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Predictive Modelling
Not just an underwriting tool
Joan Coverson

15 May 2013

Predictive Modelling - Agenda

• Predictive Modelling

High level overview– High level overview

• Some uses:

– Lapse propensity

– Geodemographics

– Business mixes
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Predictive Modelling – How does it work?

Take data where you know 
results

Build a model to fit

Use model to predict unknownUse model to predict unknown 
results 
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Predictive Modelling in General Insurance

Personal
• Driving history
• Type of car
• Age
• Gender
• Marital status
• Address
• etc

Credit score
• Length credit history
• Payment history
• Debts 
• etc
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• etc

Internal data External data
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Retention Modelling
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Retention Strategies

Passive Reactive Proactive Predictive 
Modelling
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Retention – Case Study

• UK bancassurer

• Large block of life and CI businessLarge block of life and CI business

• Lapses modelled

– Understand drivers

– Target likely lapsers

• Lots of lapses

– Good for predictive modelling
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• Approx 200,000 policies

• 244 different fields of data

– Policy + Banking

Some General Principles

Try and identify main variables & eliminate 
what you don’t need

Produce model using single variables, 
eliminate non-significant

Produce model with interactions
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Check fit and refine variables if necessary

Produce model, refine etc
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Step 1

Try and identify main variables & eliminate 
what you don’t need

First 
name

Produce model using single variables, 
eliminate non-significant

Produce model with interactions
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Check fit and refine variables if necessary

Produce model, refine etc

Step 2

Try and identify main variables & eliminate 
what you don’t need

Produce model using single variables, 
eliminate non-significant

Produce model with interactions
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Check fit and refine variables if necessary

Produce model, refine etc
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Example - Age band (Significant)
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Example – Credit Card Holdings (not significant)
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Step 3

Try and identify main variables & eliminate 
what you don’t need

Produce model using single variables, 
eliminate non-significant

Produce model with interactions
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Check fit and refine variables if necessary

Produce model, refine etc

Interactions – Lapse Example

Lapse Rate

Males 13%

Lapse Rate

Non-Smokers 12.5%

Females 12%

Lapse Rate

Male non-smokers 15%

Male smokers 5%

%

Smokers 12.5%

14

Female non-smokers 10%

Female smokers 20%
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Step 4

Try and identify main variables & eliminate 
what you don’t need

Produce model using single variables, 
eliminate non-significant

Produce model with interactions (NB need 
example)
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Check fit and refine variables if necessary

Produce model, refine etc

Example - Occupation code

600000

7000001.5
Parameter estimate - occupation code

? What about ? What about 
combining 

200000

300000

400000

500000

600000

-0.5

0

0.5

1

P
ar

am
et

er
 e

st
im

at
e

codescodes

16

0

100000

-1.5

-1

0 2 4 6 8 10 12 14 16 18 20 23 25 27 30



14/05/2013

9

Step 5

Try and identify main variables & eliminate 
what you don’t need

Produce model using single variables, 
eliminate non-significant

Produce model with interactions (NB need 
example)
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Check fit and refine variables if necessary

Produce model, refine, produce model, 
refine …………………………

Annual Predicted Lapse Rates (sample)
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South African Case Study

• Large SA protection writer

• Whole of Life Mortality business• Whole of Life Mortality business

• 800,000 policies

• Modelling similar to UK 
example but

– Split data up into monthly chunks

– Added external economic data

19

Predicted vs. Actual
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Predicted vs. Actual Lapses
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Actual
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Inflation & GDP
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Retention Modelling

Other information 
about the life assured
• Income

Traditional factors
• Term
• Duration
• Smoking
• Distribution ...

Income
• Household status
• Credit scores
• Health ... External 

information
• Economic indices
• Stock market indices

Predictive 
Model

Geodemographic Mortality

24
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Predictive Model

Policyholder
addresses Postcodes Demographics 

of postcode

Mortality / 
morbidity for 

specified 
postcode
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UK

C

UK Geography

Country

Lower Super Output Area 
(E&W) 

Data zone (Scotland)

Something Else (NI)

Census Output Area

Postcode
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Postcodes

• 2.5m+

A 15 dd• Approx 15 addresses

• Links to

– Mosaic (Experian)

– Acorn (CACI)

Census Output Areas

• On average 11 postcodes

• England• England

– 214 adults (20 - 4000)

• Scotland

– 88 adults (5 - 2350)

• Census Data

Education– Education

– Socio Economic Class

– Home type

– Etc.
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Lower Super Output Areas

• OA Grouped Together

Automated– Automated

– Set minimum size = 1000

– Average 1500

– Data Zone 500 -1000

• Key small area units

• Links to

– Index for Multiple Deprivation
• http://neighbourhood.statistics.gov.uk

Index of Multiple Deprivation
• 4 Available: England, Wales, Scotland & NI

• Lower Super Output Area (England)

• Measures “deprivation”• Measures deprivation

• Domains

– Income

– Employment

– Health

– Education, Skills & Training

– Access to Services

– HousingHousing

– Crime

• Different weights and actual measures in each 
country
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Census 

• Uses output areas (lower level)

M t d t t t• Map postcodes to output areas

• Multiple variables

• Predictive model

– Identifies significant and non-significant variables

– Models mortality outcomes (or underwriting assessments)  

– Needs lots of data!

31

Results – Mortality Example

• Level of highest education proved an important variable

• 50% variation after allowing for50% variation after allowing for
expected differences by SA

• Comparable to gender variation

• Greater than SA variation 

32
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Applications of Postcode Modelling

• Pricing

R ti• Reporting

• Marketing

– Target areas for marketing

– Special offers

• Distribution

– Understand characteristics of business by distributor

33

Business Mix Modelling

34
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Predictive Modelling – Gender Mixes

• Initial model produced pre 21/12/2012

O lit l id li it d• One way splits only provide limited
information

• Predictive model considers multiple
interactions e.g.

– Sum assured and age

Age and term– Age and term

• Output = % males for combination of multiple variables
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Significant and Non-significant variables

Significant variables Insignificant variables

Polic earOccupation class Policy year

Age Policy month

Cease age 

Policy term

Family status

Sum assured

Product type (e g LTA DTA)

36

Product type (e.g. LTA, DTA)

Smoker status
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Final Variables and Combinations Used
Variables in Final Model

1) Cease age + age at entry 11) Product type + term

2) Cease age + term 12) Product type + sum assured2) Cease age + term 12) Product type + sum assured

3) Family status + age at entry 13) Term

4) Family status + term 14) Term + age at entry

5) Family status + sum assured 15) Sum assured 

6) Age at entry 16) Sum assured + term

7) Product type 17) Smoker status + cease age

8) Product type + cease age 18) Smoker status + family status8) Product type + cease age 18) Smoker status + family status

9) Product type + family status 19) Smoker status + product type

10 ) Product type + age at entry
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Model Fit
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Model Fit excl Family Status
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Sample Output

Rating factor Value
Age Next Birthday at entry (whole years) 45

Policy Term (whole years) 20

Smoker status Y

Sum assured £150,000

Cover type Level Term Assurance

% Male

56%

40
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Variations
Rating factor Value

Age Next Birthday at entry (whole years) 45

Policy Term (whole years) 20Policy Term (whole years) 20

Smoker status Y

Sum assured £500,000

Cover type Level Term Assurance

41

% Male

71%

Uses for Business Mix Model

• Pre G-day

Predicting mix for pricing– Predicting mix for pricing

• Now

– Monitoring mixes

– Targeting specific segments

• Predictive modelling can be used to predict any type of mix 
( t j t d )(not just gender)

42
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Conclusions

• Predictive Modelling enables you
to get more out of your datato get more out of your data

• You can use it for almost anything!

• All you need are a few clever actuaries!
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