

Institute and Faculty of Actuaries

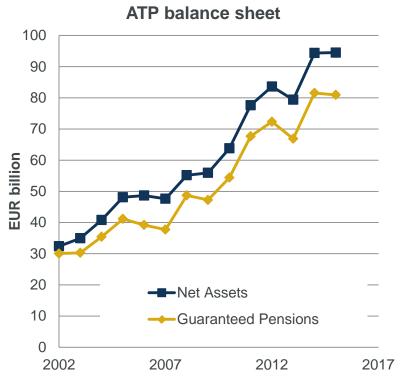
Long guarantees with short duration: The rolling annuity

Søren F. Jarner, VP ATP Pension Fund

1 June 2016

Outline

- ATP and market value accounting
- The problem
- The rolling annuity
- Reserving and hedging
- Implementation at ATP
- Example
- Summing up


The ATP pension fund

- The Danish Supplementary Labour Market Pension Scheme
 - ... or ATP for short (DK 'Arbejdsmarkedets Tillægspension')
 - Founded by law in 1964 as a supplement to State Pension
 - Mandatory scheme for all Danish employees (voluntary for self-employed)
 - Almost 5M members and assets under management of approximately €100B.
- Pension product
 - Life-long nominal annuity receivable from State Pension age (cohort dependent)
 - Discretionary indexation of pensions when the funding ratio of the fund is sufficiently high
 - Individual guarantees purchased for 80 pct. of contributions, remaining 20 pct. are "risk capital".

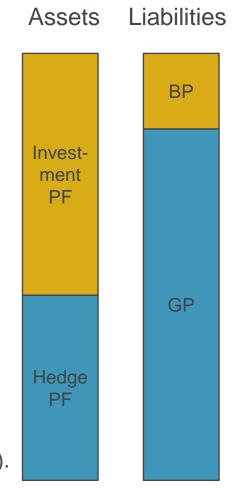
Market value accounting and its implications for ATP

- Market value accounting since 2003
 - "Pure" market rate discounting
 - Long-dated liabilities discounted at 30Y rate
 - Allows delta-hedging (in normal markets)
 - Huge interest rate sensitivity
 - Fully hedged in swaps and bonds
 - Decrease in interest rates increased value of liabilities dramatically.
- Discounting curve under Solvency 2
 - Long-dated liabilities valued at UFR
 - Long-dated liabilities cannot be hedged
 - Discounted value ≠ value of (delta) hedge

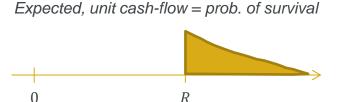
Institute

and Faculty of Actuaries

4


The problem

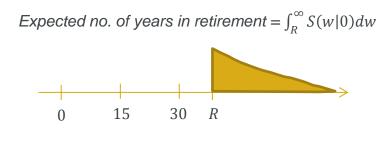
- The old annuity product at ATP
 - 80 pct. of contribution converted to nominal life-long annuity at the time of payment
 - Annuity level (tariff) updated annually to reflect current market rates and life expectancy.
- Large hedge demand at long-dated maturities
 - Increasingly difficult and costly to maintain the necessary hedge
 - Long-dated liabilities non-hedgeable (due to "semi" market rate discounting).
- The Board of ATP wants guarantees!
 - Not an option to move to unit-link type products
 - "Could you please design a hedgeable life-long guarantee".


... and one more thing

- "Please make sure to preserve the business model"
 - The liability side of the balance sheet is very simple
 - … allowing a very sophisticated asset side
 - Accommodation of all guarantees in one (simple) business model.
- Implication 1: Type of guarantee
 - All pension rights in the form of "guaranteed annual pension"
 - No individual unit-link accounts.
- Implication 2: Same status of new and old guarantees
 - Collective risk sharing of financial and biometric risks
 - New and old guarantees should entail same, or at least very similar, risks and have the same "claim" on free reserves (BP).

Traditional annuity vs rolling annuity

- Consider a person paying a contribution of 100 at time 0 and retiring at R
 - Denote by $p_t(T)$ the price at time t of a zero-coupon bond (ZCB) maturing at time T
- Traditional (deferred) life-long annuity
 - Ignore tax, safety loadings, technical basis etc.
 - Guaranteed annuity level = $100 / \int_{R}^{\infty} p_0(w) S(w|0) dw$.



- The rolling annuity replaces the long interest rate guarantee with shorter ones
 - Assume interest rate guarantee of 15 years

- Initial guarantee:
$$z(0) = \frac{100}{\int_R^\infty S(w|0)dw} \frac{1}{p_0(15)}$$

- Guarantee after 15 years:
$$z(15) = z(0) \frac{1}{p_{15}(30)}$$

- Final guarantee:
$$z(30) = \frac{z(15) \int_R^\infty S(w|30) dw}{\int_R^\infty p_{30}(w) S(w|30) dw}$$
.

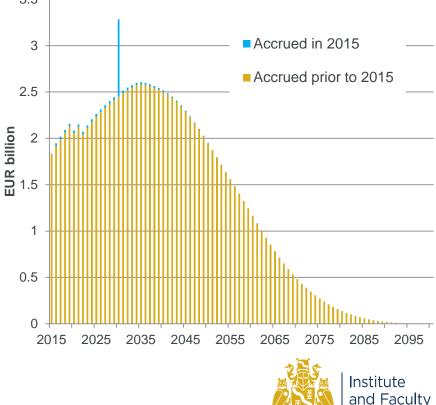
Market value reserve

- Consider the reserve associated with a contribution paid at time 0
 - Let z(u) denote the guarantee at time $u \ge 0$
 - Prior to the final guaranteed increase, the reserve is
 - $V(u) = z(u)e(R|u)p_u(\tau_N(u)),$
 - where e(R|u) is the expected no. of years in retirement given survival to time u, and $\tau_N(u)$ is the time of the next increase.
 - At or past the final guaranteed increase, the reserve is
 - $V(u) = z(u) \int_{\max\{u,R\}}^{\infty} p_u(w) S(w|u) dw$, i.e. the reserve for an ordinary, life-long annuity.
- Before the final increase, the reserve for a cohort equals the price of a ZCB maturing at $\tau_N(u)$ with principal $\overline{z}(u) \times total no. of years in retirement$
 - The liability can be semi-statically hedged, i.e. hedge needs to be adjusted only every *L* years
 - For L up to 20 years, say, the hedge can be implemented in liquid markets
 - In practice, the reserve is based on updated mortality assumptions
 - Longevity risk is borne collectively, i.e. guarantees are unaffected.

 $\tau_N(u)$

R

L u


0

Implementation at ATP

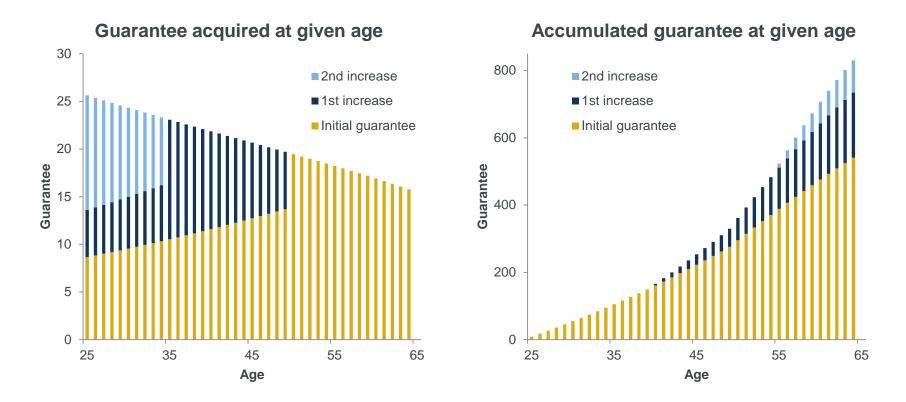
- Rolling annuities were implemented at ATP with effect from 1 January 2015
 - Guarantee period of L = 15 years
 - The effect from contributions received in 2015 can be seen as an increased "payment" in 2030
 - The remaining cash flow stems from ordinary annuities; both old guarantees and guarantees written in 2015 for members within 15 years of retirement.
- Hedgeable at large scale
 - The bulk of the (rolling annuity) cash flow is at maturities where market liquidity is high
 - Ordinary life-long annuities are issued only close to retirement.

ATP "hedge cash flow" for annuities

of Actuaries

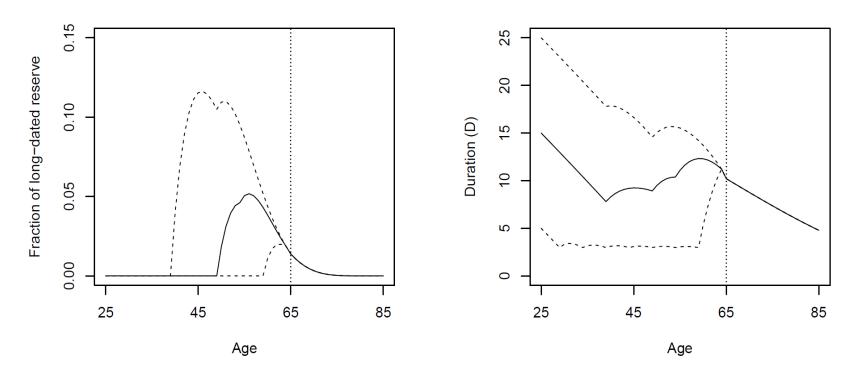
Example: Longevity risk

• Table shows the relative reserve increase when applying a 20% mortality stress


- GM mortality law^{*} : $\mu(x) = 1.5 \cdot 10^{-5} \exp(0.1 \cdot x) + 2 \cdot 10^{-4}$
- Stressed mortality law: $\tilde{\mu}(x) = 0.8 \,\mu(x)$
- Flat yield curve : $p_t(T) = \exp(-(T-t)r)$, for some fixed r
- Single premium at age x, age of retirement R = 65 yrs, and guarantee period of L = 15 yrs.

$\Delta V/V$				Age (x)			
Rate (r)	25	45	55	65	75	85	100
0%	11.4%	11.0%	10.5%	9.0%	11.6%	14.9%	19.9%
2%	11.4%	11.0%	8.7%	7.3%	10.0%	13.5%	19.1%
4%	11.4%	11.0%	7.3%	5.9%	8.7%	12.3%	18.3%

* Gompertz-Makeham law fitted to Danish unisex population mortality for 2011


Example: Building up of guarantee

Annual contribution of 100 indexed by inflation of 2% from age 25 to age 64. Interest rate of 3%, and guarantee period of L = 15 years.

Example: Duration

Left plot : Reserve for maturities over 30 years as fraction of the total reserve. Right plot : Duration of total reserve measured in years. In both plots the solid line represents a guarantee period of L = 15 years, while the dashed lines represent guarantee periods of 5 and 25 years, respectively. The vertical dotted line at age R = 65 years marks the age of retirement.

Summing up

- Initial minimum guarantee and subsequent guaranteed increases prior to retirement
 - Prior to the final increase, the reserve equals a zero-coupon bond maturing at the next increase
 - Rolling annuities can be hedged at large scale for guarantee periods of up to, say, 20 years
 - Keeping the duration below 20 years imply very similar financial and regulatory (S2) value
 - This simplifies risk management considerably
 - Rolling annuities have been implemented at ATP with a guarantee period of 15 years.
- Longevity risk can be reduced by weakening the "life expectancy guarantee"
 - However, the rolling annuities at ATP have full longevity risk (similar to existing annuities).
- Rolling annuity guarantees are intended as part of a with-profits contract
 - A complementing return-seeking portfolio is essential to obtain broad market exposure
 - The guarantees entail both longevity risk and hedging risk and thus can apply to only part of contributions
 - At ATP, rolling annuities are acquired for 80 pct. of contributions.

