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Predictive Modelling - Agenda

* Predictive Modelling
— High level overview
* Some uses:
— Lapse propensity
— Geodemographics

— Business mixes
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Predictive Modelling — How does it work?
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Predictive Modelling in General Insurance

Credit score

* Length credit history
* Payment history

» Debts

. etc
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Retention Modelling

b

Retention Strategies

Passive Reactive

N
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Proactive

Predictive
Modelling
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Retention — Case Study

UK bancassurer

Large block of life and CI business

e Lapses modelled
— Understand drivers

— Target likely lapsers

« Lots of lapses

— Good for predictive modelling

e Approx 200,000 policies
e 244 different fields of data
— i 1 )\21%}; nsti
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Some General Principles

ITry and identify main variables & eliminate
what you don’t need

Produce model using single variables,
eliminate non-significant

lProduce model with interactions

Check fit and refine variables if necessary

Produce model, refine etc




Step 1

Try and identify main variables & eliminate
what you don’t need

Step 2

Produce model using single variables,
eliminate non-significant

10

14/05/2013



14/05/2013

Example - Age band (Significant)

Parameter estimate - age band
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Example — Credit Card Holdings (not significant)
Parameter estimate credit cards held
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Produce model with interactions

13

Interactions — Lapse Example

Males 13% Non-Smokers 12.5%
Females 12% Smokers 12.5%

| lapseRate

Male non-smokers 15%
Male smokers 5%
Female non-smokers 10%
Female smokers 20%
N4
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Step 4

Check fit and refine variables if necessary

15

Example - Occupation code

Parameter estimate - occupation code
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Step 5

Produce model, refine, produce model,

refine ...
Annual Predicted Lapse Rates (sample)
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South African Case Study

Large SA protection writer

Whole of Life Mortality business

800,000 policies

Modelling similar to UK
example but

— Split data up into monthly chunks

— Added external economic data
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Predicted vs. Actual Lapses
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Inflation & GDP
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Retention Modelling

Other information
about the life assured

e Income
Household status
Credit scores
Health ...

Traditional factors

e Term

e Duration

* Smoking

« Distribution ...

.

Predictive
Model

External
information

¢ Economic indices
« Stock market indices
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Predictive Model

Policyholder

addresses Postcodes

Mortality /
morbidity for
specified
postcode

Demographics
of postcode

i
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UK Geography
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Postcodes

o 2.5m+
* Approx 15 addresses

* Links to
— Mosaic (Experian)
— Acorn (CACI)
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Census Output Areas

* On average 11 postcodes

* England
— 214 adults (20 - 4000)

» Scotland
— 88 adults (5 - 2350)

¢ Census Data

Education

Socio Economic Class
— Home type
— Etc.

VWharves
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Lower Super Output Areas

* OA Grouped Together
— Automated
— Set minimum size = 1000
— Average 1500
— Data Zone 500 -1000

» Key small area units

* Links to
— Index for Multiple Deprivation
http://neighbourhood.statistics.gov.uk R
=
2 iik% Institute
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Index of Multiple Deprivation

4 A

* Measures “deprivation”
* Domains
— Income
— Employment
— Health
— Education, Skills & Training
— Access to Services
— Housing
— Crime
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Census

Uses output areas (lower level)

Map postcodes to output areas

Multiple variables

Predictive model

— Identifies significant and non-significant variables
— Models mortality outcomes (or underwriting assessments)

— Needs lots of data!
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Results — Mortality Example

 Level of highest education proved an important variable
* 50% variation after allowing for

expected differences by SA '
« Comparable to gender variation

* Greater than SA variation
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Applications of Postcode Modelling

Pricing

Reporting

Marketing
— Target areas for marketing

— Special offers

Distribution

— Understand characteristics of business by distributor
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Predictive Modelling — Gender Mixes

« Initial model produced pre 21/12/2012

* One way splits only provide limited
information

 Predictive model considers multiple
interactions e.g.
— Sum assured and age

— Age and term

* Output = % males for combination of multiple variables
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Significant and Non-significant variables

Significant variables Insignificant variables

Occupation class Policy year
Age Policy month
Cease age

Policy term

Family status

Sum assured

Product type (e.g. LTA, DTA)
Smoker status

o
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Final Variables and Combinations Used

1) Cease age + age at entry

2) Cease age + term

3) Family status + age at entry
4) Family status + term

5) Family status + sum assured
6) Age at entry

7) Product type

8) Product type + cease age

9) Product type + family status
10) Product type + age at entry

11) Product type + term

12) Product type + sum assured
13) Term

14) Term + age at entry

15) Sum assured

16) Sum assured + term

17) Smoker status + cease age
18) Smoker status + family status
19) Smoker status + product type
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Model Fit
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Model Fit excl Family Status
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Rating factor Value
Age Next Birthday at entry (whole years) [ 45
Policy Term (whole years) | 20
Smoker status [ Y
Sum assured | £150,000
Cover type I Level Term Assurance
% Male
56%
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Variations
Rating factor Value
Age Next Birthday at entry (whole years) | 45
Policy Term (whole years) | 20
Smoker status | Y
Sum assured [ £500,000
Cover type | Level Term Assurance

% Male
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Uses for Business Mix Model
* Pre G-day
— Predicting mix for pricing
* Now
— Monitoring mixes
— Targeting specific segments
* Predictive modelling can be used to predict any type of mix
(not just gender)
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Conclusions

 Predictive Modelling enables you
to get more out of your data

* You can use it for almost anything!

 All you need are a few clever actuaries!
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