

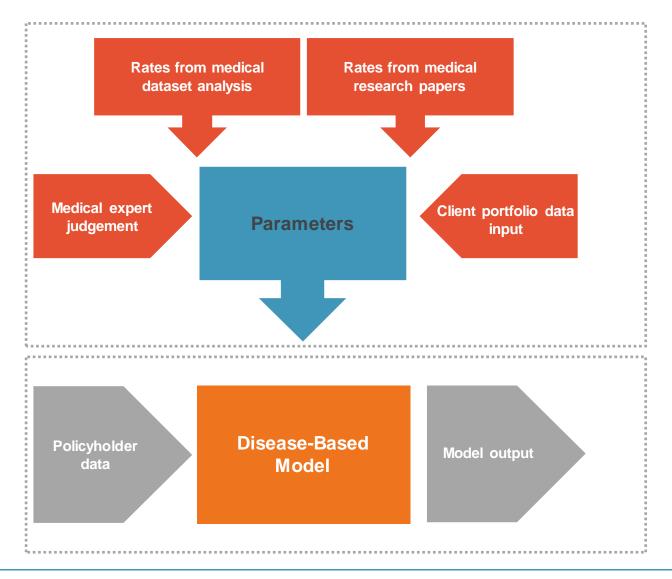
Institute and Faculty of Actuaries

Developing disease-based models

Matthew Edwards (Towers Watson) Dr Tim Crayford (Just Retirement)

15 September 2014

Agenda Objectives Overview Data Datasets Research papers Expert judgement Model structure Multistate model Disease groupings Comorbidities Case studies Demonstration


Objectives

Objectives

- What are the objectives of a Disease-Based Model?
- Improved modelling where medical states or events are critical (eg enhanced annuities)
- A better view of improvements (best estimate) via appropriate 'per disease' expert judgement
- A better view of biologically plausible improvement stresses
- A bottom-up 'future-oriented' projection method compared with typical traditional approach to mortality modelling
- Disease-based rather than cause of death

Overview

Overview

Data

Data

- There are three broad sources of data used for model development
 - Rich datasets
 - Research papers
 - Expert judgement
- There is also the important question of what data we receive from potential policyholders for underwriting purposes, and how accurate it is

Datasets

- Medical datasets
 - CPRD
 - Framingham
 - THIN
 - QResearch
 - EUROCARE
 - SEER
 - HES
 - ONS
 - Many others ...

- Primary criteria are:
 - Availability of data
 - Relevance of data (basis risk?)
 - Reliability
 - Granularity
 - Risk factor information

CPRD

- Circa 6 million UK GP/patient records
- Observational data and interventional research service funded by NHS
- Information recorded at anonymised person-level although information accessed at aggregate level only
- Data includes prescribed primary care and hospital administered drugs, disease and cancer registers, and GP notes
- SES data available through linkages to census data by postcode
- Licensed by various insurers and reinsurers

Extracts can be defined with the following factors:

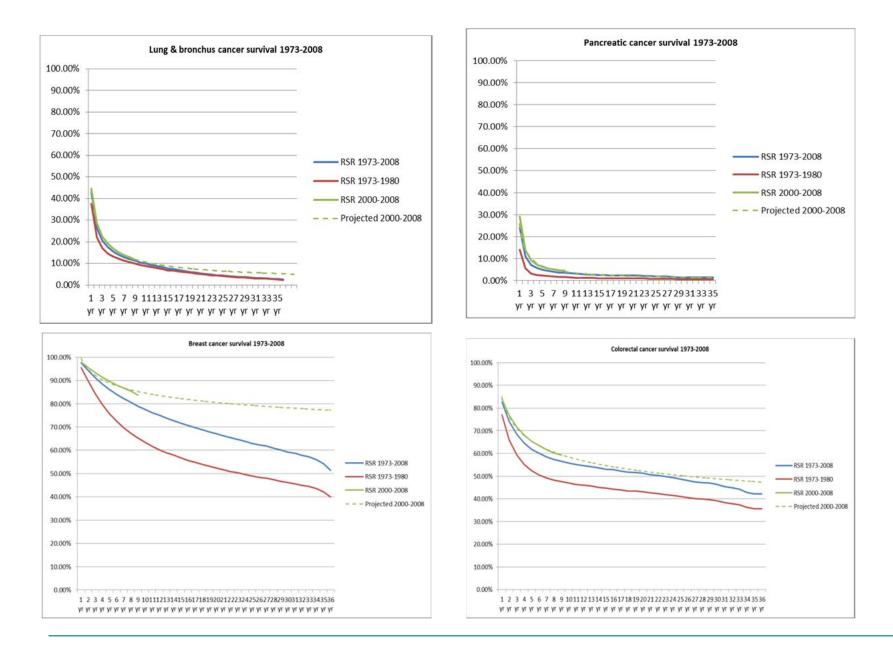
- Age
- Gender
- Duration
- Smoker status
- SES quintiles
- Calendar year

Severity can be accessed via clinical test results, including:

- HbA1c for diabetics
- Systolic BP
- Serum cholesterol levels
- BMI
- HDL, LDL and ratio
- ALT levels (liver function)

CPRD – defining Pegasus codes to access the data

	Help										
Search For: Search			Search In:			Build:					
diabetes		<u> </u>	Read Term	• •	Ever	<u> </u>	Search			1	
Medical Code	Clinical Events	Referral Events	Test Events	Immunisation Events	Read Code	Read Term		Database Build			
9897	1,757,468	7,744	0	0	90L00	Diabetes moni	toring admin.	February 2009		1	
711	745,737	37,368	4	0	C1000	Diabetes mellit		February 2009			All entries
6795	680,671	1,336	28	0	1252.00	FH: Diabetes n		February 2009		1	
758	631,745	9,477	15	0	C10F.00	Type 2 diabete		February 2009			
5234	520,988	355	16	0	6872.00	Diabetes mellit		February 2009			a antainina a tha
13194	508,778	3,693	0	0	90L4.00		toring 1st letter	February 2009		<u> </u>	containing the
13241	364,966	32	0	0	1228.00	No family histo		February 2009		/	••••••••••••••••••••••••••••••••••••••
12506	264,973	114	1	0	66AP.00		tice programme	February 2009		1	towns field also to al
12506	168,265	8,939	397		90L1.00					1	term "diabetes'
				0		Attends diabet		February 2009			
13195	104,521	909	0	0	90L5.00		toring 2nd letter	February 2009		1	
506	91,039	4,490	10	0	C100112		pendent diabetes mellitus	February 2009		1	
4513	79,972	1,733	6	0	C109.00		pendent diabetes mellitus	February 2009		/	
8836	75,275	1,885	0	0	66AR.00		igement plan given	February 2009			
1549	66,441	1,582	2	0	C10E.00	Type 1 diabete		February 2009			
11348	63,031	5	0	0	9h42.00	Excepted from	diabetes quality indicators:	February 2009			
13192	59,316	17	0	0	90LA.00	Diabetes moni	tor, check done	February 2009			
11041	53,099	3	0	0	9h41.00	Excepted from	diabetes qual indicators: P	February 2009	-		
			Add All	Add Selected	Rem	ove Selected	Remove All			>	
edical Code	Clinical Events	Referral Events	Test Events	Immunisation Events	Read Code	Read Term		Database Build			_
711	745,737	37,368	4	0	C1000	Diabetes melli	us	February 2009			Selecting
758	631,745	9,477	15	0	C10F.00	Type 2 diabete		February 2009			Selecting
506	91,039	4,490	10	0	C100112		pendent diabetes mellitus	February 2009		1	
4513	79,972	1,733	6	0	C109.00		pendent diabetes mellitus	February 2009		1	
1549	66,441	1,582	2	0	C10E.00	Type 1 diabete		February 2009		1	relevant codes
1049	00,441	1,502	2	0	0102.00	Type I diabete	smenicus	rebidary 2005		>	
											famo, a d'alcata
										(form a diabetes
										1	
											disease group.
										1	alocase group.
										J	÷ ,
										/	
					m						


11

Framingham

- Framingham heart study is a long-term US research project
- Since initiation in 1948, three generations have joined totalling participation of over 9,000 individuals
- The core research of the heart study has focused on cardiovascular and cerebrovascular disease and related risk factors
- Contains individual level data recorded biennially
- Framingham phenotypic data is stored in SAS datasets, each dataset is accompanied by a coding manual (containing definitions)
- NIH has launched Framingham SHARe summary data now available online, request for access needed for patient specific

SEER / JR Dataset

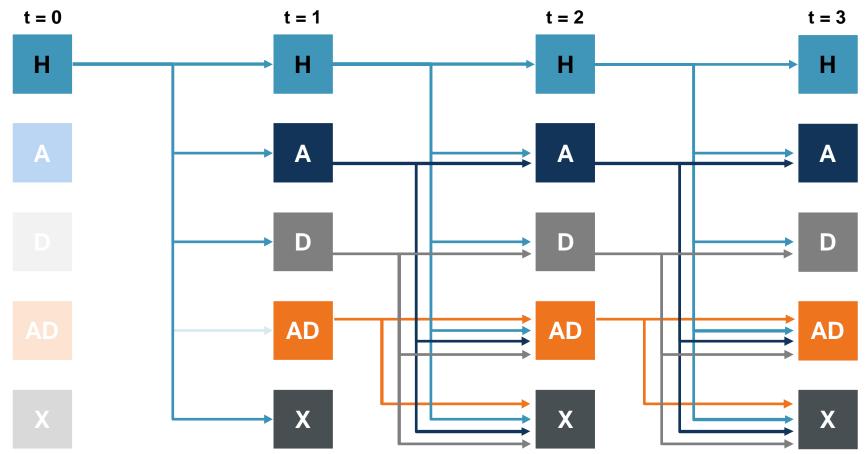
- Surveillance Epidemiology & End Results
- Large US cancer database with cases going back to the 1970s
- Currently covering about 1/4 US population
- Freely Available
- Most forms of cancer analysable using individualised data
- UK Cancer registry data not freely available

As good as the questions you ask

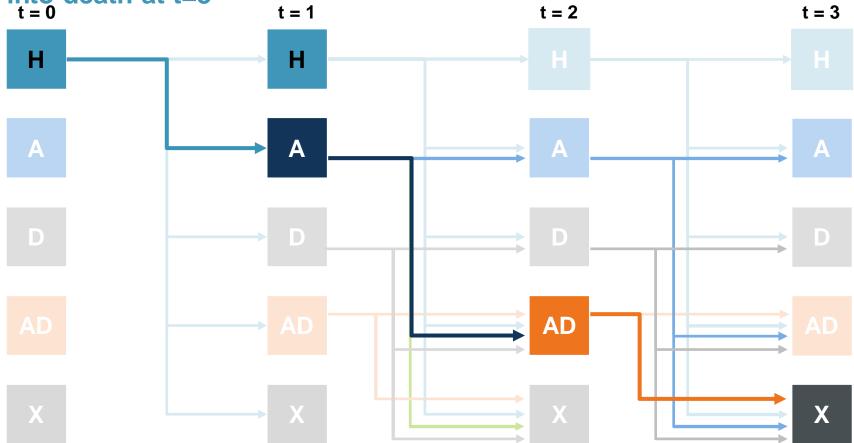
- Underwriting systems are constrained by the consensus required to acquire data from prospective customers
- Questionnaires evolve over time
- Lack of consistency
- Lack of validation

CQF: Common Quotation Form for enhanced annuities

Quote Rafarence No. (Fathean Source of quote		
	I D A TA A A A A A A A A A A A A A A A A	No utili
Section 1: Perso	onal Details - To be completed	by you
Please complete this form use	ng black ink and capital letters	Your dependant's details
	Your details	
Title		
t other please specify		
Gender	Nale Famile	Male Female
Sunane		
Forename(s)		
Date of birth	<u>, , /, , , , , , , , , , , , , , , , , </u>	
National Insurance number		
Nationality		
Martal Status	Single Mamed/Civil Partnership Separated Divorced Widowed D	Single Manted/Civil Partnership Separated Divorced Widowed
Relationship to the dependant		
Present occupation		
	Fultone Pattone	Pultine Pattine
Eno longer working, previous occupation		
Date ceased		1 1
Care proved	D D W W Y Y Y Y	<u> </u>
Are you living	In own home - alone	in per home - alone
	In own home – with someone size With relatives	In own home - with someone else
	In a residential home	in a residential home
	In a care home	In a care home
Home address		
Postrode		
Daytime telephone number		[
Evening telephone number		
E-mail address		
Has Power of Attorney been a	ested in another party? Ves No III yes, p	
	sbbcobi	ease enclose the rate documentation
If so which type?		
Now please complete the med	fical essessment form in Section 2 and any other	
A medical assessment form to may be required and	If the dependent will only be required if they are	Fluestonnaire as directed. suffering from a condition, and questionnaires
If you have a Financial A.	ser, please request them to fill in sections 3 ;	number grote a condition, and questionnaires


Infinite number of permutations					
AVIVA	Canada Life	FriendsLife			
justretirement	Legal & General	LVE			
mgm advantage	*partnership	PRUDENTIAL			

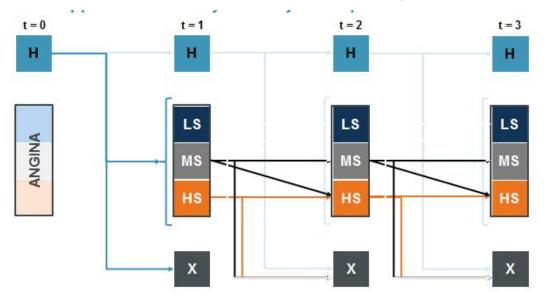
Model structure


Model structure

- Overall structure
- Groupings
- Parameterisation
- Comorbidities

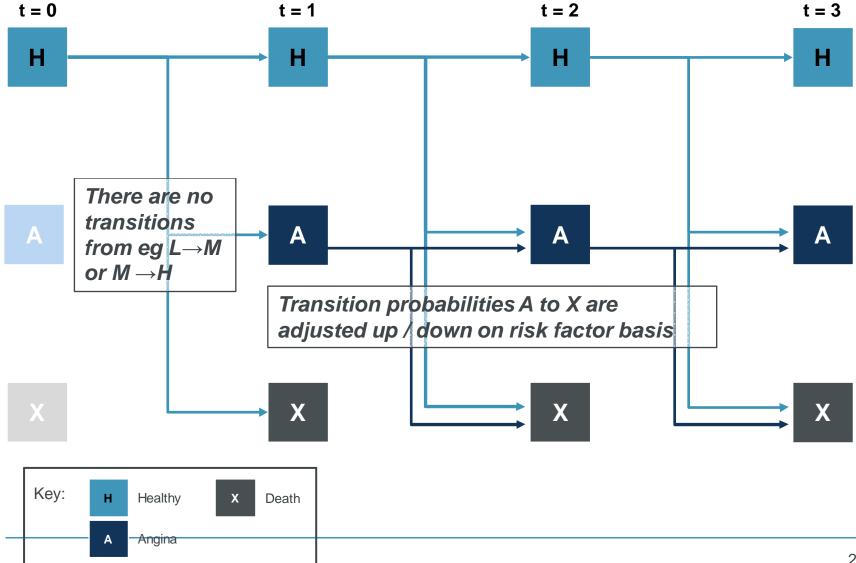
A single simulation path: policyholder transitions through A, AD into death at t=3 t=0 t=1 t=2 t=1

Diseases and groups


- How can diseases and disease groups differ (i.e. what defines a homogeneous disease group?):
 - The mortality/survival shape over time (both time as age, and time as duration)
 - The effect of risk factors (eg smoking effect on lung cancer incidence/mortality v different from colo-rectal equivalent)
- Expectations of future improvements on the age shape
- Availability of reliable data
- The crucial element in disease 'similarity' from a modelling perspective is the age curve. Differences in the effect of other risk factors (e.g. smoking status) can be accommodated by appropriate interactions where necessary

Disease groupings

Disease Group (from CQF)	Specific Disease
Heart attack, angina and other vascular conditions	Angina, MI, Cardiomyopathy
Diabetes	Type I Diabetes, Type II Diabetes
Cancer, leukaemia, lymphoma, growth or tumour	Breast, Colorectal, Lung, Prostate
Stroke	Haemorrhagic, ischaemic
Respiratory/lung disease	COPD, Emphysema
Multiple sclerosis	MS
Other neurological condition	Dementia, Alzheimer's disease, Parkinson's disease, Motor neurone disease
ADLs	


Severity Modelling

 Could model via explicit state approach – eg with three severity states (low / medium / high)

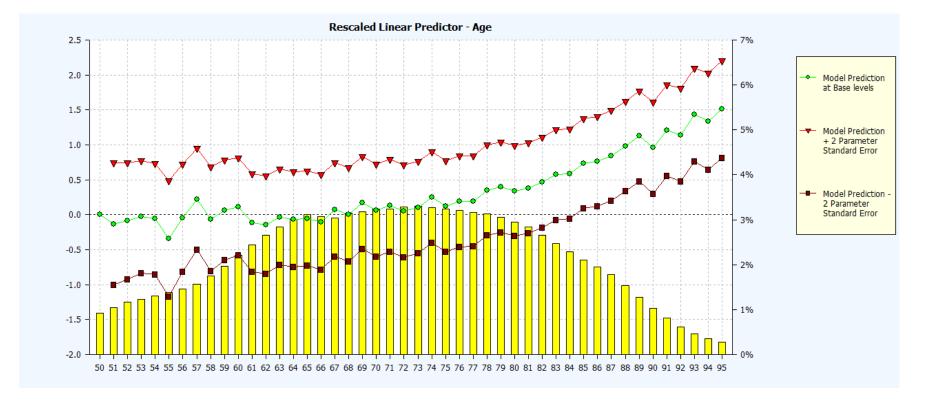
 Alternative approach is to treat severity as a risk factor (ie no explicit state)

Risk factor approach to severity modelling

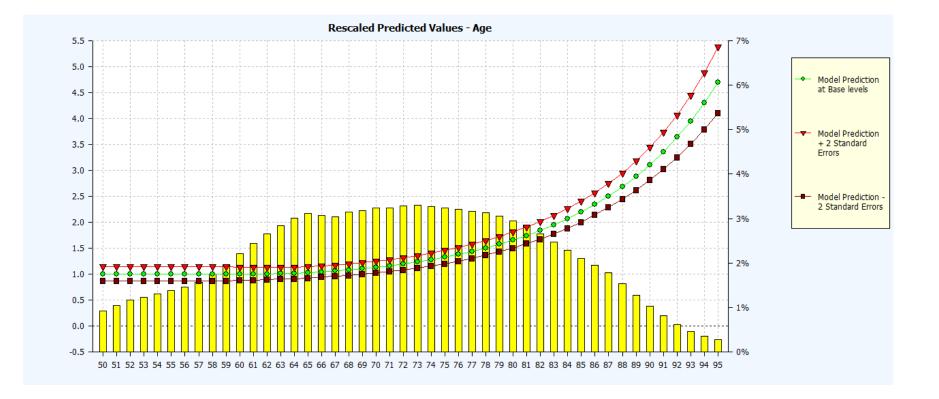
Paramaterisation (from CPRD)

- Need a parameterisation approach that allows us to derive maximum value from the data in the CPRD, with particular reference to the following criteria
 - Multi-factor analysis
 - Automatic allowance for correlations in the data
 - Non-parametric approach in general (so results not forced to any particular function), but with parametric options where useful (eg age curve)
 - Efficient usage of data (ie needs to cope well where 'pockets' of data in respect of particular unique combinations of rating factors are sparse or even empty)
 - Easy allowance for factor interactions
 - Common usage across the insurance sector
- Accordingly we use Generalised Linear Models (GLMs) for the parameterisation

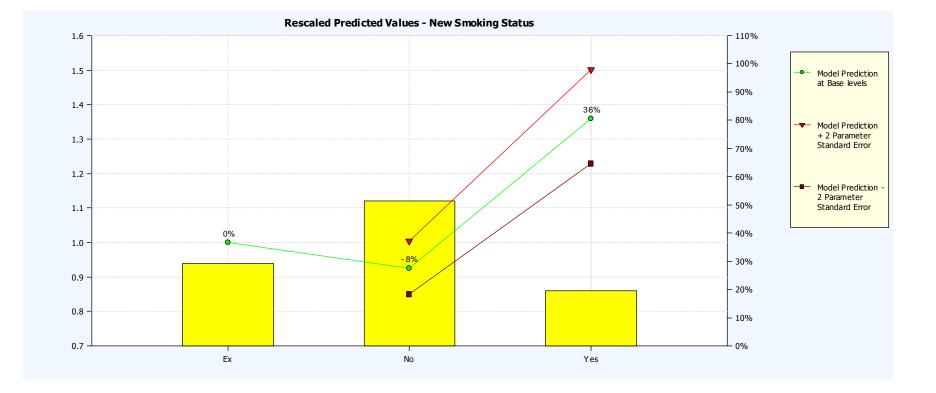
Risk factors


Using CPRD, the following can be used as risk factors:

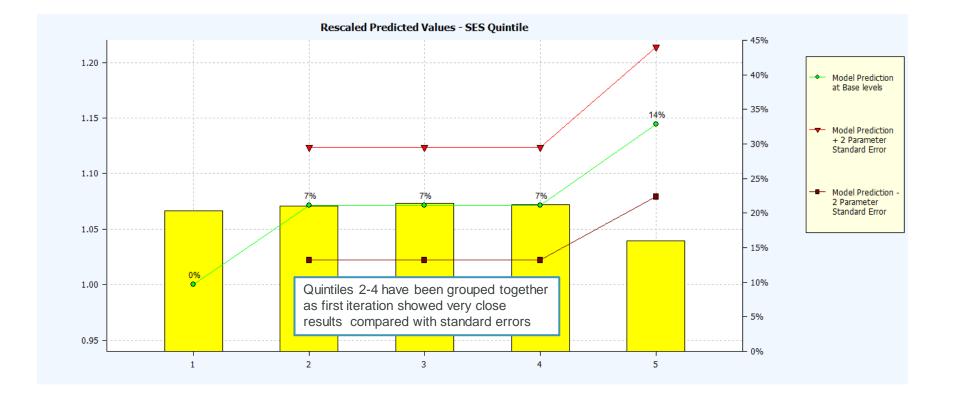
- Age
- Gender
- Duration
- Smoker status
- SES quintiles
- Calendar year


Clinical test results from CPRD to use as risk factors include:

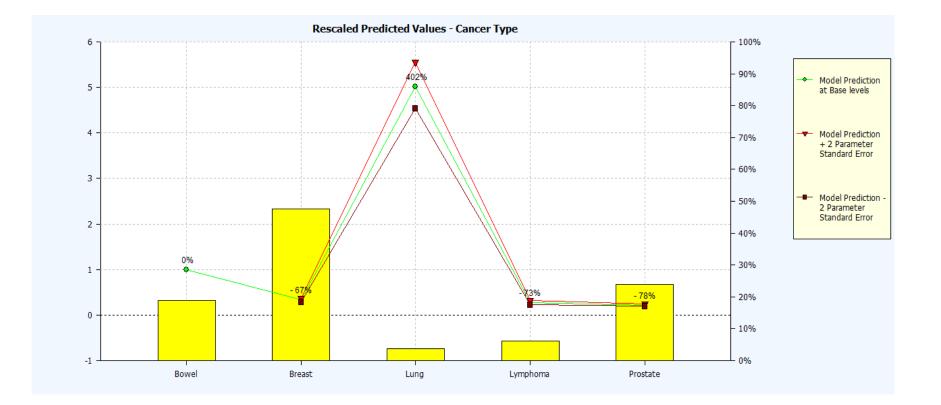
- HbA1c for diabetics
- Systolic BP
- Serum cholesterol levels
- BMI
- HDL, LDL and ratio
- ALT levels (liver function)


GLM of cancer mortality Age – 'raw' (all cancers grouped)

GLM of cancer mortality Age – smoothed (all cancers grouped)

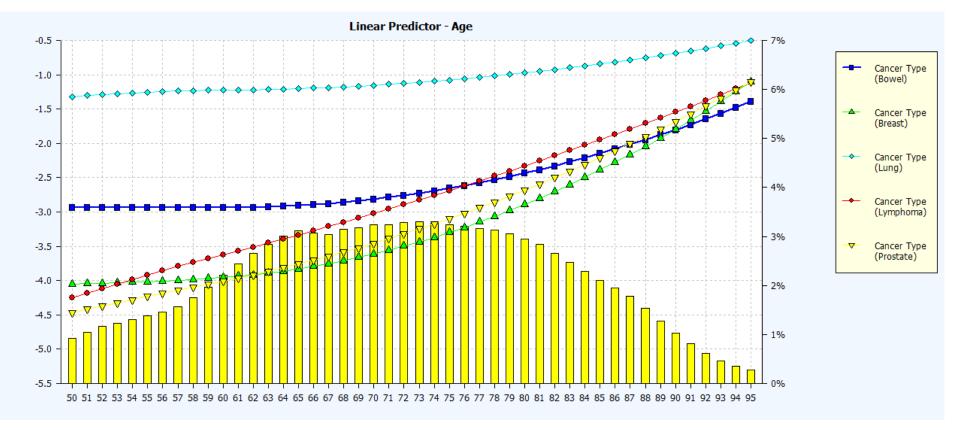


Cancer mortality – smoking status

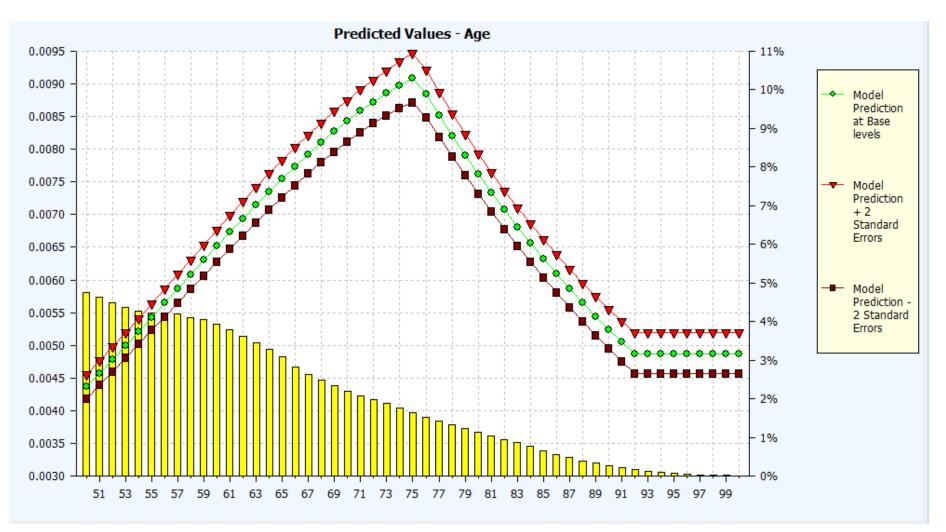


29

Cancer mortality – SES quintile



Cancer mortality – type of cancer



Age x Cancer Type Interaction

The model allows the age curve to vary by cancer type. This graph shows the 5 age curves together. Prostate and breast cancer have very similar shapes, while the others are all distinct.

GLM – Healthy to Diabetic – Age result

Comorbidities – significance

- Essential feature
- What comorbidities to model?
 - Material prevalence (and corresponding availability of data)
 - Mortality 'interaction' ie the two morbidities compound to make the mortality effect 'greater than the sum of the parts'
 - Extent of published research
 - Common pathogenesis
- Model complexity
 - Structure
 - Availability of data to parameterise transitions into / out of comorbidity?
 - Other routes to modelling comorbidity effect?

Comorbidity example Diabetes and heart disease

- Diabetes promotes insulin resistance and mechanisms that alter the function and structure of blood vessels leading to a propensity for platelet aggregation and coagulation and an increased risk of plaque rupture. Thus a diagnosis of diabetes is a significant risk for cardiovascular disease.
- Framingham data analysis reveals that the incidence of CVD among diabetic men and women compared with non-diabetic individuals is x2 and x3 respectively. Mortality from CVD was also increased in diabetics with a relative risk of x1.7 and x3.3 respectively.
- Mortality hazard ratios for those with diabetes compared with those without are significantly increased in a number of causes; from 1.25 for cancer deaths to 3.03 for vascular deaths.
- This is dependent upon HbA1c levels, duration of disease, cholesterol and blood pressure levels and smoking status with a range of life expectancy at age 55 years from 13 to 21 years dependent upon these factors.

Diabetes and heart disease – references

- Clarke R et al, (2009), Life expectancy in relation to cardiovascular risk factors: 38 year follow-up of 19 000 men in the Whitehall study. *British Medical Journal*, doi:10.1136/bmj.b3513
- Creager M et al (2003), Diabetes and Vascular Disease: Pathophysiology, Clinical Consequences, and Medical Therapy: Part I *Circulation* 108:1527-1532
- Kannel W and McGee D (1979), Diabetes and Glucose Tolerance as Risk Factors for Cardiovascular Disease: The Framingham Study, *Diabetes Care*, VOL. 2 NO. 2, MARCH-APRIL 1979
- Miki Tet al (2012), Effects of diabetes on myocardial infarct size and cardioprotection by pre-conditioning and post-conditioning, *Cardiovascular Diabetology* 2012, 11:67
- Haffner S et al (1998), Mortality From Coronary Heart Disease In Subjects With Type 2 Diabetes And In Nondiabetic Subjects With And Without Prior Myocardial Infarction, New England Journal of Medicine 1998;339:229-34
- SIscoviek D et al (2010), Type 2 Diabetes Mellitus And The Risk Of Sudden Cardiac Arrest In The Community, *Rev Endocr Metab Disord* (2010) 11:53–59

Diabetes and cancer

- Various studies suggest that the risk for several types of cancer is increased in diabetic patients; mortality has also been found to be increased in this population. These two conditions are increasingly likely to co-exist.
- Some linkage observed between colorectal cancer and insulin resistance. Insulin resistance (and hyperinsulinaemia) may increase risk of colon cancer.
- Re possible shared pathogenesis, the process of insulin resistance serves to promote cellular proliferation and inhibit apoptosis in many tissue types possibly resulting in tumourigenesis.
- Vinikoor et al (2009) found patients with colon and rectal cancer had a higher prevalence of diabetes odds ratio x1.4 for colon cancer for whites (borderline significance)
- Stocks T et al (2008) in their study suggested that the presence of obesity, hypertension and hyperglycaemia significantly increased the risk of colorectal cancer (eg x2.4 if two metabolic syndrome indicators)
- The combined summary odds ratio for pancreatic cancer associated with type II diabetes was x1.8 (Huxley et al, 2005).

Diabetes and cancer – references

- Swerdlow A et al (2005), Cancer incidence and mortality in patients with insulin-treated diabetes: a UK cohort study, *British Journal of Cancer* 92:2070-2075
- Yeh H et al (2012), A Prospective Study of the Associations Between Treated Diabetes and Cancer Outcomes, *Diabetes Care* 35:113–118, 2012
- Barone B et al (2008), Long-term, all-cause mortality in cancer patients with pre-existing diabetes mellitus: A systematic review and meta-analysis, JAMA 300(23):2754-2764
- Rapp K et al (2008), Weight change and cancer risk in a cohort of more than 65,000 adults in Austria, *Annals of Oncology* 19:641-648
- Major J et al (2009). Insulin-like growth factor-I and cancer mortality in older men, *Journal of Clinical Endocrinology and Metabolism* 95(3):1054-1059
- Waters K et al (2009), Association of Diabetes With Prostate Cancer Risk in the Multi-ethnic Cohort, *American Journal of Epidemiology* 2009; 169:937–945
- Vinikoor L et al (2009), The Association Between Diabetes, Insulin Use, And Colorectal Cancer Among Whites and African Americans, *Cancer Epidemiology Biomarkers and Prevention* 18(4)
- Stocks T et al (2008), Components Of The Metabolic Syndrome And Colorectal Cancer Risk; A Prospective Study, International Journal of Obesity 32:304-314
- Huxley R et al (2005), Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies, *British Journal of Cancer* 92:2076-2083

Case studies

Atrial Fibrillation

- Common condition of the elderly
 - Clots to form in the upper part of the heart
 - Risk of stroke
- Stroke is preventable with warfarin and other newer drugs
- Warfarin itself carries an additional mortality risk
- What is the size of the risk from AF?
 - How long does the risk last?
 - Is the risk the same in different people?
 - How should that risk be aggregated amongst the many other risk factors for death?

Atrial Fibrillation

• Relevant publications

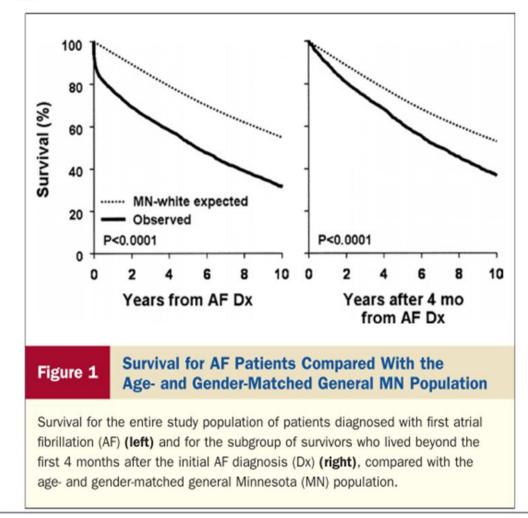
First author, year	Summary	Methods	n		Average (or min)		Timeframe	Outcomes	Population
			070404	-	age	follow up			
Andersson, 2013	Incident AF in hospitalised patients. AF was an independent risk factor of ACM in the multivariate analysis (controlling for concomitant diseases such as HF, HBP, COPD, stroke, TIA, DM.	to compare AE patients with controls A	272186 hospitalised patients with incidental AF		all <85, mean age 72.3 y (+/- 10.9)	13 years max.	until December,	All cause mortality and independent risk factors.	Data from the Swedish National Patient Registry. Hospital admissions with incident AF, 2 controls with no hospital record of AF per AF case, matched for age, gender and calendar year
Benjamin, 1998	After adjustment for age, HBP, smoking, DM, left ventricular hypertrophy, MI, CHF, HVD, stroke, TIA, AFT was associated with OR for death of 1.5	covariates change over time in multivariate			Mean age in AF patients: 74 m; 76 f (range 55- 94 in AF)	maximum 40 years	Study began in 1948	All cause mortality.	Original Framingham Heart Study cohort (longitudinal, population- based); age 28-62 at entry.
Ruigomez, 2002	patients recently diagnosed with AF and	Survival probability was computed in both cohorts and the relative risk of dying associated with AF was estimated using Cox prop. hazard regression to control for risk factors.	1,035	UK	NR	Average 2y	1 '	all-cause and cause-specific mortality	Using GPRD data, patients aged 40–89 years with a first diagnosis of permanent/chronic atrial fibrillation in 1996 were identified. Using the same source population as for the AF cohort, an age and sex matched cohort of 5,000 individuals free of AF was sampled.
Miyasaka, 2007	Mortality risk in patients recently diagnosed with AF was high, especially in the first months after diagnosis, after which mortality seems to plateau. No evidence of significant changes in terms of overall/early/late mortality in 21 years in patients without preexisting CVD.	Cumulative survival after AF was estimated using the KM method. Observed and expected mortality were plotted and compared using the log-rank test	4,618	USA	73 (sd 14 years)	up 5.3 (sd 5y);	Diagnosis made between 1980 and 2000. End of follow-up 2004 or death.	ACM	Community based cohort of residents of Olmsted County, Minnesota with ekg confirmed AF.

Miyasaka 2007

Journal of the American College of Cardiology © 2007 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 49, No. 9, 2007 ISSN 0735-1097/07/\$32.00 doi:10.1016/j.jacc.2006.10.062

Heart Rhythm Disorders

Mortality Trends in Patients Diagnosed With First Atrial Fibrillation

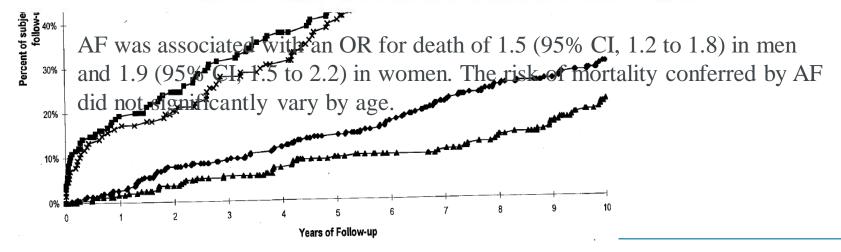

A 21-Year Community-Based Study

Yoko Miyasaka, MD, PHD, FACC,* Marion E. Barnes, MSC,* Kent R. Bailey, PHD,† Stephen S. Cha, MS,† Bernard J. Gersh, MB, CHB, DPHIL, FACC,* James B. Seward, MD, FACC,* Teresa S. M. Tsang, MD, FACC*

Rochester, Minnesota

Relative to the age- and gender-matched general Minnesota population, the mortality risk was increased (p 0.0001) with a hazard ratio (HR) of 9.62 (95% confidence interval [CI] 8.93 to 10.32) within the first 4 months and 1.66 (95% CI 1.59 to 1.73) thereafter.

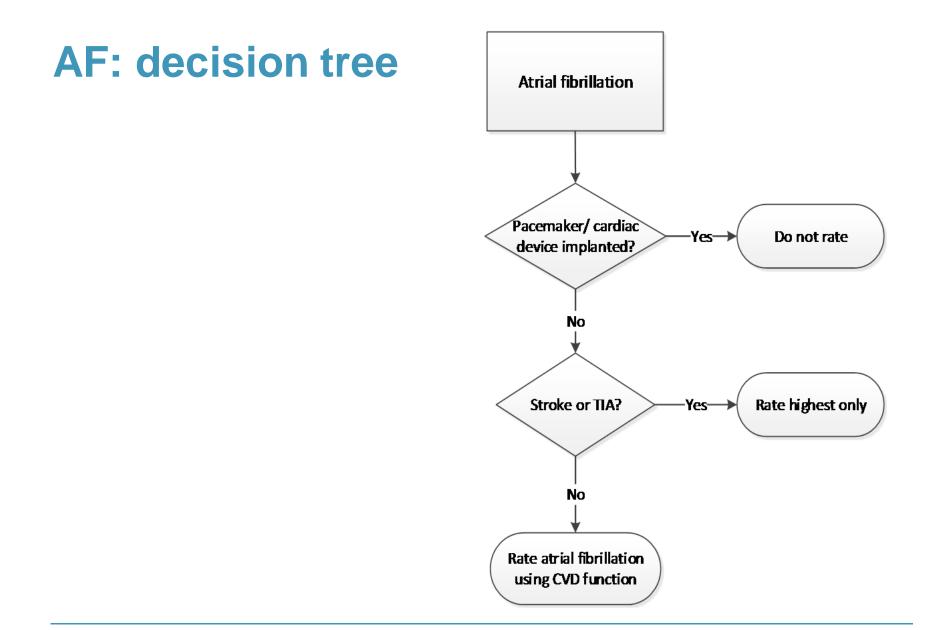
Miyasaka 2007


Benjamin 1998 Framingham

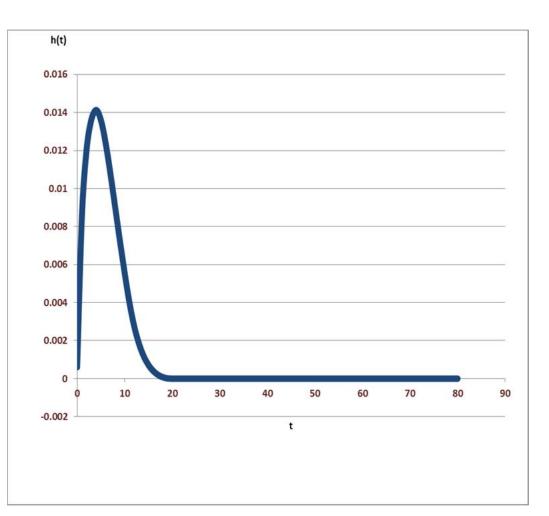
1

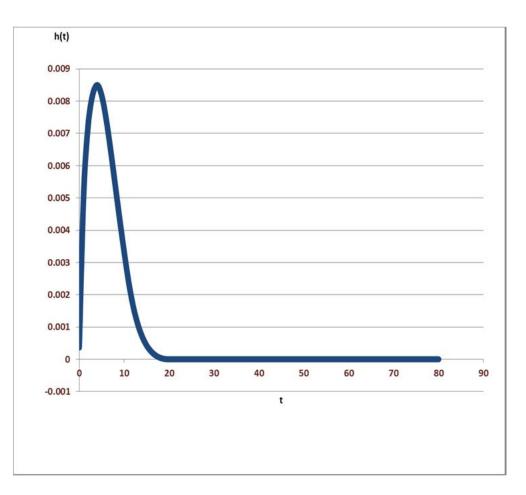

Clinical Investigation and Reports

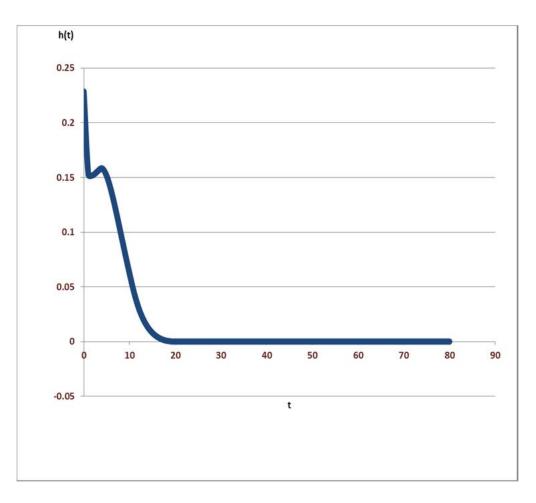
Impact of Atrial Fibrillation on the Risk of Death The Framingham Heart Study


Emelia J. Benjamin, MD, ScM; Philip A. Wolf, MD; Ralph B. D'Agostino, PhD; Halit Silbershatz, PhD; William B. Kannel, MD; Daniel Levy, MD


Summary risks of AF


45


Inputs	
Age At Diagnosis	62.43
Current Age	66.50
Gender	Female
Stage	2
Grade	1
Oestrogen Receptor	Negative
Born date	13/12/1946
Diagnosis date	17/05/2009
Policy Date	14/06/2013


Inputs	
Age At Diagnosis	66.43
Current Age	66.50
Gender	Female
Stage	2
Grade	1
Oestrogen Receptor	Negative
Born date	13/12/1946
Diagnosis date	17/05/2013
Policy Date	14/06/2013

Inputs	
Age At Diagnosis	66.43
Current Age	66.50
Gender	Female
Stage	2
Grade	1
Oestrogen Receptor	Positive
Born date	13/12/1946
Diagnosis date	17/05/2013
Policy Date	14/06/2013

Inputs	
Age At Diagnosis	66.43
Current Age	66.50
Gender	Female
Stage	4
Grade	2
Oestrogen Receptor	Positive
Born date	13/12/1946
Diagnosis date	17/05/2013
Policy Date	14/06/2013

50

Demonstration of PrognoSys

- Framework to knit together evidence from diverse sources into a coherent set of functions that describe human mortality
- Uses a large variety of functions, from flexible parametric, splines, Markov models, bespoke deterministic
- Interactions
- COPD
- Bowel cancer

Further reading and contact details

Diabetologia (2004) 47:1747–1759 DOI 10.1007/s00125-004-1527-z

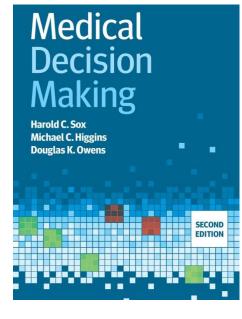
Diabetologia

A model to estimate the lifetime health outcomes of patients with Type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68)

P. M. Clarke^{1, 4} · A. M. Gray¹ · A. Briggs¹ · A. J. Farmer² · P. Fenn³ · R. J. Stevens⁴ · D. R. Matthews⁵ I. M. Stratton⁴ · R. R. Holman⁴ · on behalf of the UK Prospective Diabetes Study (UKPDS) Group

¹ Health Economics Research Centre, Department of Public Health, University of Oxford, Headington, Oxford, UK ² Department of Primary Health Care, University of Oxford, UK

³Business School, University of Nottingham, UK


⁴ Diabetes Trials Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK

⁵ Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK

Disease and Death Improving our understanding of the future

by Hande Love and Daniel Ryan

The NEW ENGLAND JOURNAL of MEDICINE

SPECIAL ARTICLE

Explaining the Decrease in U.S. Deaths from Coronary Disease, 1980–2000

Earl S. Ford, M.D., M.P.H., Umed A. Ajani, M.B., B.S., M.P.H., Janet B. Croft, Ph.D., Julia A. Critchley, D.Phil., M.Sc., Darwin R. Labarthe, M.D., M.P.H., Ph.D., Thomas E. Kottke, M.D., Wayne H. Giles, M.D., M.S., and Simon Capewell, M.D.

Contact details

just retirement

Dr Tim Crayford

+44 (0) 1737 827298 tim.crayford@justretirement.com