

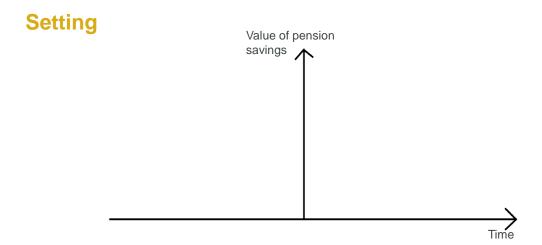
Overview of entire session

- Motivation
- · One way of pooling longevity risk
- Discussion

5 June 2018

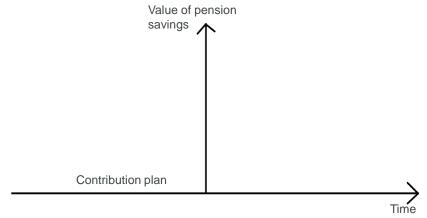
Overview of entire session

- Motivation
- One way of pooling longevity risk
- Discussion

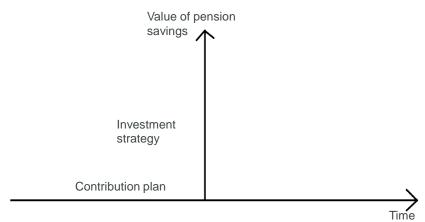

5 June 2018 3

I. Motivation

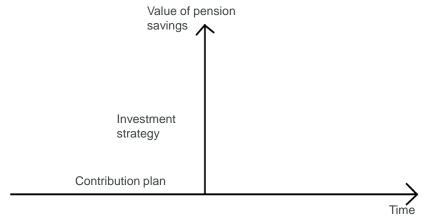
- Background
- Focus on life annuity
- Example of a tontine in action


5 June 2018 4

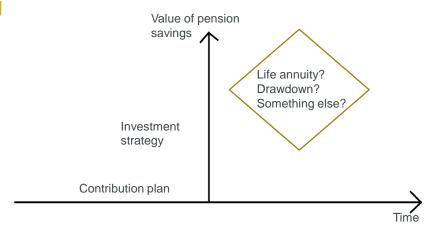
5 June 2018


Setting

5 June 2018 6



5 June 2018 7


Setting

5 June 2018

Setting

5 June 2018

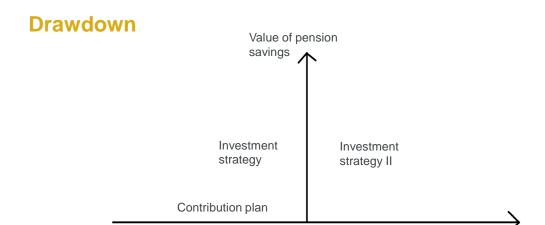
The present in the UK - DC on the rise

- Defined benefit plans are closing (87% are closed in 2016 in UK).
- Most people are now actively in defined contribution plans, or similar arrangement (97% of new hires in FTSE350).
- · Contribution rates are much lower in defined contribution plans

5 June 2018

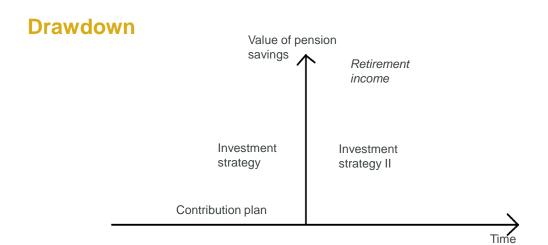
Size of pension fund assets in 2016 (Willis Towers Watson)

Country	Value of pension fund assets (USD billion)	As percentage of GDP	Of which DC asset value (USD billion)
USA	22'480	121.1%	13'488
UK	2'868	108.2%	516
Japan	2'808	59.4%	112
Australia	1'583	126.0%	1'377
Canada	1'575	102.8%	79
Netherlands	1'296	168.3%	78

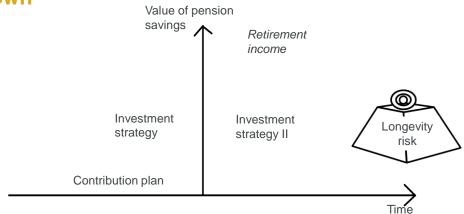


5 June 2018

Drawdown



5 June 2018


5 June 2018

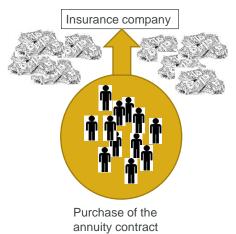
5 June 2018

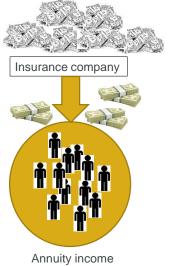
Drawdown

5 June 2018 15

Life insurance mathematics 101

- PV(annuity paid from age 65) = $a_{\overline{T}|}$
- Expected value of the PV is


$$a_{65} = vp_{65} + v^2{}_2p_{65} + v^3{}_3p_{65} + v^4{}_4p_{65} + \cdots$$


- To use as the price,
 - · Law of Large Numbers holds,
 - · Same investment strategy,
 - Known investment returns and future lifetime distribution.

30 May 2018

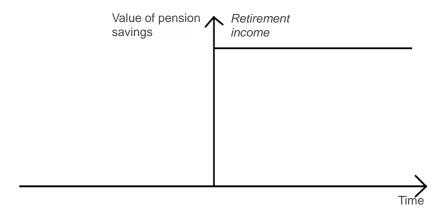
Life annuity contract

amuity

5 June 2018 17

Life annuity contract

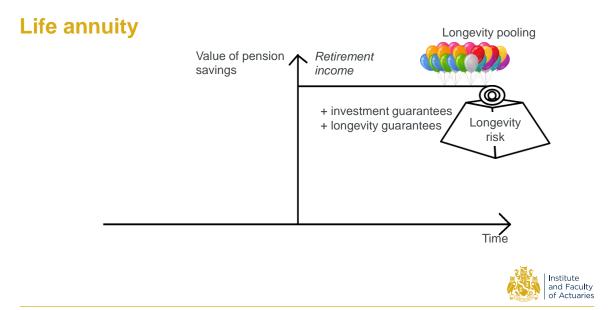
Annuity income



Annuity income

5 June 2018

Life annuity



5 June 2018

Value of pension Savings Retirement income Longevity pooling Longevity risk

5 June 2018 20

5 June 2018 2

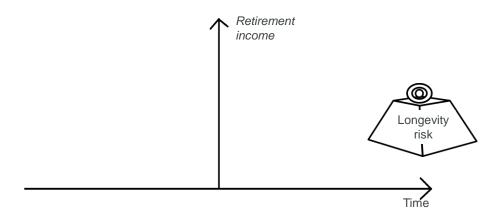
Life annuity contract

 Income drawdown vs life annuity: if follow same investment strategy then life annuity gives higher income*

*ignoring fees, costs, taxes, etc.

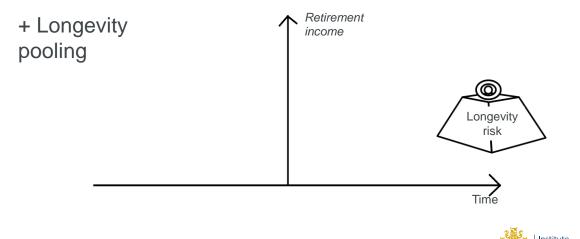
- · Pooling longevity risk gives a higher income.
- Everyone in the group becomes the beneficiaries of each other, indirectly.

5 June 2018

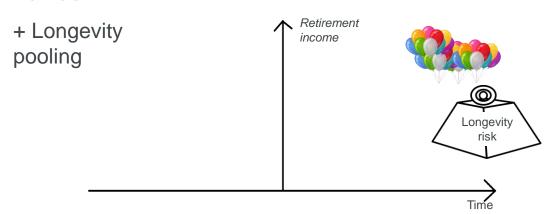

Annuity puzzle

- Why don't people annuitize?
- · Can we get the benefits of life annuities, without the full contract?
- Example showing income withdrawal from a tontine.

5 June 2018 23

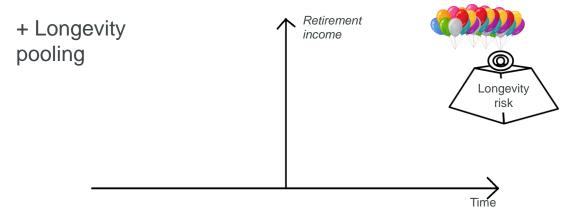

Drawdown

5 June 2018 2.


Drawdown

Institute and Faculty of Actuaries

5 June 2018 25


Drawdown

5 June 2018 26

Drawdown

5 June 2018 27

Aim of modern tontines

- · Aim is to provide an income for life.
- It is not about gambling on your death or the deaths of others in the pool.
- · It should look like a life annuity.
- · With more flexibility in structure.
- · Example is based on an explicitly-paid longevity credit.

Institute and Faculty of Actuaries

5 June 2018

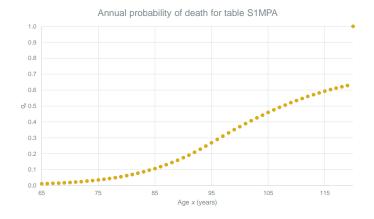
Example 0: Simple setting of 4% Rule

- Pension savings = £100,000 at age 65.
- Withdraw £4,000 per annum at start of each year until funds exhausted.
- Investment returns = Price inflation + 0%.
- · No longevity pooling.

5 June 2018 29

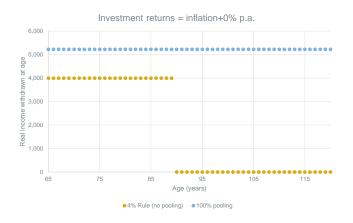
Example 0: income drawdown (4% Rule)

5 June 2018 30


Example 1: Join a tontine

- · Same setup except...pool all of asset value in a tontine for rest of life.
- Withdraw a maximum real income of £X per annum for life (we show X on charts to follow).
- Mortality table S1PMA.
- Assume a perfect pool: longevity credit=its expected value.
- · Longevity credit paid at start of each year.

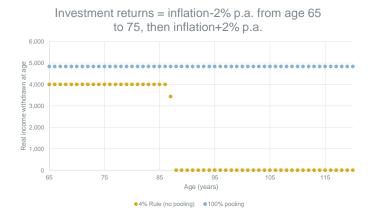
5 June 2018 31


UK mortality table S1PMA

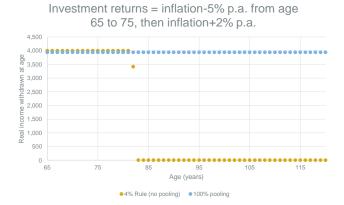
5 June 2018 32

Example 1i: 0% investment returns above inflation

5 June 2018 33


Example 1ii: +2% p.a. investment returns above inflation

5 June 2018 34


Example 1iii: Inv. Returns = Inflation – 2% p.a. from age 65 to 75, then Inflation +2% p.a.

5 June 2018 35

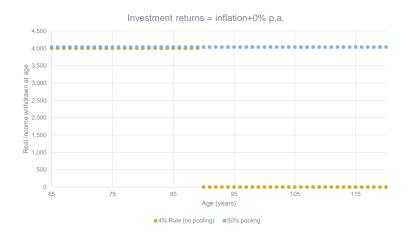
Example 1iv: Inv. Returns = Inflation - 5% p.a. from age 65 to 75, then Inflation +2% p.a.

5 June 2018 3

Example 1

- Tontines:
 - · Mitigate risk of outliving savings.
 - Provide a higher income.
- Downside:
 - · Loss of bequest. However...

5 June 2018 37


Example 2: Join a tontine

- Same setup except...pool 50% of asset value in a tontine for rest of life.
- Withdraw a maximum real income of £4,036 per annum for life.
- Bequest is higher than under 4% Rule at higher ages.

5 June 2018 38

Example 2: income withdrawn

5 June 2018 39

Example 2: Bequest

5 June 2018 40

Overview of entire session

- Motivation
- One way of pooling longevity risk
- Discussion

5 June 2018 41

II. One way of pooling longevity risk

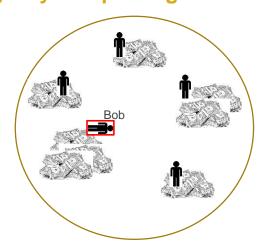
- · Aim of pooling: retirement income, not a life-death gamble.
- [DGN] method of pooling longevity risk
 - Explicit scheme.
 - Everything can be different: member characteristics, investment strategy.

5 June 2018 42

Longevity risk pooling

Pool risk over lifetime

Individuals make their own investment decisions


Individuals withdraw income from their own funds

However, when someone dies at time T...

5 June 2018 43

Longevity risk pooling

Share out remaining funds of Bob.

5 June 2018 4-

Longevity risk pooling rule [DGN]

- $\lambda^{(i)}$ = Force of mortality of i^{th} member at time T.
- $W^{(i)}$ = Fund value of i^{th} member at time T.
- Payment (longevity credit) to *i*th member:

$$\frac{\lambda^{(i)} \times W^{(i)}}{\sum_{k \in Group} \lambda^{(k)} \times W^{(k)}} \times \{ \text{Bob's remaining fund value} \}$$

5 June 2018 45

Overview of entire session

- Motivation
- · One way of pooling longevity risk
- Discussion

5 June 2018 46

Longevity risk pooling [DGN] - features

- There will always be some volatility in the longevity credit:
 - Actual value ≠ expected value (no guarantees)
 - But longevity credit ≥ 0, i.e. never negative.
 - · Loss occurs only upon death.
- · Volatility in longevity credit can replace investment return volatility.

5 June 2018 47

Longevity risk pooling - features

- · Increase expected lifetime income
- · Reduce risk of running out of money before death
- · Non-negative return, except on death
- · Update force of mortality, periodically.

5 June 2018 48

Longevity risk pooling - features

- Actuarially fair for any group of people (via payment to Bob, too)
- "Cost" is paid upon death, not upfront like life annuity.
- · Mitigates longevity risk, but does not eliminate it.
- · Anti-selection risk remains, as for life annuity.

5 June 2018 49

Longevity risk pooling - features

- Under certain conditions*, can re-create a life annuity.
- *e.g. correct forces of mortality, Law of Large Numbers holds,...
- Comparing:
 - a) Longevity risk pooling, versus
 - b) Equity-linked life annuity, paying actuarial return ($\lambda^{(i)}$ Fees) x $W^{(i)}$.

Fees have to be <0.5% for b) to have higher expected return in a moderately-sized (600 members), heterogeneous group [DGN].

5 June 2018 50

Longevity risk pooling - features

- Splits investment return from longevity credit to enable:
 - · Fee transparency,
 - · Product innovation.

5 June 2018 51

Longevity risk pooling – some ideas

- Insurer removes some of the longevity credit volatility, e.g. guarantees a minimum payment for a fee [DY].
- Allow house as an asset monetize without having to sell it before death [DY].

5 June 2018 5:

Longevity risk pooling – some ideas

Pay out a regular income with the features:

- · Each customer has a ring-fenced fund value.
- Explicitly show investment returns and longevity credits on annual statements.
- Long waiting period before customer's assets are pooled, to reduce adverse selection risk, e.g. 10 years.
- · More income flexibility.
- Opportunity to withdraw a lumpsum from asset value.
- · Update forces of mortality periodically.

5 June 2018 53

Summary

- · Motivation is to provide a higher income in retirement.
- May also result in a higher bequest.
- · Reduces chance of running out of money in retirement.
- · Transparency may encourage more people to "annuitize".

5 June 2018 54

The Actuarial Research Centre (ARC)

Bibliography

- [DGN] Donnelly, C, Guillén, M. and Nielsen, J.P. (2014). <u>Bringing cost transparency to the life annuity market.</u>
 Insurance: Mathematics and Economics, 56, pp14-27.
- [DY] Donnelly, C. and Young (2017). J. <u>Product options for enhanced retirement income</u>. *British Actuarial Journal*, 22(3).
- ONS Statistical bulletin: Occupational Pension Schemes Survey, UK: 2015
- · Purple Book 2016, Pension Protection Fund, UK
- Willis Towers Watson. Global Pensions Assets Study 2017.

5 June 2018 56

The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].

5 June 2018 57

Example 3 – [DGN] rule in action

- Assume a very small group of four people: A, B, C and D.
- All have the same force of mortality.
- · A has the lowest wealth, D has the highest.
- · Look at what happens when one of them dies.
- This is for illustration only I am not recommending operating a tontine with 4 people.

5 June 2018 5i

Example 3(i): A dies

Member	Force of mortality	Fund value before A dies	Force of mortality x Fund value	Longevity credit from A's fund value = 100 x (4)/Sum of (4)	Fund value afer A dies
(1)	(2)	(3)	(4)	(5)	(6)
Α	0.01	100	1	10	10 = 100-100+10
В	0.01	200	2	20	220 = 200+20
С	0.01	300	3	30	330 = 300+30
D	0.01	400	4	40	440 = 400+40
Total		1000	10	100	1000

5 June 2018 59

Example 3(ii): D dies

Member	Force of mortality	Fund value before D dies	Force of mortality x Fund value	Longevity credit from D's fund value = 400 x (4)/Sum of (4)	Fund value afer D dies
(1)	(2)	(3)	(4)	(5)	(6)
Α	0.01	100	1	40	140 = 100+40
В	0.01	200	2	80	280 = 200+80
С	0.01	300	3	120	420 = 300+120
D	0.01	400	4	160	160 = 400-400+160
Total		1000	10	400	1000

5 June 2018