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Introduction
• Proxy models are simplified functions that

• Represent liabilities and/or assets

• Can very quickly be revalued under 
i d i k d i l

Proxy models are used for rapid 
updates of the balance sheet for:
• Regular solvency monitoring

C it l l l ti ith M trevised risk driver values

• Are calibrated to results from detailed 
actuarial models

• Capital calculation with Monte 
Carlo simulations

Various forms of proxy models are in use with the most popular approach in the UK being the 
use of polynomials.

Example with two risks, x =(x1, x2), up to quadratic terms:
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Linear 
relationship

Interaction between 
risks

Non-linear 
relationship
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Introduction
The proxy modelling calibration inputs 
consist of two items:
– Stressed scenarios (‘outer scenarios’)
– Balance sheet in stressed scenarios

Inner 
scenarios

Outer 
scenarios

Base 
case

Balance sheet in stressed scenarios

Inner scenarios:
For deterministically valued business, there 
is one inner scenario.

Outer scenarios:
These can be prepared in different ways

• Manually selected, often according to a rule

• Randomly generated

• A combination of manual and random

Stress 
impacts

Manual Random

4

For stochastically valued business, there 
could be thousands of  inner scenarios.
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Proxy modelling errors 
Measuring the error

• There are different measures for errors. The most 
commonly used are:RMSE: Root mean square error

Commonly used

Maximum absolute error

Minimising the maximum absolute error (‘minimax’) isCommonly used.

The RMSE is minimised using regression techniques (i.e. 
minimising least squares).

No firm relation between RMSE and SCR: RMSE is an 
average error. The error in the SCR estimate may be 
larger because not all points have an equal impact on the 
SCR.

Under certain conditions, the error function using least 
squares is equivalent to a Legendre polynomial:

Minimising the maximum absolute error ( minimax ) is 
difficult to compute.

Firm relationship between maximum error and SCR: The 
error on the SCR cannot exceed the maximum error of the 
proxy model. Hence, minimax is theoretically a better 
objective to optimise than the RMSE.

Under certain conditions, the error function using minimax
is a equivalent to a Chebyshev polynomial:

Maximum Maximum 
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error

Regression is often preferred to a minimax fit as it is easier to compute but it is difficult to 
translate a RMSE into error bounds for the SCR.

error

The proxy modelling process

• Which risk factors / balance sheet states should be used?

• How to draw from a risk neutral return distribution starting at t=1? How many RN sims
per point?

• Type of risk factors and calibration distribution of calibration points

• Validation of calibration simulations

Risk factors and 
calibration 
simulations

Validation of calibration simulations

• Regression method (e.g. least squares with basis, non-parametric methods, ...)

• Transformation of risk factors for regression (z.B. ln or N(d)) as enlargement of basis 
function space

• Criterion for selection of regression terms from a number of basis functions

• Control variates

Specification of 
Regression

• Statistical assessment, analysis of residuals

• Plausibility of results

Ch i f O f l i

Testing procedures 
and quality criteria

© 2012 B&W Deloitte GmbHLSMC and Proxy Models 6

• Licensed software vs. in-house development

• Integration in the overall SCR calculation / more general process

• Definition of interfaces

• Automation of the process

Choice of software

• Choice of Out-of-sample test points

• Quantitative quality criteria
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Proxy modelling errors – A taxonomy
• There are three types of errors with proxy models. These are summarised below 

including considerations how these can be minimised and reduced.

• When using specific methods, it is important to be aware of the nature of the errors in 
order to improve the fitorder to improve the fit.

Sampling 
error

(inner scenarios)

Fitting 
error

• Present in all proxy models that are not fitted to minimise the 
maximum error

• Can be reduced by using more appropriate stress tests for 

Error from using a fitting 
technique that does not 
produce the optimal fit (i.e. 

• Observed for all stochastically valued business 
• Can be reduced by running more simulations
• LSMC can correct for this error
• Can be measured using regression techniques

Error from randomness in fitting 
to stress results based on 
Monte Carlo scenarios (i.e. 
options and guarantees)

Description Considerations

7

error

• Present in all proxy models
• Can be reduced by increasing the polynomial order or use of 

terms that capture the liability behaviour more closely (e.g. 
replicating portfolios and implied parameter Black Scholes)

• Cannot be measured using regression techniques

Error in the best fit to a given 
choice of basis functions (i.e. fit 
cannot be improved by altering 
the fitting technique or outer 
scenarios)

Spanning 
error

calibration and/or minimax fit
• Cannot be measured using regression techniques

does not achieve minimax) for 
the choice of basis functions

Proxy modelling – LSMC
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LSMC introduction
• Run time of detailed actuarial models is a challenge, particularly for stochastically modelled business. 

• LSMC makes better use of outer scenarios which results in lower run time of detailed actuarial 
models for calibration than the traditional curve fitting approach to stress tests. 

Ho e er LSMC req ires more onero s alidation as none of the calibration stress test res lts help in• However, LSMC requires more onerous validation as none of the calibration stress test results help in 
assessing the goodness-of-fit (see illustration below).

• For given functions, the fits can be equally good for stress tests with least squares and LSMC.

LSMCCalibration of general proxy model
(manually selected outer scenarios)

Increase number of 
outer scenarios and

Calibration effort =
# outer scenarios * 
# inner scenarios

9

LSMC is based on polynomials and suffers the same challenges as the traditional 
polynomial curve fit to stress tests. 

outer scenarios and 
decrease number of 

inner scenarios

LSMC in more detail
LSMC
– uses polynomials
– uses randomly generated outer scenarios

is applied to stochastically valued business (i e for cost of guarantee)– is applied to stochastically valued business (i.e. for cost of guarantee)

Inner 
scenarios

Outer 
scenarios

Base 
case

Inner scenarios must be generated using a 
market consistent ESG reflecting the market 
conditions implied by the outer scenarios.

10

Stress 
impacts

Outer scenarios must be expressed in terms of 
the risk drivers X1, X2, .. used in the proxy 
model.



08/11/2013

6

LSMC in more detail - Process
Define 

framework

Produce

Determine approach and parameters e.g.
 risk drivers and distributions
 number of inner scenarios
 validation scenarios

 Sample from multivariate distributionProduce 
outer 

scenarios

Run ESG

Run asset 
and liability 

models

 Sample from multivariate distribution
 Combined stresses for market and non-

market risks

 Calibrate and run ESG for each market risk outer 
scenario

 Calibrate and run ESG for each validation scenario

 Set up and run full asset and liability models with ESG 
files for each outer scenario

 Run full asset and liability model for each validation 
i

11

Fit formulae

Test fit

scenario

 Validate results against 
validation runs

 Use simple least squares regression to fit 
polynomial formula using results of each 
outer scenario

LSMC in more detail
The strength of polynomials is that they are a generic family of curves:

• Can be used for lots of classes of business.

• Can be used when not all the factors impacting the business are transparent.p g p

• Increasing the order of polynomials will ultimately result in convergence to true function 
(see below) BUT a very high order (with complexity and run time implications) may be 
required  for the fit to be good enough. 

However, there are limitations in practice:

• Option behaviour is poorly described by polynomials.

• This can be seen on the second derivative of the option value:

12

This can  be seen on the second derivative of the option value:

• The second derivative of an option price is a bell shaped curve.

• The second derivative of a polynomial is still a polynomial.
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Refining proxy models - Illustration
• A simple step for annuities is to model cashflows directly 

rather than fitting a polynomial to the BEL – this can 
improve results considerablyimprove results considerably.

• The following example looks at fitted and actual results 
under five different yield curve stresses (YC1 to YC5).

Term

Spot rate

Challenge: Replication of historical yield curves 
with limited number of yield risk factors.

Present value vs. cash flows

13

Term

Refining proxy models - Illustration
Fitting to the implied parameters of a Black-Scholes formula can be used as an approach to 
using polynomial basis functions.

GAO example
• The chart below shows a comparison of polynomial and

• This only applies to options and guarantees 
(e g With-Profits business) • The chart below shows a comparison of polynomial and 

implied parameter Black‐Scholes fitting.
• 52 scenarios at the 1‐in‐200 net asset stress were tested 

for both approaches. 
• The implied parameter Black‐Scholes’ errors are about 

50% smaller on average.

(e.g. With Profits business).

• The approach has the advantage of 
matching the behaviour of the liability value 
whilst being able to use low order 
polynomials. 

• It makes validation easier as it is possible to 
check inputs as well as the formula for 
reasonableness. 

• To use the full benefit of this approach it

14

Option pricing formulae (such as Black-Scholes) can allow for option-type behaviour and reduce 
spanning error.

• To use the full benefit of this approach, it 
should be applied at a granular level (e.g. 
grouped model points).
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LSMC – The calibration problem
The ESG needs to be recalibrated for each outer scenario. There are two options:

– Use of latent parameters: The outer scenarios consist of simulated ESG parameters. No recalibration 
required as all required parameter can be read off the outer scenarios. However, the outer scenarios 
must be calibrated to ESG parameters: What is a 1-in-200 move of the mean reversion rate?

– Use of  observable market variables: The outer scenarios consist of yield curves, volatilities, etc., and 
hence a recalibration is required. This approach is more intuitive for plausibility checks and better q pp p y
communication.

Outer scenarios:

– A popular choice for generating the outer scenarios is the uniform distribution. However, our research 
showed that outer scenarios need to be generated in a specific way to give a better fit:

Latent
Parameters

Observable 
Risk 

Drivers

Analytical in simple cases or 
Monte Carlo

Simulation

Calibration

May require Monte Carlo goal seek

15

• The wider the range of the outer scenarios, the better the fitting is.

• Having more outer scenarios at the edges of the interested range gives a better fit, i.e. the use of the uniform 
distribution is not optimal.

• The quantity to fit drives the choice of the range of the outer scenarios.

– The selection of outer scenario distributions for LSMC is still often a matter for subjectivity.

LSMC in more detail
– LSMC uses linear regression to fit a formula. Linear 

regression is a well researched area and a number of 
statistical techniques are available to test a regression fit.

– However, statistical techniques applied to proxy model 

It is tempting to look at confidence intervals 
when assessing the error of a LSMC fit.

Example: Put option exposed to interest rate 
level, equity level and equity volatility risk

The following chart shows the 20 scenarios 
around the fitted 99.5th percentile. For each 
scenario the following quantities are shown:

 Fitted result (dark blue line)

fits should be handled with care. 

– Statistical goodness-of-fit measures can be misleading, 
understating the fitting error.

– Regression techniques assume that residuals are 
independent and identically distributed. But they are not: 

• Spanning error, which occurs because the underlying function to 
fit is not a polynomial. The first picture shows random errors, the 
second spanning error.

• Volatility stress tests lead by construction to residuals that are 
more volatile than stress results without volatility stress

 True result (green and red diamonds)

 Confidence intervals (light blue lines)

Observation: The use of confidence intervals 
failed in this example as all bar three validation 
scenarios lie outside the confidence intervals.

16

more volatile than stress results without volatility stress.

Statistical methods to assess the goodness-of-fit fail as the assumptions to apply these tests are 
not met. Users potentially get false comfort from good fitting measures.
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Risk factor Selection

A fundamental problem given the large amount of risk drivers available to select as a part of the proxy 
modelling process (and not unique to LSMC) is selecting the underlying polynomial for use in the 
intended algorithm. There are many ways in which the underlying terms are selected or de-selected, the 
most common are listed below:

–

– Use of Akaike Information Criteria (AIC): The AIC is the estimate of a constant plus the relative 
distance between unknown true likelihood function of the data and the fitted likelihood function of the 
model.

AIC = 2k - 2ln(L)

– Use of  Bayesian Information Criteria (BIC): The BIC is an estimate of a function of the posterior 
probability of a model being true under a certain Bayesian setup. BIC penalises model complexity 
more heavily.

18

BIC = kln(n)-2ln(L) 

Where  k is the number of free parameters, L is the Maximum Likelihood Function of the model. A lower value of AIC and 
BIC  is preferred.
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Optimisation
We can optimise our LSMC estimate in a number of ways, with the most common being listed below:

– Add increasing number of risk factors, cross terms, and increase the power and order of the 
polynomial. Whilst this does provide increasing effectiveness at diminishing rates of information, there 

f S C fmay be certain scenarios for which the LSMC does not provide a very good fit nonetheless.

– Attempt to minimise the maximum error within a tolerable level versus the least squares, although 
there may be increased error around the biting/critical scenario as a result.

– Use Control Variates to segregate known simulation errors from the total monte carlo simulation error.  
Using Control Variates reduces the overall variance of the polynomial estimate proxy function and 
hence leads to more stable results with reduced confidence intervals. 

– An example of using Control variates and how to calculate them:

Model an exact closed form 

19

complex 
liability

exotic 
feature

standard 
features

value. 

Eg. ZCB, vanilla swaptions

etc.

Remaining Simulation 
variability

LSMC in more detail – ID the formula shape
• There are two main approaches for identifying the polynomial terms:

• Manually identified by looking at selected stress impacts.

• Automatically identified using statistical techniques.y g q

Manual

Specific outer scenarios are defined in order to identify the 
shape by risk and risk pairs:

• Polynomial shapes are identified in isolation for each risk 
driver by looking at single risk stresses. 

• Transformation of risk drivers are applied if they improve 
the fit to lower order polynomials.

• Then cross terms are fitted.

Cannot be used with randomly generated outer scenarios.

Automatic

The most common approaches are step-wise optimisations: 

• At each step in these algorithms, possible additional 
formula terms are tested and the term that most 
improves the fit is selected.

• The algorithm can be forwards, backwards or both ways 
selecting.

20
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LSMC in more detail
• Step-wise regression techniques can be used to automate the selection of formula terms but these 

techniques should be applied with care:

• Assumptions underlying the algorithms do not apply, so the fits may not be optimal.

• Over-fitting can be a problem.

• Confidence intervals generated by these tools can be invalid, particularly for LSMC fits, due to 
assumptions not being met.

• Significant out-of-sample testing must still be done to judge the success of the fit.

• The techniques do not consider transforming risk drivers to improve the fit.

• Example of over-fitting:

Residuals on the validation runs 
are large while residuals on 

calibration runs are close to zero.

The following two observations 
indicate over-fitting:

21

We believe that optimisation techniques can be useful in automating and speeding up fitting 
processes, but they should be used with care and combined with manual investigations.

Residuals on the validation runs 
increase as more terms are 

added.

Comparison of methods
• Curve fitting to stress tests and LSMC are both using polynomial basis functions and are 

therefore subject to spanning error.

• The two approaches can get the same answer when the outer scenarios are bunched in 
a small number of fitting scenariosa small number of fitting scenarios.

• LSMC can use higher order polynomials without significantly increasing the run time for 
creating the fitting inputs.

• With curve fitting to stress tests, the fitted curve can be compared against balance sheet 
impacts of outer scenarios to provide additional visual comparison of the fit while 
balance sheet impacts from LSMC processes have too big a sampling error to be used.

– Curve fits to stress tests can be derived using existing models without coding changes 
while the use of LSMC requires changes to liability models to use the scenarios 

t d f th fittigenerated for the fitting.

• The generation of fitting scenarios for LSMC (outer scenarios followed by inner 
scenarios) is complex and requires a tool.

22
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LSMC – An example 

Example Maturity Guarantee

at
ur

ity

U
ni

t V
al

ue

m
a

moneyness
= guaranteed value
minus unit value

24

Time
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Bachelier’s (1900) Option Pricing Model

• Random Walk Model

Assume future moneyness = current moneyness + N(0 s2)– Assume future moneyness = current moneyness + N(0,s2)

• Option price is the (conditional )expected future 
moneyness

– Function of current moneyness and of the volatility s

• Contemporary option pricing models are more 
complicated than thiscomplicated than this

25

Can we Avoid Nested Scenarios?

M
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Scenarios
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t 
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Moneyness in one year
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Linear fit compared to Nested Monte 
Carlo

M
at

ur
ity

Scenarios

Linear 
Based on 10 000 scens

G
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ee
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os
t a

t 
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Nested MC

Moneyness in one year

Higher Order Polynomials

M
at

ur
ity

Scenarios

Linear

Quadratic

Cubic

Quartic

Quintic

Sextic

G
ua
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ee
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os
t a

t 
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Nested MC

Moneyness in one year
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Errors do not look like Random Noise!
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1D Spanning Error: Accuracy Potential
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What About Varying Volatility?
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LSMC – Conclusion
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The final word isn’t written yet…
Least squares with polynomial basis functions (common today):

Advantages

 Polynomials are easy to understand and simple 

Disadvantages

 Requires a tool that automates the recalibration 
to implement

 Extremely fast calculation (solution of a linear 
system of equations)

 Can get the same answer as curve fitting to 
stress tests when the outer scenarios are 
bunched in a small number of fitting scenarios

 Can user higher order polynomials due to the 
richness of the outer scenarios

 Useful toolkit to have but not a panacea

of the ESG to each outer scenario

 Requires changes to liability models to use the 
simulations generated for the fitting

 More extensive validation

 Model error! (True liability function may not be 
well-approximated by polynomials)

 Liability estimate at every calibration point 
influences estimate at every other, no matter 
how distant

33

Methodology improvements in this area are likely, so it is desirable to have the option to upgrade 
the basis functions without changing the rest of the process.

 Error estimates combine inner scenario 
sampling error and estimation of basis function 
loadings

 Difficult to apply inner scenario validation tools 
(arbitrage-free and market-consistent tests, 
calibration tests) for each outer scenario

Possible alternatives in the future
Fully non-parametric regression methods

Advantages

 Very successful for many applications in other 

Disadvantages

 High dimensions and scarcity of  calibration 
fields

 Appears to work well when used for proxy 
models for a few risk factors

 Possible to extract BOF-properties such as 
smoothness of the BOF function

 Ability to validate the noise in the model 

points an even greater challenge

 Mathematics becomes considerably more 
complex

 No clear method to identify the optimal non-
parametric method

34
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Questions Comments

Expressions of individual views by members of the Institute and 
Faculty of Actuaries and its staff are encouraged

08 November 2013 35

Faculty of Actuaries and its staff are encouraged.

The views expressed in this presentation are those of the 
presenter.


