

What do we mean by using PU in a model? Estimate parameter of a single distribution that "we don't know" and include it as distribution of parameters of the original distribution to generate a posterior one. We would repeat this for all the distributions in the model to come up with the new risk profile. Or anwser a question: What is the distribution of my mean, percentile ? Use bootstrapping embeded in the reserve risk method to come up with parameters for each origin period and then use LogNormal ? What is the distribution of the price of reinsurance contract? What is the distribution of the capital requirement (not the capital requirement with the new posterior distributions)

Parametric Bootstrapping used differently (4/4)

In the previous example:

- we have treated the **capital** as a random variable.
- We have used a parametric bootstrapping to obtain pseudo multivariate samples.
- To each sample we have fitted distribution of parameters and correlations
- For each set of parameters we have computed the capital requirement, this gave us a distribution of that requirement.
- Now we can compute any statistic on that distribution, i.e. CoV(Capital Requirement) = 20%

A "classical" PU analysis would consider

- parameters of individual distributions and their correlation as a random variable
- And the capital requirement would be calculated only once (yielding a higher figure)

- The previous example was very computational intensive, it involved calculating capital requirement of 10 000 capital models ! (Igloo Enterprise)
- · Let's now create 10 000 capital models for each permutation of :
 - Number of years : {5,10,25,50}
 - Number of LoBs : {20,40, ...,480,500}
 - Correlation between LoBs : {0,25%,50%,100%}
- Now we are really asking for trouble...
- ... we need 4 * 25 * 4 * 10000 capital models with 10000 simulations each, that is 1 bilion simulations for each of the 40 PCs I had.
- The Solvency II stopped for the moment I

Theory backing the 100% and 0% Correl

 When the correlation is 100%, the LoBs are said to be comonotonic, under this assumption, we have to following result for the Value-at-Risk (Capital) (see D.VINCKE .2003) :

$$VaR_{\alpha}\left(\sum_{i} LoB_{i}\right) = \sum_{i} VaR_{\alpha}(LoB_{i})$$

• We can further demonstrate that CoV stays constant :

$$CoV\left(VaR_{\alpha}\left(\sum_{i}LoB_{i}\right)\right) = CoV \, \langle aR_{\alpha} \, \langle oB_{1} \rangle$$

• For 0% correlation CoV tends to 0, this proof is bit more difficult involving Central Limit Theorem.

Theory backing the Correl \in (0%,100%)

- The behavior of a sum of dependant risks (but not comonotonic) is complex and it is continuous subject of actuarial research.
- For a set of identically distributed dependant random variables there are results of Mario V. Wutrich, combined with further study of P.Barbe, A.L.Fougere & C.Genest showing that:

$$VaR_{\alpha} \bigstar = VaR_{\alpha} \left(\sum_{i} X_{i} \right) = q_{\alpha/\Delta} \times VaR_{\alpha} \bigstar$$

- This interesting result shows that the behaviour of the aggregate capital can be explained by the behaviour of one line of business and a constant factor q. The behaviour of the constant q is complex could explain our interesting results
- But why doing Maths if we have use Monte Carlo ?

How to defend judgement when estimating Dependency ?

- Benchmarks, back working from what we believe is right etc...
- Practical Method 1:
 - 1. Regroup the business to different "buckets"
 - 2. calculate correlations & risk parameters and overall risk profile
 - Compare the aggregate risk profile of each different "bucketing"
- Practical Method 2:
 - Let PU work for your advantage...

