

CAMRADATA:

600 Managers

4,023 products

85 Consultants

Over 300 Pension Scheme Trustees

Over 5,000 online reports run since June 2009

Manager League Tables

Fund Flows Reports

Preliminaries

Starting points

Transformations

Clockwise rotation as a matrix

$$\left[\begin{array}{c} x'\\ y'\end{array}\right] = \left[\begin{array}{cc} \cos(\theta) & \sin(\theta)\\ -\sin(\theta) & \cos(\theta)\end{array}\right] \left[\begin{array}{c} x\\ y\end{array}\right]$$

Scaling as a matrix

$$\left[\begin{array}{c} x'\\ y'\end{array}\right] = \left[\begin{array}{cc} A & 0\\ 0 & B\end{array}\right] \left[\begin{array}{c} x\\ y\end{array}\right]$$

Clockwise rotation and scale as a matrix

$$\left[\begin{array}{c} x'\\ y'\end{array}\right] = \left[\begin{array}{cc} A & 0\\ 0 & B\end{array}\right] \left[\begin{array}{cc} \cos(\theta) & \sin(\theta)\\ -\sin(\theta) & \cos(\theta)\end{array}\right] \left[\begin{array}{c} x\\ y\end{array}\right]$$

Actuarial Maths

Uncorrelated random number to correlated numbers

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \sqrt{\text{covariance matrix}} \times \begin{bmatrix} x \\ y \end{bmatrix}$$

Transforming uncorrelated random number to correlated numbers

$$\left[\begin{array}{c} x'\\ y'\end{array}\right] = \left[\begin{array}{cc} L1 & 0\\ L2 & L3\end{array}\right] \left[\begin{array}{c} x\\ y\end{array}\right]$$

Our maths is in fact a transformation

Transforming uncorrelated random number to correlated numbers

$$\left[\begin{array}{c} x'\\ y'\end{array}\right] = \left[\begin{array}{cc} \sqrt{EigenValue1} & 0\\ 0 & \sqrt{EigenValue2}\end{array}\right] inv\left[EigenVectors\right] \left[\begin{array}{c} x\\ y\end{array}\right]$$

Covariance eigen vectors rotate and covariance eigen values scale So covariance is a geometric transformation!

Correlation and dimensionality

Example Uncorrelated Assets?

$$[V,D] = eig(eye(3))$$

$$sum(min(D(:),1)) = 3$$

$$[V,D] = eig(ones(3))$$

$$sum(min(D(:),1)) = 1$$

Equation for correlation

$$cov(X,Y) = \frac{1}{n} \sum_{i} (x_i - \overline{x})(y_i - \overline{y})$$

$$\rho_{\scriptscriptstyle (x,y)} = \frac{\sigma_{\scriptscriptstyle (x-y)}^2 - \sigma_x^2 - \sigma_y^2}{-2\sigma_x\sigma_y}$$

$$\cos{(\theta)} \qquad \qquad = \frac{(C-B)^2 - (C-A)^2 - (B-A)^2}{-2(C-A)(B-A)}$$

$$\rho_{(C-A,B-A)} = \frac{\sigma_{(C-B)}^2 - \sigma_{(C-A)}^2 - \sigma_{(B-A)}^2}{-2\sigma_{(C-A)}\sigma_{(B-A)}}$$

This is a visualisation of financial space-time

- Round Balls = less correlation
- Rugby Balls = more correlation
- Big Balls = more risk

