 1.082 7.917

85 175.97 1.019 7.45 176.088 1.035 7.568 176.105 1.037 7.584 176.107 1.037 7.586

84 175.673 0.978 7.153 175.775 0.992 7.255 175.784 0.993 7.264 175.791 0.994 7.27

83 175.376 0.937 6.855 175.475 0.951 6.954 175.477 0.951 6.956 175.488 0.953 6.967

82 175.059 0.894 6.538 175.185 0.911 6.664 175.182 0.911 6.661 175.197 0.913 6.676

81 174.83 0.863 6.309 174.905 0.873 6.384 174.897 0.872 6.376 174.915 0.874 6.395

80 174.555 0.825 6.034 174.633 0.836 6.112 174.622 0.834 6.101 174.644 0.837 6.123

79 174.275 0.787 5.754 174.369 0.8 5.848 174.355 0.798 5.834 174.38 0.801 5.859

78 174.035 0.754 5.515 174.112 0.764 5.591 174.096 0.762 5.575 174.124 0.766 5.603

77 173.775 0.718 5.254 173.86 0.73 5.339 173.844 0.728 5.323 173.875 0.732 5.354

76 173.576 0.691 5.055 173.614 0.696 5.093 173.599 0.694 5.078 173.632 0.699 5.111

75 173.362 0.662 4.841 173.372 0.663 4.852 173.359 0.662 4.838 173.395 0.666 4.874

74 173.128 0.63 4.607 173.136 0.631 4.615 173.125 0.629 4.604 173.163 0.635 4.642

73 172.849 0.592 4.329 172.903 0.599 4.382 172.896 0.598 4.375 172.935 0.604 4.415

72 172.594 0.557 4.074 172.675 0.568 4.154 172.671 0.567 4.15 172.712 0.573 4.192

71 172.377 0.527 3.856 172.451 0.537 3.931 172.45 0.537 3.929 172.493 0.543 3.973

70 172.149 0.496 3.628 172.232 0.507 3.711 172.233 0.508 3.713 172.278 0.514 3.757

69 171.915 0.464 3.394 172.016 0.478 3.495 172.02 0.478 3.499 172.066 0.485 3.546

68 171.717 0.437 3.196 171.804 0.449 3.283 171.81 0.45 3.289 171.858 0.456 3.337

67 171.519 0.41 2.998 171.596 0.42 3.075 171.603 0.421 3.082 171.652 0.428 3.131

66 171.305 0.381 2.785 171.391 0.392 2.87 171.399 0.393 2.878 171.449 0.4 2.928

65 171.132 0.357 2.611 171.19 0.365 2.669 171.197 0.366 2.676 171.248 0.373 2.727

64 170.927 0.329 2.407 170.991 0.338 2.47 170.997 0.339 2.477 171.049 0.346 2.529

63 170.762 0.306 2.241 170.795 0.311 2.275 170.8 0.312 2.28 170.853 0.319 2.332

62 170.577 0.281 2.056 170.602 0.285 2.082 170.605 0.285 2.084 170.658 0.292 2.138

61 170.398 0.257 1.878 170.412 0.259 1.891 170.412 0.259 1.891 170.465 0.266 1.945

60 170.213 0.231 1.692 170.223 0.233 1.702 170.22 0.232 1.699 170.274 0.24 1.753

59 169.979 0.199 1.459 170.035 0.207 1.515 170.029 0.206 1.509 170.084 0.214 1.563

TABLE CONTINUES ON NEXT PAGE

Quantile Statistics and Value at Risk (Acc Year: Total)

Mean = 168.521, S.D. = 7.314, Provision = 168.521, 1 Unit = $1,000,000

%
Sample Kernel LogNormal Gamma



Appendix F5.2.2

Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R

58 169.792 0.174 1.271 169.85 0.182 1.329 169.84 0.18 1.32 169.895 0.188 1.375

57 169.63 0.152 1.109 169.666 0.157 1.145 169.653 0.155 1.132 169.708 0.162 1.187

56 169.463 0.129 0.942 169.483 0.132 0.962 169.466 0.129 0.945 169.521 0.137 1

55 169.277 0.103 0.756 169.3 0.107 0.78 169.28 0.104 0.76 169.335 0.111 0.815

54 169.09 0.078 0.569 169.119 0.082 0.598 169.096 0.079 0.575 169.15 0.086 0.63

53 168.932 0.056 0.411 168.937 0.057 0.416 168.911 0.053 0.391 168.966 0.061 0.445

52 168.776 0.035 0.255 168.756 0.032 0.235 168.728 0.028 0.207 168.782 0.036 0.261

51 168.609 0.012 0.089 168.574 0.007 0.053 168.545 0.003 0.024 168.598 0.011 0.078

50 168.434 -0.012 -0.086 168.392 -0.018 -0.129 168.362 -0.022 -0.159 168.415 -0.014 -0.106

49 168.238 -0.039 -0.283 168.209 -0.043 -0.311 168.18 -0.047 -0.341 168.232 -0.04 -0.289

48 168.071 -0.061 -0.449 168.026 -0.068 -0.495 167.997 -0.072 -0.523 168.048 -0.065 -0.472

47 167.924 -0.082 -0.596 167.842 -0.093 -0.679 167.815 -0.097 -0.706 167.865 -0.09 -0.656

46 167.721 -0.109 -0.8 167.656 -0.118 -0.864 167.632 -0.122 -0.889 167.682 -0.115 -0.839

45 167.508 -0.138 -1.013 167.47 -0.144 -1.051 167.449 -0.147 -1.072 167.498 -0.14 -1.023

44 167.307 -0.166 -1.214 167.282 -0.169 -1.239 167.265 -0.172 -1.255 167.313 -0.165 -1.207

43 167.123 -0.191 -1.398 167.093 -0.195 -1.427 167.081 -0.197 -1.439 167.129 -0.19 -1.392

42 166.928 -0.218 -1.592 166.903 -0.221 -1.617 166.897 -0.222 -1.624 166.943 -0.216 -1.578

41 166.721 -0.246 -1.8 166.712 -0.247 -1.808 166.711 -0.247 -1.809 166.757 -0.241 -1.764

40 166.556 -0.269 -1.965 166.52 -0.273 -2 166.525 -0.273 -1.996 166.569 -0.267 -1.951

39 166.338 -0.298 -2.183 166.327 -0.3 -2.194 166.337 -0.298 -2.183 166.381 -0.293 -2.14

38 166.099 -0.331 -2.422 166.133 -0.326 -2.388 166.149 -0.324 -2.372 166.191 -0.318 -2.329

37 165.945 -0.352 -2.576 165.937 -0.353 -2.584 165.959 -0.35 -2.562 166 -0.345 -2.521

36 165.78 -0.375 -2.74 165.74 -0.38 -2.78 165.767 -0.376 -2.753 165.808 -0.371 -2.713

35 165.589 -0.401 -2.931 165.542 -0.407 -2.978 165.574 -0.403 -2.946 165.613 -0.397 -2.907

34 165.385 -0.429 -3.136 165.343 -0.435 -3.178 165.38 -0.429 -3.141 165.417 -0.424 -3.104

33 165.188 -0.456 -3.333 165.141 -0.462 -3.38 165.183 -0.456 -3.338 165.219 -0.451 -3.302

32 165.008 -0.48 -3.512 164.937 -0.49 -3.583 164.984 -0.484 -3.537 165.018 -0.479 -3.502

31 164.813 -0.507 -3.708 164.732 -0.518 -3.789 164.782 -0.511 -3.738 164.815 -0.507 -3.705

30 164.565 -0.541 -3.956 164.524 -0.546 -3.997 164.578 -0.539 -3.943 164.61 -0.535 -3.911

29 164.328 -0.573 -4.192 164.313 -0.575 -4.208 164.371 -0.567 -4.149 164.401 -0.563 -4.12

28 164.132 -0.6 -4.389 164.1 -0.604 -4.421 164.161 -0.596 -4.36 164.189 -0.592 -4.331

27 163.92 -0.629 -4.601 163.884 -0.634 -4.637 163.948 -0.625 -4.573 163.974 -0.622 -4.547

26 163.697 -0.66 -4.824 163.665 -0.664 -4.856 163.731 -0.655 -4.79 163.755 -0.652 -4.766

25 163.475 -0.69 -5.045 163.442 -0.694 -5.079 163.509 -0.685 -5.011 163.531 -0.682 -4.989

24 163.293 -0.715 -5.228 163.216 -0.725 -5.305 163.284 -0.716 -5.237 163.303 -0.713 -5.217

23 163.062 -0.746 -5.458 162.986 -0.757 -5.535 163.053 -0.748 -5.468 163.07 -0.745 -5.45

22 162.806 -0.781 -5.714 162.751 -0.789 -5.769 162.817 -0.78 -5.703 162.832 -0.778 -5.689

21 162.592 -0.811 -5.929 162.512 -0.821 -6.008 162.575 -0.813 -5.945 162.587 -0.811 -5.933

20 162.358 -0.843 -6.163 162.268 -0.855 -6.253 162.327 -0.847 -6.194 162.336 -0.846 -6.185

19 162.077 -0.881 -6.444 162.018 -0.889 -6.503 162.072 -0.882 -6.449 162.077 -0.881 -6.443

18 161.818 -0.916 -6.703 161.761 -0.924 -6.76 161.808 -0.918 -6.712 161.811 -0.917 -6.71

17 161.584 -0.948 -6.936 161.497 -0.96 -7.024 161.536 -0.955 -6.985 161.535 -0.955 -6.986

16 161.313 -0.985 -7.208 161.225 -0.998 -7.296 161.254 -0.994 -7.267 161.248 -0.994 -7.273

15 161.066 -1.019 -7.455 160.942 -1.036 -7.579 160.96 -1.034 -7.561 160.95 -1.035 -7.57

14 160.78 -1.058 -7.741 160.648 -1.076 -7.873 160.654 -1.076 -7.867 160.639 -1.078 -7.882

13 160.423 -1.107 -8.098 160.341 -1.118 -8.179 160.332 -1.119 -8.188 160.313 -1.122 -8.208

12 160.116 -1.149 -8.405 160.017 -1.163 -8.504 159.995 -1.166 -8.526 159.969 -1.169 -8.551

11 159.833 -1.188 -8.687 159.674 -1.209 -8.846 159.637 -1.215 -8.884 159.606 -1.219 -8.915

10 159.457 -1.239 -9.064 159.304 -1.26 -9.217 159.256 -1.267 -9.265 159.218 -1.272 -9.303

9 159.103 -1.288 -9.417 158.901 -1.315 -9.619 158.847 -1.323 -9.673 158.801 -1.329 -9.719

8 158.696 -1.343 -9.824 158.455 -1.376 -10.066 158.405 -1.383 -10.116 158.35 -1.391 -10.171

7 158.169 -1.415 -10.351 157.953 -1.445 -10.568 157.919 -1.449 -10.602 157.854 -1.458 -10.667

6 157.498 -1.507 -11.022 157.382 -1.523 -11.138 157.379 -1.523 -11.142 157.301 -1.534 -11.219

5 156.853 -1.595 -11.667 156.733 -1.612 -11.788 156.765 -1.607 -11.756 156.673 -1.62 -11.848

4 156.136 -1.693 -12.385 155.986 -1.714 -12.534 156.046 -1.706 -12.474 155.937 -1.72 -12.584

3 155.289 -1.809 -13.232 155.087 -1.837 -13.433 155.168 -1.826 -13.353 155.035 -1.844 -13.485

2 154.183 -1.96 -14.338 153.861 -2.004 -14.66 154.008 -1.984 -14.513 153.842 -2.007 -14.679

1 151.941 -2.267 -16.579 151.874 -2.276 -16.647 152.197 -2.232 -16.323 151.974 -2.262 -16.547

Sample Kernel LogNormal Gamma

Mean = 168.521, S.D. = 7.314, Provision = 168.521, 1 Unit = $1,000,000

Mean = 168.521, S.D. = 7.314, Provision = 168.521, 1 Unit = $1,000,000

%
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Employers Liability subclass "a":PL(I)1 Employers Liability subclass "b":PL(I)1

Employers Liability subclass "a":PL(I)1 1 0.224567

Employers Liability subclass "b":PL(I)1 0.224567 1

Final Weighted Residual Correlations Between Datasets

5 iterations were executed

The process correlation between the two datasets as measured by this model is 22%.

Employers Liability:Composite DS:MPTF[optimal-1]:Weighted Residual Covariances Between
Datasets:Final Correlations
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Model comments:

There have been a number of changes in accident levels, but the level has been stable since 1999.

Model Display for Employers Liability subclass "a"

In respect of future calendar year trends we have adopted a consertive view and assumed that the
future calendar trend reverts to the 8.39%+_ 0.76% for six years (2005-2011) before reverting to zero.
This assumption is critical to the forecast distributions.

The calendar direction is fairly volatile with a number of calendar year trends. A conservative forecast would incoporate a positive
calendar trend (eg: 8%+-0.78%) in the near future.

The above model display shows the trends in the three directions along with process variance for the Employers Liability UC 0110 data after incoporating process
correlation.

Process variance is high particularly after development period 11.

The development trends show that the company is still paying a significant amount even at development period 6.

Employ ers Liability S/c "a" +"b":Composite DS:MPTF[optimal-1]:Employ ers Liability S/c "a":PL(I)1::Dev . Yr Trends
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Employ ers Liability S/c "a" +"b":Composite DS:MPTF[optimal-1]:Employ ers Liability S/c "a":PL(I)1::Acc. Y r Trends
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Employ ers Liability S/c "a" +"b":Composite DS:MPTF[optimal-1]:Employ ers Liability S/c "a":PL(I)1::Cal. Yr Trends
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Employers LiabilityS/c "a" +"b":Composite DS:MPTF[optimal-1]:Employers LiabilityS/c "a":PL(I)1::MLE Variance vs Dev. Yr
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Model comments:

There are no changes in process variance by development period. Initially, process variance is higher than for UC0110.

The development trends show that the company is still paying a significant amount even at development period 5.

There have been a number of changes in accident levels. The current level has been stable since 2002.

The model display above shows the trends in the three directions along with process variance for the Employers Liability UC 0012 data after incoporating process
correlation.

The calendar direction is fairly volatile with a number of calendar year trends.

Model Display for Employers Liability subclass "b"

In respect of future calendar year trends we have adopted a consertive view and assume that the
recent large positive calendar trend of 24% +- 2.87% continues for at one more year before
reverting to zero. This assumption is critical to the forecast distributions.

Employ ers Liability S/c "a" +"b":Composite DS:MPTF[optimal-1]:Employ ers Liability S/c "b":PL(I)1::Dev . Yr Trends
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Cal. Per. Total 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Reserve Ultimate

371,807 371,807 3,092,226 4,802,587 5,486,039 4,860,184 3,028,502 2,317,309 1,743,011 1,110,873 616,037 313,270 186,522 154,874 125,926 106,498 93,409 84,555 69,794 86,027 107,834 136,389 0 28,262,000

478,653 478,653 3,054,306 4,004,796 5,044,041 4,498,646 3,513,731 2,382,079 1,731,117 1,526,103 724,896 257,662 294,723 91,136 99,462 60,147 67,813 112,023 40,585 65,787 85,019 129,272 0 0

3,449,799 357,574 2,942,008 4,636,973 5,263,752 4,689,467 3,521,368 2,692,002 1,690,003 1,106,639 636,888 369,998 223,892 185,036 156,162 136,783 123,726 102,204 125,964 157,876 199,651 253,802 253,802 27,877,452

3,485,668 431,362 3,040,670 4,150,149 4,838,383 4,541,616 3,144,698 2,361,280 1,399,143 1,045,055 701,428 525,607 163,379 178,214 244,901 149,780 61,427 82,034 136,531 199,783 228,210 94,140 94,140 94,140

8,122,527 377,931 3,131,300 4,888,345 5,571,796 5,966,720 4,487,202 2,844,860 1,800,190 1,172,113 711,454 385,059 222,201 184,457 150,234 127,263 89,821 107,147 132,018 165,527 209,637 209,037 418,674 30,268,126

7,533,589 488,123 2,859,152 5,117,642 4,826,260 4,573,057 4,382,958 2,558,125 2,087,463 991,822 617,930 278,437 236,606 202,842 61,510 180,778 85,971 69,729 101,876 129,172 77,841 77,688 113,942 113,942

13,674,163 419,850 3,462,326 5,440,002 7,449,753 7,978,614 4,969,044 3,201,795 2,046,253 1,441,388 862,979 472,775 276,794 229,470 188,992 123,730 144,949 176,851 220,621 278,765 277,731 277,021 833,516 38,571,423

12,548,899 495,556 3,423,021 5,871,152 6,045,053 6,772,348 4,998,324 3,225,429 1,593,862 1,887,727 382,823 816,403 583,644 189,532 494,119 523,950 130,285 192,648 112,030 103,428 103,155 102,976 191,389 191,389

18,892,537 417,931 3,427,902 6,489,938 8,893,858 7,892,357 4,999,557 3,251,600 2,249,332 1,556,327 936,279 519,228 308,331 255,272 153,287 175,488 211,379 261,934 329,943 328,344 327,251 326,501 1,312,040 41,405,025

18,376,437 498,745 3,770,019 7,335,137 7,977,961 6,608,136 4,617,670 3,170,227 2,305,151 1,587,376 708,373 705,909 176,879 79,590 104,940 137,114 166,351 143,409 122,300 121,862 121,580 121,393 269,010 269,010

22,557,262 399,592 3,988,842 7,508,594 8,581,660 7,673,107 4,846,897 3,375,477 2,281,396 1,573,737 935,262 502,502 287,382 145,449 153,944 176,785 213,385 265,442 262,937 261,230 260,063 259,262 1,308,935 45,645,710

22,930,560 407,783 4,437,986 8,116,963 7,855,717 7,400,485 5,323,151 4,302,043 2,218,437 2,288,046 1,159,598 201,559 127,923 16,912 116,900 144,581 218,692 99,329 98,528 98,033 97,717 97,511 256,899 256,899

30,153,425 419,494 4,201,532 6,538,480 7,535,288 6,770,916 4,629,556 3,180,147 2,150,602 1,484,205 883,566 476,854 171,186 162,782 180,486 213,456 262,901 259,445 257,100 255,502 254,409 253,659 1,543,015 40,921,730

28,319,915 401,905 4,302,360 6,945,790 8,156,845 6,378,916 5,151,438 2,771,520 2,478,978 1,376,124 349,872 65,680 68,456 392,145 186,054 352,631 97,016 95,768 95,018 94,553 94,256 94,062 270,193 270,193

37,899,325 394,513 3,261,224 5,175,392 5,958,794 5,799,656 3,917,589 2,694,284 1,824,917 1,261,044 754,440 231,113 182,025 177,106 205,232 250,210 245,961 243,088 241,138 239,809 238,901 238,162 1,697,268 33,279,566

36,090,149 445,163 3,873,583 5,376,808 6,930,624 5,504,153 3,828,273 2,250,251 1,526,529 769,774 414,761 287,097 140,743 166,297 68,243 92,441 90,745 89,754 89,154 88,779 88,538 88,350 281,898 281,898

37,212,539 324,038 2,709,774 4,295,191 5,327,322 5,104,779 3,440,070 2,361,211 1,595,053 1,099,858 303,451 204,788 164,315 160,655 189,261 183,546 179,697 177,095 175,329 174,126 173,153 172,538 1,424,746 29,755,882

36,085,684 320,763 2,695,707 4,874,905 5,969,137 4,834,813 3,263,004 3,062,041 1,315,776 967,392 456,236 194,398 205,731 171,232 71,103 68,042 66,341 65,362 64,778 64,418 64,149 63,989 226,269 226,269

35,176,920 359,142 3,015,018 5,095,314 6,294,645 6,019,655 4,039,691 2,763,058 1,857,621 515,638 320,125 207,283 160,595 158,361 147,822 140,751 135,989 132,770 130,584 128,827 127,720 127,020 1,229,846 32,179,698

35,705,302 374,943 3,134,302 5,369,278 5,775,133 6,563,261 4,511,286 2,911,676 1,275,786 553,108 319,403 117,463 44,214 67,390 58,359 53,384 50,643 49,108 48,222 47,602 47,260 47,063 190,665 190,665

32,706,667 399,726 3,625,022 6,076,233 7,514,616 7,185,281 4,820,196 3,295,943 878,795 609,108 390,946 267,632 221,045 180,198 167,562 159,083 153,373 149,512 146,426 144,488 143,268 142,496 1,607,451 34,376,597

33,652,902 296,004 3,763,575 5,485,848 7,513,465 7,211,298 4,415,095 1,860,767 1,092,444 776,126 136,386 218,139 80,723 77,955 66,809 60,637 57,233 55,327 54,047 53,368 52,992 52,775 238,892 238,892

33,215,762 404,720 3,619,707 6,088,764 7,508,161 7,183,143 4,824,141 1,324,922 909,371 657,344 452,657 351,337 251,039 204,368 191,896 183,527 177,890 173,410 170,608 168,850 167,742 167,042 2,207,711 38,315,565

36,084,135 393,373 3,543,228 5,895,788 8,170,497 10,375,471 5,192,045 624,556 1,158,156 502,229 252,511 132,994 90,697 84,860 74,676 69,098 66,027 64,015 62,974 62,409 62,090 61,903 317,569 317,569

34,164,465 506,838 4,505,027 7,614,497 9,353,865 8,956,143 2,462,754 1,730,480 1,246,743 948,449 724,780 499,791 363,452 295,467 280,185 269,931 261,827 256,779 253,623 251,643 250,395 249,605 3,957,478 40,227,455

31,318,779 358,375 3,938,368 5,627,544 10,156,293 9,389,914 3,403,399 1,884,588 1,068,636 442,859 290,618 184,803 130,370 118,146 106,819 100,663 96,724 94,732 93,676 93,090 92,752 92,551 568,520 568,520

36,425,028 496,056 4,467,052 7,476,163 9,258,248 3,377,814 2,244,086 1,559,867 1,109,268 869,312 562,343 366,965 255,456 208,424 192,769 180,466 172,833 168,079 165,107 163,241 162,066 161,323 3,628,383 45,333,073

36,536,449 306,229 3,689,136 6,253,143 11,995,665 11,231,031 5,317,770 1,955,620 956,095 237,470 252,127 145,941 94,880 92,986 78,751 69,599 65,143 62,938 61,805 61,196 60,854 60,656 527,345 527,345

40,402,067 1,738,650 15,959,383 26,325,986 11,449,881 10,208,268 6,433,608 4,182,506 2,918,997 2,014,392 1,198,587 645,814 370,597 307,854 239,782 197,689 171,559 155,277 145,091 138,695 134,662 132,110 8,771,108 52,712,643

38,438,626 307,131 3,464,725 7,324,949 11,062,092 11,742,461 6,739,436 3,300,742 628,979 582,395 775,116 379,199 192,815 241,502 157,640 108,366 80,241 64,880 56,848 52,748 50,649 49,548 1,346,629 1,346,629

54,289,240 1,573,041 14,432,361 8,342,251 9,694,352 8,714,323 5,564,105 3,949,155 2,673,431 1,846,671 1,102,643 599,445 347,714 275,376 218,844 183,888 162,188 148,666 140,207 134,895 131,546 129,427 12,044,097 48,245,854

41,166,092 307,195 3,617,963 7,511,621 9,917,515 10,347,010 4,500,453 845,522 577,022 532,010 703,287 345,578 177,266 203,660 134,941 95,165 72,990 61,207 55,178 52,130 50,567 49,740 1,552,288 1,552,288

73,924,017 1,575,232 4,993,416 7,728,899 8,982,986 8,079,884 5,562,002 3,814,101 2,573,225 1,772,609 1,046,762 552,559 293,418 231,961 179,648 147,300 127,220 114,707 106,879 101,963 98,865 96,904 16,820,122 44,579,752

43,321,240 160,458 2,748,885 6,929,566 9,208,320 8,712,400 621,597 825,509 561,761 523,203 701,134 340,997 158,885 185,195 120,667 82,704 60,991 49,107 42,887 39,715 38,095 37,248 1,677,408 1,677,408

35,321,453 585,947 4,967,294 7,666,375 8,905,292 8,635,328 5,792,865 3,961,021 2,661,936 1,827,928 1,065,588 506,859 256,836 202,461 150,234 117,939 97,892 85,400 77,585 72,677 69,583 67,626 25,649,757 46,069,249

40,049,723 156,405 3,489,409 7,738,537 9,035,141 933,223 629,112 872,262 592,027 556,348 754,644 334,747 152,640 181,105 115,638 76,347 53,041 39,599 32,167 28,227 26,188 25,131 2,023,136 2,023,136

40,180,074 424,976 3,601,831 5,588,352 7,032,127 6,721,987 4,506,889 3,080,310 2,068,756 1,419,879 766,118 363,898 184,019 145,042 107,416 84,150 69,707 60,707 55,077 51,542 49,313 47,902 26,814,841 36,868,372

43,407,825 489,198 3,288,602 6,275,731 757,692 729,152 493,040 683,205 463,952 435,942 543,522 241,025 109,829 130,384 83,199 54,862 38,035 28,311 22,923 20,060 18,577 17,808 1,810,063 1,810,063

41,283,942 337,986 2,862,648 4,864,978 6,015,218 5,752,190 3,859,583 2,639,606 1,774,303 1,129,303 613,351 296,372 153,558 121,215 91,841 73,677 62,402 55,376 50,981 48,220 46,480 45,379 27,694,034 30,980,201

42,771,658 221,080 3,065,087 530,751 654,347 632,685 429,961 585,851 398,401 342,746 425,764 189,540 87,143 102,693 66,082 44,269 31,509 24,305 20,417 18,395 17,355 16,815 1,704,135 1,704,135

40,206,282 308,042 2,825,509 4,715,393 5,852,836 5,593,098 3,747,330 2,559,669 1,588,190 1,008,490 544,324 258,771 131,020 103,277 76,577 60,067 49,818 43,432 39,437 36,928 35,346 34,345 29,303,857 29,588,893

38,641,302 285,036 306,514 512,653 640,198 620,866 422,490 576,701 359,125 309,455 385,754 171,094 77,996 92,561 59,087 38,991 27,067 20,184 16,375 14,354 13,308 12,765 1,747,421 1,747,421

Total Fitted/Paid 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 Total Reserve Total Ultimate

669,629,300 40,152,894 35,155,581 28,479,904 21,014,185 14,187,514 9,614,941 6,101,316 3,936,035 2,623,111 1,899,358 1,479,245 1,182,439 843,120 626,381 461,240 312,441 204,596 131,311 80,725 34,345 168,520,681 795,464,268

626,943,587 2,134,235 2,020,694 1,980,152 1,720,152 1,458,652 1,314,889 939,590 706,590 558,450 349,163 262,725 219,099 155,839 117,543 90,634 62,804 43,397 30,576 22,150 12,765 7,314,170 7,314,170

The above table shows the forecasted reserve distribution for each cell (mean is in black, standard deviation in red) along with the data (mean in black, observed in blue).

The aggregate total reserve has a distribution with a mean of 168.5 Million and a standard deviation of 7.3 Million)

Note from the quantiles table that there is skewness in all the distributions.
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Reserve Ultimate Reserve Ultimate Reserve Ultimate Reserve Ultimate Reserve Ultimate Reserve Ultimate
1985 0 28,262,000 0 **** 0 1985 0 25,580,529 0 **** 0 1985 0 2,681,470 0 **** 0
1986 253,802 27,877,452 94,140 0.37 0 1986 1,155 23,571,536 1,714 1.48 0 1986 252,647 4,305,917 93,868 0.37 0.02
1987 418,674 30,268,126 113,942 0.27 0 1987 3,341 26,166,398 3,637 1.09 0 1987 415,333 4,101,728 113,365 0.27 0.03
1988 833,516 38,571,423 191,389 0.23 0 1988 7,319 32,737,092 6,679 0.91 0 1988 826,197 5,834,331 190,344 0.23 0.03
1989 1,312,040 41,405,025 269,010 0.21 0.01 1989 12,890 34,496,291 10,382 0.81 0 1989 1,299,150 6,908,735 267,402 0.21 0.04
1990 1,308,935 45,645,710 256,899 0.2 0.01 1990 21,775 39,112,131 15,915 0.73 0 1990 1,287,160 6,533,579 254,360 0.2 0.04
1991 1,543,015 40,921,730 270,193 0.18 0.01 1991 31,346 33,808,075 21,187 0.68 0 1991 1,511,669 7,113,656 266,610 0.18 0.04
1992 1,697,268 33,279,566 281,898 0.17 0.01 1992 39,308 27,199,170 25,008 0.64 0 1992 1,657,960 6,080,396 277,661 0.17 0.05
1993 1,424,746 29,755,882 226,269 0.16 0.01 1993 53,175 24,966,436 32,382 0.61 0 1993 1,371,571 4,789,446 220,105 0.16 0.05
1994 1,229,846 32,179,698 190,665 0.16 0.01 1994 97,835 27,932,237 58,018 0.59 0 1994 1,132,010 4,247,461 175,254 0.15 0.04
1995 1,607,451 34,376,597 238,892 0.15 0.01 1995 162,340 29,611,803 79,820 0.49 0 1995 1,445,111 4,764,794 216,004 0.15 0.05
1996 2,207,711 38,315,565 317,569 0.14 0.01 1996 254,902 32,831,997 111,835 0.44 0 1996 1,952,809 5,483,568 284,060 0.15 0.05
1997 3,957,478 40,227,455 568,520 0.14 0.01 1997 559,913 32,312,238 243,491 0.43 0.01 1997 3,397,566 7,915,217 485,516 0.14 0.06
1998 3,628,383 45,333,073 527,345 0.15 0.01 1998 1,021,125 39,481,731 293,548 0.29 0.01 1998 2,607,259 5,851,342 403,170 0.15 0.07
1999 8,771,108 52,712,643 1,346,629 0.15 0.03 1999 6,238,208 47,393,925 1,238,792 0.2 0.03 1999 2,532,900 5,318,719 393,933 0.16 0.07
2000 12,044,097 48,245,854 1,552,288 0.13 0.03 2000 8,939,135 42,396,518 1,380,636 0.15 0.03 2000 3,104,962 5,849,336 547,751 0.18 0.09
2001 16,820,122 44,579,752 1,677,408 0.1 0.04 2001 13,892,202 39,539,787 1,524,646 0.11 0.04 2001 2,927,921 5,039,965 520,202 0.18 0.1
2002 25,649,757 46,069,249 2,023,136 0.08 0.04 2002 23,055,053 42,352,195 1,924,838 0.08 0.05 2002 2,594,704 3,717,054 401,527 0.15 0.11
2003 26,814,841 36,868,372 1,810,063 0.07 0.05 2003 24,566,249 34,087,548 1,726,268 0.07 0.05 2003 2,248,592 2,780,823 345,912 0.15 0.12
2004 27,694,034 30,980,201 1,704,135 0.06 0.06 2004 25,148,795 28,364,809 1,605,288 0.06 0.06 2004 2,545,238 2,615,392 385,782 0.15 0.15
2005 29,303,857 29,588,893 1,747,421 0.06 0.06 2005 27,260,125 27,533,323 1,680,000 0.06 0.06 2005 2,043,732 2,055,570 302,516 0.15 0.15

Total ######### ######### 7,314,170 0.04 0.01 Total 131,366,189 691,475,767 6,202,006 0.05 0.01 Total 37,154,492 103,988,500 3,429,684 0.09 0.03

The above table shows the forecasted reserve distribution for each cell (mean is in black, standard deviation in red) along with the data (mean in black, observed in blue).
The aggregate total reserve has a distribution with a mean of 168.5 Million and a standard deviation of 7.3 Million)

Aggregate of both LOBs
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2006 40,152,894 2,134,235 0.05 2006 33,519,508 1,848,318 0.06 2006 6,633,386 831,656 0.13
2007 35,155,581 2,020,694 0.06 2007 29,508,011 1,802,724 0.06 2007 5,647,570 700,405 0.12
2008 28,479,904 1,980,152 0.07 2008 23,768,077 1,824,205 0.08 2008 4,711,827 584,537 0.12
2009 21,014,185 1,720,152 0.08 2009 17,179,088 1,601,101 0.09 2009 3,835,097 479,536 0.13
2010 14,187,514 1,458,652 0.1 2010 11,142,452 1,370,170 0.12 2010 3,045,061 386,608 0.13
2011 9,614,941 1,314,889 0.14 2011 7,132,762 1,248,581 0.18 2011 2,482,179 323,867 0.13
2012 6,101,316 939,590 0.15 2012 4,068,435 879,103 0.22 2012 2,032,880 273,862 0.13
2013 3,936,035 706,590 0.18 2013 2,259,762 650,795 0.29 2013 1,676,274 234,483 0.14
2014 2,623,111 558,450 0.21 2014 1,186,083 504,771 0.43 2014 1,437,028 211,034 0.15
2015 1,899,358 349,163 0.18 2015 624,074 276,022 0.44 2015 1,275,283 197,173 0.15
2016 1,479,245 262,725 0.18 2016 365,224 178,727 0.49 2016 1,114,021 181,158 0.16
2017 1,182,439 219,099 0.19 2017 242,027 137,920 0.57 2017 940,412 161,632 0.17
2018 843,120 155,839 0.18 2018 150,914 88,522 0.59 2018 692,206 121,301 0.18
2019 626,381 117,543 0.19 2019 94,180 57,741 0.61 2019 532,201 97,096 0.18
2020 461,240 90,634 0.2 2020 56,618 37,342 0.66 2020 404,622 78,949 0.2
2021 312,441 62,804 0.2 2021 33,482 24,071 0.72 2021 278,959 55,320 0.2
2022 204,596 43,397 0.21 2022 19,058 15,215 0.8 2022 185,538 38,751 0.21
2023 131,311 30,576 0.23 2023 9,921 9,075 0.91 2023 121,389 28,007 0.23
2024 80,725 22,150 0.27 2024 4,734 5,197 1.1 2024 75,992 20,828 0.27
2025 34,345 12,765 0.37 2025 1,777 2,658 1.5 2025 32,568 12,100 0.37

Total 168,520,681 7,314,170 0.04 Total 131,366,189 6,202,006 0.05 Total 37,154,492 3,429,684 0.09

Aggregate of both LOBs LOB Subclass LOB Subclass

Employers Liability: Composite DS: MPTF[optimal-1]:
Forecast:Aggregate:Reserve Forecast Summaries:Calendar Periods
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Yr

Mean
Reserve

Calendar Yr Summary

Calendar
Yr

Mean Reserve
Standard

Dev.
CV

Reserve
Standard Dev.

CV
Reserve

Calendar Yr Summary

1 Unit = $1

Calendar
Yr

Mean
Reserve

Standard
Dev.

CV
Reserve

1 Unit = $1



Appendix F5.9

Employers Liability subclass a Employers Liability subclass b
Employers Liability subclass a 1 0.076853
Employers Liability subclass b 0.076853 1

The reserve forecast correlation of 7.7% shows a good diversification level between these two lines.

%
Employers Liability subclass a 74.96
Employers Liability subclass b 25.04

The capital allocation formula is based on the variances of the distributions for each LOB and the covariance between them.

Reserve Forecast Correlations Between Datasets (Totals)

Capital Allocation (Totals)

Employers Liability: Composite DS: MPTF[optimal-1]: Forecast:Aggregate:Reserve
Forecast Summaries:Correlations and SDs:By Datasets:Totals:Correlations

That is, the risk capital required at the 95th percentile, for example is not significantly higher than were



Appendix F6.1

Summary of Appendix F6

The forecast scenario used included continuing calendar trends as follows.
For both Net and Gross data
2005 - 2022 2.48% +- 1.72%

The forecasts for the reserve distribution for the Gross and Net data are shown below.

Reserve
Mean

Reserve
Standard
Deviation

Coefficient
of Variation

Gross 2,267 634 0.27966476
Net 2,144 613 0.28591418

This workbook provides the forecasted reserve distribution and quantiles for the Gross and Net data of the
Marine Cargo Line of Business.

The coefficient of variation of the reserves for the Net data is slightly higher than the
coefficient of variation for the Gross data. This indicates that the Reinsurance program for
the cedant is not optimal in terms of ceding risk. The reason for this phenomenon is that the
process variability for the Net data is higher than for the Gross data. See the Model Displays.

The trend structure is approximately the same in each triangle (see model displays). The process variance is
higher for the Net data than the Gross data!

The process correlation between the Net and Gross data is very high: 90%. The correlation between reserve
distributions is also very high at 85%.

Estimates of the Net of reinsurance and Gross reserve distribution for the Marine Cargo Line of business is
obtained by designing a composite model for the two lines which includes correlations between the Net and
Gross data (the data are not aggregated).



Appendix F6.2.1

Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R

99.995 6.643 6.903 4.376 6.883 7.281 4.615 6.349 6.439 4.082 5.601 5.259 3.333

99.99 6.299 6.36 4.031 6.556 6.767 4.289 6.057 5.979 3.79 5.408 4.955 3.141

99.98 5.972 5.845 3.705 6.22 6.236 3.953 5.767 5.521 3.5 5.211 4.645 2.944

99.97 5.894 5.722 3.627 6.053 5.972 3.786 5.598 5.255 3.331 5.094 4.46 2.827

99.96 5.854 5.659 3.587 5.933 5.783 3.666 5.478 5.066 3.211 5.011 4.328 2.743

99.95 5.774 5.532 3.506 5.833 5.626 3.566 5.385 4.919 3.118 4.945 4.224 2.678

99.94 5.735 5.471 3.468 5.743 5.484 3.476 5.31 4.8 3.043 4.891 4.139 2.624

99.93 5.733 5.468 3.466 5.658 5.35 3.391 5.246 4.699 2.978 4.845 4.066 2.578

99.92 5.552 5.182 3.285 5.578 5.223 3.311 5.19 4.611 2.923 4.805 4.003 2.537

99.91 5.423 4.978 3.155 5.502 5.102 3.234 5.141 4.534 2.874 4.769 3.947 2.502

99.9 5.341 4.85 3.074 5.431 4.991 3.164 5.098 4.465 2.83 4.737 3.897 2.47

99.8 4.915 4.177 2.648 5.005 4.319 2.738 4.81 4.011 2.542 4.523 3.559 2.256

99.7 4.756 3.926 2.489 4.791 3.981 2.523 4.641 3.744 2.373 4.395 3.357 2.128

99.6 4.575 3.641 2.308 4.648 3.756 2.381 4.52 3.555 2.253 4.302 3.21 2.035

99.5 4.496 3.516 2.228 4.542 3.589 2.275 4.427 3.407 2.16 4.229 3.095 1.962

99.4 4.418 3.393 2.151 4.457 3.454 2.189 4.35 3.286 2.083 4.169 3 1.902

99.3 4.348 3.283 2.081 4.384 3.34 2.117 4.285 3.184 2.018 4.117 2.918 1.85

99.2 4.279 3.174 2.012 4.321 3.24 2.054 4.229 3.094 1.961 4.072 2.847 1.805

99.1 4.239 3.11 1.971 4.265 3.151 1.997 4.179 3.016 1.912 4.032 2.784 1.765

99 4.206 3.058 1.939 4.214 3.072 1.947 4.134 2.945 1.867 3.996 2.727 1.729

98 3.854 2.504 1.587 3.877 2.54 1.61 3.836 2.475 1.569 3.75 2.34 1.483

97 3.653 2.185 1.385 3.68 2.229 1.413 3.658 2.195 1.391 3.6 2.102 1.332

96 3.518 1.973 1.25 3.539 2.007 1.272 3.53 1.992 1.263 3.489 1.927 1.222

95 3.399 1.786 1.132 3.43 1.835 1.163 3.429 1.833 1.162 3.4 1.788 1.133

94 3.315 1.653 1.048 3.342 1.695 1.074 3.345 1.701 1.078 3.326 1.671 1.059

93 3.242 1.538 0.975 3.268 1.578 1 3.274 1.588 1.006 3.262 1.57 0.995

92 3.186 1.449 0.919 3.203 1.477 0.936 3.211 1.488 0.943 3.206 1.48 0.938

91 3.133 1.366 0.866 3.146 1.386 0.879 3.154 1.4 0.887 3.154 1.4 0.887

90 3.083 1.287 0.816 3.094 1.304 0.826 3.104 1.319 0.836 3.108 1.326 0.841

89 3.04 1.219 0.773 3.045 1.228 0.778 3.057 1.246 0.79 3.065 1.259 0.798

88 2.992 1.143 0.725 3 1.157 0.733 3.014 1.178 0.747 3.025 1.196 0.758

87 2.939 1.06 0.672 2.958 1.091 0.691 2.974 1.115 0.707 2.988 1.137 0.721

86 2.907 1.009 0.64 2.919 1.028 0.652 2.937 1.056 0.67 2.953 1.082 0.686

85 2.868 0.947 0.6 2.882 0.971 0.615 2.902 1.001 0.634 2.92 1.03 0.653

84 2.833 0.893 0.566 2.848 0.916 0.581 2.868 0.948 0.601 2.889 0.981 0.622

83 2.804 0.847 0.537 2.815 0.865 0.548 2.837 0.899 0.57 2.859 0.933 0.592

82 2.772 0.796 0.505 2.785 0.817 0.518 2.807 0.851 0.539 2.83 0.888 0.563

81 2.739 0.744 0.471 2.756 0.771 0.488 2.778 0.806 0.511 2.803 0.845 0.536

80 2.717 0.71 0.45 2.728 0.727 0.461 2.75 0.762 0.483 2.776 0.803 0.509

79 2.693 0.672 0.426 2.702 0.685 0.434 2.724 0.721 0.457 2.751 0.763 0.484

78 2.667 0.631 0.4 2.676 0.645 0.409 2.699 0.68 0.431 2.726 0.724 0.459

77 2.643 0.593 0.376 2.652 0.607 0.385 2.674 0.642 0.407 2.702 0.686 0.435

76 2.618 0.553 0.351 2.628 0.57 0.361 2.65 0.604 0.383 2.679 0.65 0.412

75 2.597 0.52 0.33 2.606 0.534 0.339 2.627 0.568 0.36 2.657 0.614 0.389

74 2.577 0.489 0.31 2.584 0.499 0.317 2.605 0.532 0.338 2.635 0.58 0.368

73 2.559 0.461 0.292 2.562 0.466 0.295 2.583 0.498 0.316 2.613 0.546 0.346

72 2.537 0.425 0.27 2.542 0.433 0.274 2.562 0.465 0.295 2.593 0.513 0.325

71 2.513 0.388 0.246 2.521 0.401 0.254 2.541 0.432 0.274 2.572 0.481 0.305

70 2.495 0.359 0.227 2.501 0.37 0.234 2.521 0.4 0.254 2.552 0.45 0.285

69 2.479 0.335 0.212 2.482 0.339 0.215 2.501 0.369 0.234 2.533 0.419 0.265

68 2.459 0.302 0.191 2.463 0.309 0.196 2.482 0.339 0.215 2.513 0.388 0.246

67 2.44 0.272 0.173 2.445 0.28 0.177 2.463 0.309 0.196 2.495 0.359 0.227

66 2.423 0.245 0.155 2.426 0.251 0.159 2.445 0.28 0.178 2.476 0.329 0.209

65 2.407 0.221 0.14 2.409 0.223 0.141 2.427 0.252 0.159 2.458 0.301 0.191

64 2.389 0.192 0.122 2.391 0.195 0.124 2.409 0.223 0.142 2.44 0.272 0.173

63 2.373 0.167 0.106 2.374 0.168 0.107 2.391 0.196 0.124 2.422 0.244 0.155

62 2.354 0.138 0.087 2.357 0.141 0.09 2.374 0.169 0.107 2.405 0.217 0.137

TABLE CONTINUED ON THE NEXT PAGE

Mean = 2.267, S.D. = 0.634, Provision = 2.267, 1 Unit = $1,000
Marine Cargo Gross Data: Quantiles & VAR

Quantile Statistics and Value at Risk (Acc Year: Total)
Sample Kernel LogNormal Gamma

%



Appendix F6.2.2

Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R

61 2.335 0.108 0.068 2.34 0.115 0.073 2.357 0.142 0.09 2.387 0.19 0.12

60 2.318 0.08 0.051 2.324 0.089 0.056 2.34 0.115 0.073 2.37 0.163 0.103

59 2.302 0.054 0.034 2.307 0.064 0.04 2.324 0.089 0.057 2.354 0.136 0.086

58 2.287 0.031 0.019 2.292 0.038 0.024 2.308 0.064 0.04 2.337 0.11 0.07

57 2.273 0.009 0.005 2.276 0.014 0.009 2.292 0.038 0.024 2.32 0.084 0.053

56 2.258 -0.015 -0.009 2.26 -0.011 -0.007 2.276 0.013 0.008 2.304 0.058 0.037

55 2.245 -0.036 -0.023 2.245 -0.035 -0.022 2.26 -0.012 -0.007 2.288 0.032 0.021

54 2.227 -0.064 -0.04 2.23 -0.059 -0.038 2.244 -0.036 -0.023 2.272 0.007 0.004

53 2.215 -0.083 -0.052 2.215 -0.083 -0.053 2.229 -0.06 -0.038 2.256 -0.018 -0.011

52 2.2 -0.106 -0.067 2.2 -0.106 -0.067 2.214 -0.085 -0.054 2.24 -0.043 -0.027

51 2.185 -0.13 -0.083 2.185 -0.13 -0.082 2.198 -0.108 -0.069 2.224 -0.068 -0.043

50 2.171 -0.152 -0.097 2.17 -0.153 -0.097 2.183 -0.132 -0.084 2.208 -0.093 -0.059

49 2.158 -0.172 -0.109 2.156 -0.176 -0.111 2.169 -0.156 -0.099 2.193 -0.117 -0.074

48 2.143 -0.196 -0.124 2.142 -0.198 -0.126 2.154 -0.179 -0.113 2.177 -0.142 -0.09

47 2.128 -0.22 -0.139 2.127 -0.221 -0.14 2.139 -0.202 -0.128 2.162 -0.166 -0.105

46 2.113 -0.243 -0.154 2.113 -0.243 -0.154 2.124 -0.225 -0.143 2.146 -0.191 -0.121

45 2.099 -0.266 -0.169 2.099 -0.266 -0.168 2.11 -0.249 -0.158 2.131 -0.215 -0.136

44 2.086 -0.286 -0.181 2.085 -0.288 -0.182 2.095 -0.272 -0.172 2.116 -0.239 -0.152

43 2.072 -0.309 -0.196 2.071 -0.31 -0.196 2.081 -0.294 -0.187 2.1 -0.264 -0.167

42 2.056 -0.333 -0.211 2.057 -0.332 -0.21 2.066 -0.317 -0.201 2.085 -0.288 -0.182

41 2.042 -0.355 -0.225 2.043 -0.354 -0.224 2.052 -0.34 -0.216 2.069 -0.312 -0.198

40 2.03 -0.375 -0.237 2.029 -0.376 -0.238 2.037 -0.363 -0.23 2.054 -0.336 -0.213

39 2.017 -0.395 -0.25 2.015 -0.397 -0.252 2.023 -0.386 -0.245 2.039 -0.361 -0.229

38 2.004 -0.416 -0.263 2.002 -0.419 -0.266 2.008 -0.409 -0.259 2.023 -0.385 -0.244

37 1.991 -0.436 -0.276 1.988 -0.441 -0.279 1.994 -0.431 -0.273 2.008 -0.409 -0.259

36 1.977 -0.457 -0.29 1.974 -0.462 -0.293 1.979 -0.454 -0.288 1.992 -0.434 -0.275

35 1.963 -0.48 -0.304 1.961 -0.484 -0.307 1.965 -0.477 -0.303 1.977 -0.459 -0.291

34 1.946 -0.506 -0.321 1.947 -0.505 -0.32 1.95 -0.5 -0.317 1.961 -0.483 -0.306

33 1.934 -0.525 -0.333 1.933 -0.527 -0.334 1.935 -0.523 -0.332 1.945 -0.508 -0.322

32 1.922 -0.545 -0.345 1.92 -0.549 -0.348 1.921 -0.547 -0.346 1.929 -0.533 -0.338

31 1.909 -0.565 -0.358 1.906 -0.57 -0.361 1.906 -0.57 -0.361 1.913 -0.558 -0.354

30 1.896 -0.586 -0.371 1.892 -0.592 -0.375 1.891 -0.593 -0.376 1.897 -0.584 -0.37

29 1.882 -0.607 -0.385 1.878 -0.614 -0.389 1.876 -0.617 -0.391 1.881 -0.61 -0.386

28 1.868 -0.631 -0.4 1.864 -0.636 -0.403 1.861 -0.641 -0.406 1.864 -0.636 -0.403

27 1.855 -0.651 -0.412 1.85 -0.658 -0.417 1.846 -0.665 -0.421 1.848 -0.662 -0.419

26 1.842 -0.671 -0.425 1.836 -0.681 -0.432 1.83 -0.689 -0.437 1.831 -0.688 -0.436

25 1.827 -0.695 -0.44 1.821 -0.704 -0.446 1.815 -0.714 -0.452 1.814 -0.715 -0.453

24 1.813 -0.717 -0.455 1.806 -0.727 -0.461 1.799 -0.739 -0.468 1.796 -0.743 -0.471

23 1.799 -0.739 -0.469 1.791 -0.751 -0.476 1.783 -0.764 -0.484 1.779 -0.77 -0.488

22 1.783 -0.764 -0.484 1.776 -0.775 -0.491 1.767 -0.79 -0.5 1.761 -0.799 -0.506

21 1.768 -0.787 -0.499 1.761 -0.799 -0.507 1.75 -0.816 -0.517 1.743 -0.828 -0.525

20 1.753 -0.812 -0.515 1.745 -0.825 -0.523 1.733 -0.842 -0.534 1.724 -0.857 -0.543

19 1.737 -0.837 -0.53 1.728 -0.85 -0.539 1.716 -0.869 -0.551 1.705 -0.887 -0.562

18 1.718 -0.866 -0.549 1.711 -0.877 -0.556 1.699 -0.897 -0.569 1.685 -0.918 -0.582

17 1.7 -0.894 -0.567 1.694 -0.904 -0.573 1.681 -0.925 -0.587 1.665 -0.95 -0.602

16 1.682 -0.924 -0.585 1.676 -0.932 -0.591 1.662 -0.955 -0.605 1.645 -0.982 -0.623

15 1.665 -0.951 -0.603 1.658 -0.962 -0.61 1.643 -0.985 -0.624 1.623 -1.016 -0.644

14 1.644 -0.983 -0.623 1.639 -0.992 -0.629 1.623 -1.016 -0.644 1.601 -1.051 -0.666

13 1.627 -1.01 -0.64 1.619 -1.023 -0.649 1.603 -1.048 -0.664 1.578 -1.087 -0.689

12 1.609 -1.038 -0.658 1.598 -1.056 -0.669 1.582 -1.081 -0.685 1.554 -1.125 -0.713

11 1.585 -1.076 -0.682 1.576 -1.09 -0.691 1.56 -1.116 -0.708 1.529 -1.165 -0.738

10 1.56 -1.115 -0.707 1.554 -1.126 -0.714 1.536 -1.153 -0.731 1.502 -1.207 -0.765

9 1.537 -1.152 -0.73 1.53 -1.163 -0.737 1.511 -1.192 -0.756 1.474 -1.251 -0.793

8 1.513 -1.189 -0.754 1.504 -1.203 -0.763 1.485 -1.234 -0.782 1.444 -1.299 -0.824

7 1.485 -1.235 -0.783 1.477 -1.246 -0.79 1.456 -1.279 -0.811 1.411 -1.351 -0.856

6 1.456 -1.279 -0.811 1.448 -1.293 -0.819 1.425 -1.328 -0.842 1.375 -1.408 -0.892

5 1.425 -1.328 -0.842 1.415 -1.344 -0.852 1.39 -1.383 -0.877 1.335 -1.471 -0.933

4 1.388 -1.388 -0.88 1.378 -1.404 -0.89 1.351 -1.446 -0.917 1.288 -1.544 -0.979

3 1.347 -1.451 -0.92 1.332 -1.475 -0.935 1.303 -1.521 -0.964 1.233 -1.632 -1.034

2 1.28 -1.558 -0.987 1.274 -1.567 -0.993 1.243 -1.616 -1.024 1.162 -1.744 -1.105

1 1.205 -1.676 -1.062 1.192 -1.696 -1.075 1.153 -1.757 -1.114 1.056 -1.911 -1.211

Gamma
%

Sample Kernel LogNormal

Mean = 2.267, S.D. = 0.634, Provision = 2.267, 1 Unit = $1,000

Quantile Statistics and Value at Risk (Acc Year: Total)
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Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R

99.995 7.015 7.952 4.871 7.257 8.347 5.113 6.131 6.508 3.987 5.384 5.29 3.24

99.99 6.959 7.859 4.815 7.096 8.083 4.952 5.843 6.039 3.699 5.196 4.983 3.052

99.98 6.949 7.843 4.805 6.836 7.659 4.692 5.558 5.573 3.414 5.005 4.669 2.86

99.97 6.477 7.073 4.333 6.545 7.185 4.401 5.391 5.301 3.247 4.89 4.483 2.746

99.96 5.853 6.054 3.709 6.147 6.535 4.003 5.274 5.109 3.13 4.809 4.35 2.664

99.95 5.788 5.948 3.644 5.88 6.099 3.736 5.183 4.96 3.039 4.744 4.245 2.6

99.94 5.699 5.803 3.555 5.712 5.825 3.568 5.108 4.839 2.964 4.692 4.159 2.548

99.93 5.484 5.451 3.339 5.587 5.621 3.443 5.045 4.736 2.901 4.647 4.086 2.503

99.92 5.311 5.17 3.167 5.492 5.465 3.348 4.991 4.647 2.847 4.608 4.022 2.464

99.91 5.224 5.028 3.08 5.417 5.342 3.273 4.943 4.569 2.799 4.573 3.965 2.429

99.9 5.221 5.023 3.077 5.356 5.244 3.212 4.9 4.499 2.756 4.542 3.914 2.398

99.8 4.998 4.659 2.854 5.016 4.688 2.872 4.617 4.037 2.473 4.334 3.574 2.189

99.7 4.795 4.327 2.651 4.8 4.335 2.656 4.452 3.767 2.308 4.208 3.37 2.064

99.6 4.588 3.989 2.443 4.629 4.057 2.485 4.334 3.575 2.19 4.118 3.222 1.974

99.5 4.445 3.756 2.301 4.497 3.84 2.352 4.242 3.425 2.098 4.047 3.106 1.903

99.4 4.354 3.608 2.21 4.39 3.666 2.246 4.167 3.303 2.023 3.988 3.01 1.844

99.3 4.28 3.487 2.136 4.3 3.519 2.156 4.104 3.199 1.96 3.938 2.928 1.794

99.2 4.205 3.364 2.061 4.222 3.392 2.078 4.049 3.109 1.905 3.894 2.857 1.75

99.1 4.122 3.229 1.978 4.153 3.28 2.009 4 3.029 1.856 3.855 2.793 1.711

99 4.034 3.085 1.89 4.093 3.181 1.949 3.956 2.958 1.812 3.82 2.735 1.676

98 3.71 2.556 1.566 3.731 2.591 1.587 3.665 2.483 1.521 3.581 2.346 1.437

97 3.501 2.215 1.357 3.529 2.261 1.385 3.492 2.2 1.348 3.434 2.107 1.29

96 3.36 1.986 1.216 3.387 2.029 1.243 3.367 1.996 1.223 3.327 1.931 1.183

95 3.255 1.813 1.111 3.277 1.85 1.133 3.269 1.836 1.124 3.241 1.791 1.097

94 3.169 1.674 1.025 3.187 1.703 1.043 3.187 1.703 1.043 3.169 1.673 1.025

93 3.095 1.552 0.951 3.111 1.578 0.967 3.117 1.589 0.973 3.107 1.571 0.963

92 3.026 1.44 0.882 3.044 1.469 0.9 3.056 1.489 0.912 3.052 1.482 0.908

91 2.971 1.349 0.827 2.985 1.373 0.841 3.001 1.4 0.857 3.002 1.401 0.858

90 2.915 1.259 0.771 2.933 1.287 0.789 2.952 1.319 0.808 2.957 1.327 0.813

89 2.87 1.185 0.726 2.885 1.21 0.741 2.907 1.245 0.763 2.915 1.259 0.771

88 2.827 1.115 0.683 2.842 1.139 0.698 2.865 1.177 0.721 2.877 1.196 0.733

87 2.785 1.046 0.641 2.802 1.073 0.658 2.826 1.114 0.682 2.841 1.137 0.697

86 2.75 0.99 0.606 2.765 1.013 0.621 2.79 1.055 0.646 2.807 1.082 0.663

85 2.719 0.939 0.575 2.73 0.957 0.586 2.756 0.999 0.612 2.775 1.03 0.631

84 2.685 0.883 0.541 2.698 0.904 0.554 2.724 0.946 0.58 2.744 0.98 0.6

83 2.652 0.829 0.508 2.667 0.854 0.523 2.693 0.896 0.549 2.715 0.933 0.571

82 2.625 0.784 0.481 2.639 0.808 0.495 2.664 0.849 0.52 2.688 0.887 0.544

81 2.6 0.744 0.456 2.612 0.763 0.468 2.636 0.803 0.492 2.661 0.844 0.517

80 2.575 0.703 0.431 2.586 0.721 0.442 2.61 0.76 0.466 2.635 0.802 0.491

79 2.547 0.658 0.403 2.561 0.681 0.417 2.584 0.718 0.44 2.611 0.762 0.467

78 2.527 0.625 0.383 2.537 0.642 0.393 2.559 0.678 0.415 2.587 0.723 0.443

77 2.504 0.588 0.36 2.515 0.605 0.371 2.535 0.639 0.391 2.564 0.685 0.42

76 2.487 0.56 0.343 2.493 0.569 0.349 2.512 0.601 0.368 2.541 0.648 0.397

75 2.466 0.525 0.322 2.471 0.534 0.327 2.49 0.565 0.346 2.52 0.613 0.375

74 2.445 0.491 0.301 2.45 0.5 0.306 2.468 0.53 0.324 2.498 0.578 0.354

73 2.424 0.458 0.28 2.43 0.467 0.286 2.447 0.495 0.303 2.478 0.544 0.334

72 2.406 0.428 0.262 2.41 0.435 0.266 2.427 0.462 0.283 2.457 0.512 0.313

71 2.389 0.4 0.245 2.391 0.403 0.247 2.407 0.429 0.263 2.438 0.479 0.294

70 2.37 0.369 0.226 2.372 0.372 0.228 2.388 0.397 0.243 2.418 0.448 0.274

69 2.351 0.338 0.207 2.354 0.342 0.209 2.368 0.366 0.224 2.399 0.417 0.255

68 2.334 0.31 0.19 2.335 0.312 0.191 2.35 0.336 0.206 2.381 0.386 0.237

67 2.313 0.276 0.169 2.317 0.283 0.173 2.332 0.306 0.188 2.363 0.357 0.219

66 2.297 0.25 0.153 2.3 0.254 0.156 2.314 0.277 0.17 2.345 0.327 0.201

65 2.278 0.219 0.134 2.282 0.226 0.138 2.296 0.248 0.152 2.327 0.299 0.183

64 2.26 0.189 0.116 2.265 0.198 0.121 2.279 0.22 0.135 2.31 0.27 0.166

63 2.245 0.165 0.101 2.249 0.171 0.105 2.262 0.193 0.118 2.293 0.242 0.148

62 2.229 0.138 0.085 2.232 0.144 0.088 2.245 0.166 0.101 2.276 0.215 0.132

TABLE CONTINUED ON THE NEXT PAGE

Mean = 2.144, S.D. = 0.613, Provision = 2.144, 1 Unit = $1,000
Marine Cargo Net Data: Quantiles & VAR

Quantile Statistics and Value at Risk (Acc Year: Total)
Sample Kernel LogNormal Gamma

%



Appendix F6.3.2

Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R Quantile # S.D.'s V-a-R

61 2.212 0.112 0.068 2.216 0.117 0.072 2.229 0.139 0.085 2.259 0.188 0.115

60 2.197 0.086 0.053 2.2 0.091 0.056 2.213 0.112 0.069 2.242 0.161 0.098

59 2.183 0.063 0.039 2.184 0.066 0.04 2.197 0.086 0.053 2.226 0.134 0.082

58 2.166 0.036 0.022 2.169 0.04 0.025 2.181 0.061 0.037 2.21 0.108 0.066

57 2.152 0.013 0.008 2.153 0.015 0.009 2.166 0.035 0.022 2.194 0.082 0.05

56 2.137 -0.012 -0.007 2.138 -0.009 -0.006 2.15 0.01 0.006 2.178 0.056 0.034

55 2.121 -0.037 -0.023 2.123 -0.034 -0.021 2.135 -0.014 -0.009 2.163 0.03 0.019

54 2.107 -0.06 -0.037 2.108 -0.058 -0.036 2.12 -0.039 -0.024 2.147 0.005 0.003

53 2.092 -0.085 -0.052 2.094 -0.082 -0.05 2.105 -0.063 -0.039 2.132 -0.02 -0.012

52 2.079 -0.106 -0.065 2.079 -0.106 -0.065 2.091 -0.087 -0.053 2.116 -0.045 -0.028

51 2.066 -0.127 -0.078 2.065 -0.129 -0.079 2.076 -0.111 -0.068 2.101 -0.07 -0.043

50 2.052 -0.15 -0.092 2.051 -0.153 -0.094 2.062 -0.135 -0.082 2.086 -0.095 -0.058

49 2.039 -0.172 -0.105 2.036 -0.176 -0.108 2.047 -0.158 -0.097 2.071 -0.119 -0.073

48 2.023 -0.197 -0.121 2.022 -0.199 -0.122 2.033 -0.181 -0.111 2.056 -0.144 -0.088

47 2.009 -0.221 -0.136 2.008 -0.222 -0.136 2.019 -0.205 -0.125 2.041 -0.168 -0.103

46 1.994 -0.246 -0.151 1.994 -0.244 -0.15 2.004 -0.228 -0.14 2.026 -0.193 -0.118

45 1.978 -0.271 -0.166 1.981 -0.267 -0.163 1.99 -0.251 -0.154 2.011 -0.217 -0.133

44 1.967 -0.289 -0.177 1.967 -0.289 -0.177 1.976 -0.274 -0.168 1.996 -0.241 -0.148

43 1.951 -0.315 -0.193 1.954 -0.311 -0.19 1.962 -0.297 -0.182 1.981 -0.265 -0.163

42 1.938 -0.336 -0.206 1.94 -0.333 -0.204 1.948 -0.319 -0.196 1.967 -0.29 -0.177

41 1.925 -0.358 -0.219 1.927 -0.355 -0.217 1.934 -0.342 -0.21 1.952 -0.314 -0.192

40 1.911 -0.38 -0.233 1.914 -0.376 -0.23 1.921 -0.365 -0.224 1.937 -0.338 -0.207

39 1.899 -0.399 -0.245 1.9 -0.398 -0.244 1.907 -0.388 -0.237 1.922 -0.362 -0.222

38 1.888 -0.418 -0.256 1.887 -0.419 -0.257 1.893 -0.41 -0.251 1.907 -0.387 -0.237

37 1.875 -0.439 -0.269 1.874 -0.44 -0.27 1.879 -0.433 -0.265 1.892 -0.411 -0.252

36 1.862 -0.46 -0.282 1.861 -0.462 -0.283 1.865 -0.456 -0.279 1.877 -0.435 -0.267

35 1.85 -0.48 -0.294 1.848 -0.483 -0.296 1.851 -0.479 -0.293 1.862 -0.46 -0.282

34 1.838 -0.499 -0.306 1.835 -0.504 -0.309 1.837 -0.502 -0.307 1.847 -0.485 -0.297

33 1.826 -0.52 -0.318 1.822 -0.525 -0.322 1.823 -0.524 -0.321 1.832 -0.509 -0.312

32 1.813 -0.54 -0.331 1.809 -0.546 -0.335 1.809 -0.548 -0.335 1.817 -0.534 -0.327

31 1.801 -0.561 -0.343 1.796 -0.568 -0.348 1.794 -0.571 -0.35 1.801 -0.56 -0.343

30 1.789 -0.58 -0.356 1.783 -0.589 -0.361 1.78 -0.594 -0.364 1.786 -0.585 -0.358

29 1.774 -0.604 -0.37 1.77 -0.611 -0.374 1.766 -0.618 -0.378 1.77 -0.611 -0.374

28 1.761 -0.626 -0.383 1.757 -0.633 -0.387 1.751 -0.641 -0.393 1.754 -0.636 -0.39

27 1.748 -0.646 -0.396 1.743 -0.655 -0.401 1.737 -0.665 -0.408 1.738 -0.663 -0.406

26 1.734 -0.67 -0.41 1.729 -0.677 -0.415 1.722 -0.689 -0.422 1.722 -0.689 -0.422

25 1.72 -0.692 -0.424 1.716 -0.699 -0.428 1.707 -0.714 -0.437 1.705 -0.716 -0.439

24 1.707 -0.713 -0.437 1.702 -0.722 -0.442 1.692 -0.739 -0.452 1.689 -0.743 -0.455

23 1.694 -0.735 -0.45 1.688 -0.745 -0.456 1.676 -0.764 -0.468 1.672 -0.771 -0.472

22 1.68 -0.757 -0.464 1.673 -0.768 -0.471 1.661 -0.789 -0.483 1.655 -0.799 -0.49

21 1.664 -0.784 -0.48 1.659 -0.792 -0.485 1.645 -0.815 -0.499 1.637 -0.828 -0.507

20 1.649 -0.807 -0.495 1.644 -0.817 -0.5 1.629 -0.841 -0.515 1.619 -0.857 -0.525

19 1.635 -0.831 -0.509 1.629 -0.841 -0.515 1.612 -0.868 -0.532 1.601 -0.887 -0.543

18 1.618 -0.859 -0.526 1.613 -0.866 -0.531 1.595 -0.896 -0.549 1.582 -0.918 -0.562

17 1.604 -0.882 -0.54 1.598 -0.892 -0.546 1.578 -0.924 -0.566 1.563 -0.949 -0.582

16 1.588 -0.908 -0.556 1.581 -0.919 -0.563 1.56 -0.953 -0.584 1.543 -0.982 -0.601

15 1.569 -0.938 -0.575 1.565 -0.946 -0.579 1.542 -0.983 -0.602 1.522 -1.015 -0.622

14 1.554 -0.963 -0.59 1.548 -0.974 -0.596 1.523 -1.013 -0.621 1.501 -1.05 -0.643

13 1.539 -0.988 -0.605 1.53 -1.003 -0.614 1.504 -1.045 -0.64 1.479 -1.086 -0.665

12 1.522 -1.015 -0.622 1.511 -1.033 -0.633 1.483 -1.079 -0.661 1.456 -1.124 -0.688

11 1.499 -1.052 -0.645 1.492 -1.065 -0.652 1.462 -1.113 -0.682 1.431 -1.163 -0.713

10 1.478 -1.088 -0.666 1.471 -1.098 -0.673 1.44 -1.15 -0.704 1.406 -1.205 -0.738

9 1.459 -1.118 -0.685 1.45 -1.134 -0.694 1.416 -1.189 -0.728 1.379 -1.249 -0.765

8 1.437 -1.155 -0.707 1.426 -1.172 -0.718 1.391 -1.23 -0.753 1.35 -1.297 -0.794

7 1.408 -1.201 -0.736 1.401 -1.213 -0.743 1.363 -1.274 -0.781 1.318 -1.348 -0.826

6 1.382 -1.244 -0.762 1.374 -1.257 -0.77 1.334 -1.323 -0.811 1.284 -1.404 -0.86

5 1.355 -1.289 -0.79 1.343 -1.308 -0.801 1.3 -1.377 -0.844 1.245 -1.467 -0.899

4 1.317 -1.349 -0.827 1.308 -1.365 -0.836 1.262 -1.439 -0.882 1.201 -1.54 -0.943

3 1.277 -1.416 -0.867 1.266 -1.434 -0.878 1.217 -1.513 -0.927 1.148 -1.626 -0.996

2 1.223 -1.503 -0.921 1.211 -1.523 -0.933 1.16 -1.607 -0.985 1.08 -1.737 -1.064

1 1.146 -1.63 -0.998 1.131 -1.653 -1.013 1.074 -1.746 -1.07 0.979 -1.902 -1.165

Gamma
%

Sample Kernel LogNormal

Quantile Statistics and Value at Risk (Acc Year: Total)

Mean = 2.144, S.D. = 0.613, Provision = 2.144, 1 Unit = $1,000
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The model for the Gross reserves is shown above. To be conservative, the 2.48% +- 1.7% calendar
trend was retained even though it is not statistically significant. Process variance is very high
from development year 3 onward.

Marine Cargo Gross Data: Model Displays

Marine Cargo Gross Net:Composite DS:MPTF[optimal2-1]:Marine Cargo GrossAll_Total:PL(I)::Dev. Yr Trends

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

-7

-6

-5

-4

-3

-2

-1

0
0.8404

+-0 .1334

-1.4671
+-0.0616

-1.2272
+-0 .0723

-0 .2425
+-0 .0641

Marine Cargo Gross Net:Composite DS:MPTF[optimal2-1]:Marine Cargo GrossAll_Total:PL(I)::Acc. Yr Trends

88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05

2

3

4

5

6

7

8

9

Marine Cargo Gross Net:Composite DS:MPTF[optimal2-1]:Marine Cargo GrossAll_Total:PL(I)::Cal. Yr Trends

88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05

-3

-2

-1

0

1

2

3

4

0.0000
+-0 .0000

0.0248
+-0.0172

Marine Cargo Gross Net:Composite DS:MPTF[optimal2-1]:Marine Cargo GrossAll_Total:PL(I)::MLE Variance vs Dev. Yr

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

0.1

0.2
0.3

0.4

0.5

0.6
0.7

0.8

0.9

1
1.1

6.1345



Appendix F6.5

The model for the Net reserves is shown above. To be conservative, the 2.48% +- 1.7%
calendar trend was retained even though it is not statistically significant. Process
variance is very high from development year 3 onward and is higher than for the Gross
data!

Marine Cargo Net Data: Model Displays

Marine Cargo Gross Net:Composite DS:MPT F[opt imal2-1]:Marine Cargo NetAll_Total:PL(I)::Dev. Yr Trends
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Appendix F6.6

Marine Cargo Gross Net:Composite DS:MPTF[optimal2-1]:Weighted Residual Covariances Between Datasets:Final Correlations

Marine Cargo GrossAll_Total:PL(I) Marine Cargo NetAll_Total:PL(I)

Marine Cargo GrossAll_Total:PL(I) 1 0.902865

Marine Cargo NetAll_Total:PL(I) 0.902865 1

Final Weighted Residual Correlations Between Datasets

4 iterations were executed

The process correlation (90%) between Gross and Net data is very high (as we would
expect).



Appendix F6.7.1

Marine Cargo Gross Net:Composite DS:MPTF[optimal2-1]:Forecast:Marine Cargo GrossAll_Total:PL(I):Reserve Forecast Table

Cal. Per. Total 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Reserve Ultimate

338 338 783 180 83 24 7 6 4 3 3 2 2 1 1 1 1 1 1 0 1,326

359 359 750 172 27 25 2 2 0 2 -11 0 1 -3 0 0 0 0 0 0 0

1,121 338 783 180 83 24 7 6 4 3 3 2 2 2 1 1 1 1 1 1 1,538

1,075 325 1,026 180 45 -5 2 -6 0 1 1 1 -29 1 1 1 -6 0 1 1 1

1,301 338 783 180 83 24 7 6 4 4 3 2 2 2 1 1 1 1 1 1 1,550

1,619 422 864 276 12 -6 -13 -2 1 -5 0 0 0 0 0 0 0 1 1 2 2

1,384 338 783 180 83 24 7 6 5 4 3 2 2 2 1 1 1 1 1 2 1,544

1,425 354 850 252 47 42 2 -11 5 0 0 0 0 0 0 0 1 1 1 3 3

1,408 338 783 180 83 24 7 6 5 4 3 2 2 2 1 1 1 1 1 3 1,154

1,470 275 652 170 22 -2 0 36 -3 1 0 0 0 0 0 2 2 1 1 3 3

1,415 338 783 180 83 24 7 6 5 4 3 3 2 2 1 1 1 1 1 5 1,318

1,198 285 829 127 36 38 2 5 -7 2 0 0 0 -4 2 2 2 1 1 4 4

1,421 338 783 180 83 25 8 6 5 4 3 3 2 2 1 1 1 1 1 7 1,337

1,342 297 647 190 236 32 7 -38 25 -54 11 -21 0 3 2 2 2 1 1 5 5

1,425 338 783 180 85 26 8 6 5 4 3 3 2 2 1 1 1 1 1 9 1,266

1,060 242 681 194 74 58 -2 28 0 -2 -15 0 3 3 2 2 2 1 1 7 7

1,429 338 783 184 87 26 8 6 5 4 3 3 2 2 1 1 1 1 1 12 1,166

1,093 187 710 197 23 20 5 12 -4 2 3 4 3 3 2 2 2 2 1 8 8

1,432 338 802 189 89 27 8 7 5 4 3 3 2 2 2 1 1 1 1 16 1,144

1,310 152 908 90 1 -6 23 23 -10 -53 5 4 3 3 2 2 2 2 1 10 10

1,469 346 822 194 92 28 8 7 5 4 4 3 2 2 2 1 1 1 1 21 951

1,429 180 668 88 2 0 -16 8 1 6 5 4 3 3 2 2 2 2 1 13 13

1,507 355 842 199 94 28 9 7 6 4 4 3 2 2 2 1 1 1 1 27 1,689

1,284 433 1,136 96 -1 3 -1 -5 8 6 5 4 4 3 3 2 2 2 1 15 15

1,547 364 864 204 96 29 9 7 6 5 4 3 2 2 2 1 1 1 1 35 1,332

1,560 393 708 222 35 -44 -16 10 8 7 5 4 4 3 3 2 2 2 2 19 19

1,588 373 886 209 99 30 9 7 6 5 4 3 3 2 2 1 1 1 1 45 1,431

1,348 488 788 63 31 16 13 11 8 7 6 5 4 3 3 2 2 2 2 24 24

1,629 383 909 215 102 31 9 8 6 5 4 3 3 2 2 1 1 1 1 77 1,666

1,263 271 1,041 210 68 44 14 11 9 7 6 5 4 3 3 2 2 2 2 52 52

1,673 393 933 220 104 32 10 8 6 5 4 3 3 2 2 1 1 1 1 183 1,855

1,534 381 1,231 60 147 45 14 11 9 7 6 5 4 3 3 2 2 2 2 158 158

1,718 403 958 226 107 32 10 8 6 5 4 3 3 2 2 2 1 1 1 415 1,947

2,039 653 879 104 152 47 15 12 9 7 6 5 4 4 3 3 2 2 2 198 198

1,764 414 984 233 110 33 10 8 7 5 4 3 3 2 2 2 1 1 1 1,410 1,948

1,486 538 460 108 156 48 15 12 10 8 6 5 4 4 3 3 2 2 2 521 521

Total Fitted/Paid 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Total Reserve Total Ultimate

25,568 1,387 413 186 78 46 36 29 23 18 14 11 9 7 5 3 2 1 2,267 26,162

23,895 510 199 167 55 26 21 18 15 13 11 9 8 6 5 4 3 2 634 634

The above table shows the forecasted reserve distribution for each cell (mean is in black, standard deviation in red) along with the data (mean in black, observed in blue).

Cal. Per.
Total

1994

1995

1996

1997

2004

2005

1999

1989

1990

1991

1992

Marine Cargo Gross Data: Forecast

Accident Period vs Development Period

1 Unit = $1

2000

2001

2002

2003

1993

1988

1998



Appendix F6.7.2

Reserve Ultimate Reserve Ultimate

1988 0 1,326 0 **** 0

1989 1 1,538 1 1.84 0

1990 1 1,550 2 1.35 0

1991 2 1,544 3 1.13 0

1992 3 1,154 3 0.99 0

1993 5 1,318 4 0.89 0

1994 7 1,337 5 0.81 0

1995 9 1,266 7 0.75 0.01

1996 12 1,166 8 0.69 0.01

1997 16 1,144 10 0.65 0.01

1998 21 951 13 0.61 0.01

1999 27 1,689 15 0.58 0.01

2000 35 1,332 19 0.56 0.01

2001 45 1,431 24 0.55 0.02

2002 77 1,666 52 0.67 0.03

2003 183 1,855 158 0.86 0.09

2004 415 1,947 198 0.48 0.1

2005 1,410 1,948 521 0.37 0.27

Total 2,267 26,162 634 0.28 0.02

Acc. Yr
Mean Standard

Dev.
CV

1 Unit = $1

Accident Yr Summary
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Marine Cargo Gross Net:Composite DS:MPTF[optimal2-2]:Forecast:Marine Cargo NetAll_Total:PL(I):Reserve Forecast Table

Cal. Per. Total 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Reserve Ultimate

318 318 737 169 39 26 10 8 6 5 4 3 2 2 2 1 1 1 1 0 1,125

297 297 628 155 25 25 2 2 2 2 -11 0 1 -3 0 0 0 0 0 0 0

1,055 318 737 169 39 26 10 8 6 5 4 3 2 2 2 1 1 1 1 1 1,255

910 282 788 176 43 -6 2 -7 0 1 1 1 -30 8 1 1 -6 0 2 2 2

1,224 318 737 169 39 26 10 8 6 5 4 3 3 2 2 1 1 1 1 2 1,354

1,325 382 755 233 7 -6 -13 -2 0 -5 0 0 0 0 2 0 0 2 2 3 3

1,263 318 737 169 39 26 10 8 6 5 4 3 3 2 2 1 1 1 1 3 1,283

1,243 288 723 242 -4 32 0 -6 5 0 0 0 0 0 0 0 2 2 2 4 4

1,289 318 737 169 39 26 10 8 6 5 4 3 3 2 2 1 1 1 1 5 1,025

1,262 237 572 159 19 2 0 36 -3 1 -3 0 0 0 0 3 2 2 2 5 5

1,299 318 737 169 39 26 10 8 6 5 4 3 3 2 2 2 1 1 1 7 1,149

1,061 245 705 120 38 37 4 5 -11 2 0 0 0 -4 3 3 2 2 2 7 7

1,306 318 737 169 39 26 10 8 7 5 4 3 3 2 2 2 1 1 1 9 1,187

1,063 205 588 222 71 32 7 -8 27 6 45 -19 0 4 3 3 3 2 2 8 8

1,312 318 737 169 40 27 10 8 7 5 4 4 3 2 2 2 1 1 1 12 1,132

959 218 618 163 72 56 -3 27 -18 -19 13 -7 5 4 4 3 3 2 2 10 10

1,317 318 737 174 41 28 11 9 7 6 4 4 3 2 2 2 1 1 1 16 1,029

1,047 167 612 175 14 15 25 12 -33 23 3 6 5 4 4 3 3 2 2 13 13

1,320 318 755 178 42 28 11 9 7 6 5 4 3 2 2 2 1 1 1 21 882

1,016 148 712 51 -5 -1 8 11 -9 -53 8 6 5 5 4 3 3 2 2 16 16

1,356 326 774 182 43 29 11 9 7 6 5 4 3 3 2 2 1 1 1 28 932

1,206 175 667 69 0 0 -16 8 1 10 8 7 6 5 4 3 3 3 2 19 19

1,392 334 793 187 44 30 12 9 7 6 5 4 3 3 2 2 1 1 1 36 1,504

1,234 433 967 73 -1 3 -1 -5 13 10 8 7 6 5 4 3 3 3 2 24 24

1,429 342 813 192 45 30 12 10 8 6 5 4 3 3 2 2 2 1 1 46 1,262

1,385 393 629 219 35 -44 -16 16 13 11 9 7 6 5 4 4 3 3 2 30 30

1,467 351 834 197 47 31 12 10 8 6 5 4 3 3 2 2 2 1 1 60 1,438

1,273 486 784 61 31 16 21 17 14 11 9 7 6 5 4 4 3 3 2 38 38

1,506 360 856 202 48 32 13 10 8 6 5 4 3 3 2 2 2 1 1 93 1,679

1,284 271 1,038 210 68 55 22 17 14 11 9 8 6 5 4 4 3 3 3 69 69

1,547 370 879 207 49 33 13 10 8 7 5 4 4 3 2 2 2 1 1 145 1,815

1,508 381 1,230 60 26 56 23 18 14 12 9 8 6 5 5 4 3 3 3 77 77

1,588 380 902 213 50 34 13 11 9 7 6 5 4 3 2 2 2 1 1 362 1,893

2,087 652 878 111 27 58 23 19 15 12 10 8 7 6 5 4 4 3 3 142 142

1,632 390 927 219 52 35 14 11 9 7 6 5 4 3 3 2 2 1 1 1,299 1,837

1,478 538 489 115 28 60 24 19 15 12 10 8 7 6 5 4 4 3 3 525 525

Total Fitted/Paid 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Total Reserve Total Ultimate

23,620 1,276 358 143 94 61 49 39 31 24 19 15 12 9 6 4 3 1 2,144 23,782

21,638 518 141 77 73 41 33 27 23 19 16 14 11 9 8 6 4 3 613 613

The above table shows the forecasted reserve distribution for each cell (mean is in black, standard deviation in red) along with the data (mean in black, observed in blue).
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Reserve Ultimate Reserve Ultimate

1988 0 1,125 0 **** 0

1989 1 1,255 2 2.15 0

1990 2 1,354 3 1.56 0

1991 3 1,283 4 1.3 0

1992 5 1,025 5 1.13 0.01

1993 7 1,149 7 1.02 0.01

1994 9 1,187 8 0.93 0.01

1995 12 1,132 10 0.85 0.01

1996 16 1,029 13 0.79 0.01

1997 21 882 16 0.75 0.02

1998 28 932 19 0.71 0.02

1999 36 1,504 24 0.68 0.02

2000 46 1,262 30 0.65 0.02

2001 60 1,438 38 0.64 0.03

2002 93 1,679 69 0.73 0.04

2003 145 1,815 77 0.53 0.04

2004 362 1,893 142 0.39 0.07

2005 1,299 1,837 525 0.4 0.29

Total 2,144 23,782 613 0.29 0.03

Acc. Yr
Mean Standard

Dev.
CV

1 Unit = $1

Accident Yr Summary
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