

Prediction Intervals rather than itted quantiles	Audit sampling techniques to test model point homogeneity
Monte Carlo sampling error	Bayesian techniques around expert judgement
Sensitivity testing for alternative assumptions and data sources	Spanning error in proxy models, including curve fitting
Gross up techniques following dimension reduction	
going to talk about: gement anning Error	

Situation	Responses	
Known parameters	Exact formula available	
Unknown parameters	Create estimators of known exact formula	Calculate prediction interval for next observation
	Typically hit desired probability level exactly	Typically hit desired probability level exactly
Unknown model	Bayesian approach	Robust approach
	Bayesian prior over family of models	Family of models form an ambiguity set
	Calculate desired quantile of posterior distribution	Determine VaR so that quantile exceeded for all models
	Probability of observation exceeding VaR may be >0.5% for some models	Probability of exceeding VaR may be <0.5% for some models

The To	y model
Process	:
1.Decide	e risk drivers
2.Decide to, fitting	e modelling parameters of risk drivers (choice of distribution, data to fit g process etc)
3.Proxy	functions
• F	orm of proxy functions
• F	itting process (Number and choice of fitting points, OLS?, fitting criteria
4.Runnii	ng of model (number of sims, criteria for acceptance)
The toy knowled	model allows us to experiment with 3 & 4. We are assuming perfect ge of our risk drivers)
Develop	ment platforms: Excel, Mathematica (testing) and R

13

