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ABSTRACT 

It is demonstrated how existing actuarial graduation practice, used in the construction of life tables, 
can be extended to considerable effect by formulating the techniques within the generalised linear and 
non-linear modelling framework. 
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1. INTRODUCTION 

Many of the models used by actuaries for graduation purposes, both historical 
and contemporary, are specific instances of the rich class of generalised linear 
models (GLMs); a potentially unifying feature which would appear to have gone 
largely unobserved in actuarial literature. The aims of this paper, therefore, are 
to highlight these connections where they exist, and to exploit the benefits which 
accrue from adopting this different perspective on largely existing actuarial 
practice. One immediate practical benefit derives from the exploitation of the 
attendant computer software package (GLIM) as a means of implementing 
graduations. Scrutiny of residual plots as an additional diagnostic check on any 
adopted graduations, which would not appear to be current practice, is also 
advocated to supplement the more formal statistical tests in common use. 

Much of what follows is motivated by the recently published comprehensive 
paper on graduation by Forfar, McCutcheon & Wilkie (1988) (together with the 
attendant Continuous Mortality Investigation (CMI) Report No. 9), and, to a 
lesser extent, by relevant sections of the standard textbook by Benjamin & 
Pollard (1980) (in particular Chapter 14). A concerted effort has been made to 
adopt the notation of the former reference where appropriate, since this 
contribution is essentially supplementary to that paper. 

Sections 2 and 3 contain a brief account of the salient features of a GLM 
together with an indication of the more obvious features likely to be of immediate 
interest in graduation. Section 4 indicates how existing actuarial graduation 
practice fits within the GLM context, providing both a more unified modelling 
framework within which to work, as well as leading to alternative models for 
possible consideration. The reanalysis of various published graduations using 
GLM techniques and graphical diagnostics is discussed in Section 5. Section 6 is 
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devoted to generalised non-linear models (GNLMs), and to how these might be 
implemented. There is a brief discussion of a reanalysis of some published 
graduations in Section 7. 

2. GENERALISED LINEAR MODELS (GLMs) 

Focus attention on a (column) vector of responses 
treated as a realisation of a vector of independent random variable with 
systematic deterministic structure defined through the vector of means 
m= E(Y). (Notationally m rather than is used here to denote the mean, so that 
the latter may be reserved to denote the force of mortality in the sequel.) Within 
this context a GLM is characterised by three basic ingredients comprising: 

(1) a modelling distribution imparted to the independent random variable, 
(2) the inclusion of model covariates through a linear predictor: 

(3) linked into the model through the means m by the so-called link function g 
where: 

As a general rule the modelling distributions available for use are restricted to the 
exponential family of distributions, which includes the normal, binomial and 
Poisson distributions amongst its members. The linear predictor: 

comprises a known covariate structure , a nxp matrix with 
columns . The parameters are usually, but not always all, unknown. Precisely 
what constitutes the linearity of such a predictor will be discussed in context later. 
The link function, g, is monotonic—so that its inverse exists—and is defined 
to be differentiable over its domain. 

Model fitting is done using the GLIM computer package, in which the are 
estimated by maximum likelihood using an iterative weighted least squares 
algorithm. The reader is referred to the text book by McCullagh & Nelder (1989) 
for further detail. 

3. GRADUATION AND GLMS 

3.1 Modelling Distributions 
The crude data to be smoothed by graduation comprise the number of 

recorded deaths, A,, accruing from exposures, over a range of ages x. The 
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target is either the probability of death based on initial exposures or the force 
of mortality, based on central exposures. It is not intended to target the 
central rate of mortality, as this involves no new detail. Define, therefore, the 
responses of the GLMs to be the numbers of deaths, A,, at age x. Here i=x and 

Further, in common with Forfar et al. (1988), when targetting qx use the 
binomial modelling distribution: 

independently for all x, with mean: 

and when targetting use the Poisson modelling distribution: 

independently for all X, with mean: 

3.2 Linear and Non-Linear Predictors 
In common with the familiar graduation scenario, concentrate on homo- 

geneous data sets of the type for which age x is deemed to be the only 
covariate affecting death. Then any polynomial in x defines an obvious linear 
predictor: 

Perhaps a written word about the linearity of the predictor is warranted at this 
stage. The ages x are known and regression coefficients unknown. Thus, for a 
polynomial predictor of fixed degree S–1, the predictor changes according to the 
choice of denote predictors based on two such choices, in 
which the of equation 3.1 are replaced respectively Then the 
predictor structure defined by equation 3.1 is deemed to be linear, by virtue of the 
fact that any linear combination: 

(3.2) 

for any scalars a’ and a” can also be written in the same form as equation 3.1. In 
fact, in this instance, the of equation 3.1 are replaced by: 

By the same token, predictors containing one or more exponential terms, such 
as the familiar Makeham form: 

(3.3) 

are non-linear, by virtue of the fact that constructed in a similar way but using 
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equation 3.3 in conjunction with equation 3.2, cannot be expressed in the same 
form as equation 3.3. 

The Forfar et al. (1988) paper makes extensive use of predictors based on the 
so-called Gompertz–Makeham formula: 

subject to the convention that r = 0 implies the exponentiated polynomial term 
only, and s=0 implies the polynomial term only. This is non-linear in general, 
unless either one of r or s is zero, dependent on the nature of the link. The reason 
for this will become apparent shortly. 

3.3 Link Functions 
Consider the binomial model first. There are a number of possibilities in 

common use: 

(1) The log-odds or logit link function defined by: 

with inverse: 

(2) The complementary log–log link function defined by: 

(3.5) 

(3) The probit link function defined by: 

where is the cumulative distribution function of the standard normal 
variable, and with inverse: 

Notice that each link function maps the domain [0, 1] of the probability or, 
equivalently, the domain [0, Rx] of the mean mx to the whole of the real line, 
thereby guaranteeing the basic tenet that the inverse link gives rise to probability 
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values in the interval [0,1]. It should be noted that use of the inverse odds 
formula: 

strongly advocated by Forfer et al. (1988), in which is defined by 
equation 3.4, does not offer this guarantee (unless r = 0); a possible shortcoming 
of which the authors are obviously aware. Clearly, when r = 0, the Forfar et al. 
equation 3.6 coincides with the inverse logit link 3.5 based on a polynomial 
predictor in x of degree s—1. 

Consider the Poisson modelling distribution next. It is mainly associated with 
the log–link function: 

3.4 Implementation and Diagnostic Checks 

(3.7) 

This is by the GLIM computer software package. A series of macros have been 
written to facilitate both the fitting and diagnostic checking of individual models 
as well as the construction of graduated tables. These are available on request. 
Neither the age scaling transformation nor the orthogonal polynomials dis- 
cussed by Forfar et al. (1988) are needed. However, there would appear to be a 
limitation on the ability to handle the more general non-linear 
predictors defined by equation 3.4 when Although designed specifically to 
handle linear predictors it is nevertheless possible to model with the non-linear 

predictor as described in Section 6. 
Graduations are based on models fitted to the ungrouped raw data 

over a range of xs, in keeping with Forfar et al. (1988). The overall measure of 
goodness of fit is provided by the model deviance, minus twice the log-likelihood 
ratio statistic based on the current model relative to the so-called saturated or full 
model. It is possible to compare the goodness of fit of the various modelling 
predictor structures fitted to the same data set by differencing the resulting model 
deviances, while no attempt should be made to interpret their absolute values. 
Asymptotically these differences have the chi-square distribution. Further detail 
is described in Section 5. 

As with Forfar et al. (1988), the data are grouped when necessary—so that the 
expected number of deaths in adjacent age cells exceed 5, say—before residuals 
are computed. For the binomial models, since the qx are small (except for very 
large x), following the first edition of McCullagh & Nelder (1983), the adjusted 
deviance residuals, defined by: 
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where the sign is that of are computed. 
Plots of residuals against both age and against fitted (expected) values arc 

recommended as minimal informal visual checks on various aspects of the 
modelling assumptions. The residual plot against age augments the more formal 
tests performed by Forfar et al. (1988); a null pattern being consistent with low 
autocorrelation, an adequate number of ‘runs’, etc. and consequently potentially 
sound graduations. 

By nominating the binomial or Poisson modelling distributions it follows that 
the respective variance functions are defined to be: 

The residuals plotted against either fitted (expected) values or fitted values 
transformed to the constant-information scales, defined by or 

for the binomial and Poisson models respectively, act as an informal 
check on the adequacy or otherwise of the variance function of the chosen model. 
The transformation usually has the effect of spreading out the points on the 
horizontal scale. Again a null pattern showing no trend is consistent with the 
assumed variance function. These are potentially informative plots to examine, 
since the presence of duplicate policies on the same lives is known to affect the 
assumed variance function of the model in the ways outlined by Forfar et al. 
(1988). 

4. GRADUATION AND SOME SPECIFIC GLMS 

4.1 The Gompertz GLM 

It is perhaps most fitting to commence a more detailed study of specific models 
with a GLM motivated by the Gompertz historic and familiar formula in which 
the force of mortality, at age X, is given by the non-linear form: 

Although is non-linear, it is well-known—see Chapter 14 of Benjamin & 
Pollard (1980), for example—that a linearised form is forthcoming in terms of 
the probability of death, qX, namely: 

in which comprise a reparameterisation of B and c. In fact: 

Thus graduation by Gompertz historic formula can be likened to the fitting of a 
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GLM comprising the binomial modelling distribution, complementary log-log 
link, and straight-line predictor (s=2). It is proposed to extend the model by 
allowing the more general polynomial predictor 3.1. Indeed, an examination of 
Figure 4.1 of Benjamin & Pollard (1980), in which complementary log-logs arc 
plotted (on a negative scale) against age X, suggests that the inclusion of an 
additional quadratic term in the linear predictor might be an alternative to the 
use of Makeham’s formula. Initial insight into a possible suitable predictor is 
obtained by plotting the empirical complementary log-logs against age, while the 
graduated values are determined by: 

where the estimated linear predictor: 

4.2 The Wilkie GLM 
This implies treating the observed numbers of deaths at ages, x, as independent 

binomially distributed responses: 

in conjunction with the logit link and linear predictor so that the graduated 
values are determined by: 

The model was first used in this context at the suggestion of Wilkie (CMI 
Committee, 1976). Indeed all the graduations in the CMI Report No. 2 (1976) 
were constructed in this way. 

4.3 The Probit GLM 

The model would not appear to have been used in this context before. 
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4.4 The Poisson GLM Targeting the Force of Mortality 
This comprises Poisson response variables, A,, the log-link function with a 

polynomial predictor written as: 

which is slighly different in form to the three preceeding cases. Here the log (Rx) 
term on the right hand side is treated as an additional regressor variable with a 
known regression coefficient (value +1). It is necessary to subtract such terms 
from the responses before fitting the polynomial structure. There is an automatic 
facility for doing this in the GLIM software package by declaring the log (Rx) terms 
as offsets. It follows that: 

and that the model is identical to the so-called µ-graduation, GMx (0, s) model 
discussed in Forfar et al. (1988). With s=2 and a little reparameterisation, 
Gompertz familiar form is reproduced. 

5. STANDARD TABLES AND GLMS 

The pensioners’ widows graduation (Example I, Section 15) in Forfar et al. 
(1988) together with the various graduations presented in CMI Reports No. 2 
(1976) and No. 6 (1983) are based almost exclusively on the Wilkie GLM and 
provide a most convenient test-bed for comparing the performances of the 
various binomial GLMs discussed in Section 4. It should, perhaps, bc 
emphasised that these discussions are limited to diagnostic checks based on a 
comparison of model deviances together with the visual scrutiny of residual 
plots, and which would appear to be new to existing actuarial practice. It is 
apparent from the extensive actuarial literature on graduation that many other 
diagnostics are rightly taken into consideration before a graduation model is 
finally adopted. 

5.1 The Pensioners' Widows, 1979–82 Experience 
5.1.1 Binomial GLMs with all three of the links discussed in Section 4 and 

with straight-line and quadratic predictors were fitted to the data presented in 
Table 15.6 of Forfar et al. (1988). The resulting values of the model deviances are 
presented in Table 5.1. 

For a typical specific model structure, the so-called current model, c, the 
(scaled) deviance is defined by: 
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Table 5.1. Model deviances 

Degree 
Link 1 2 

1 61·80 61·75 
2 61·57 61·53 
3 65·19 62·30 

303 

where lc and lf are the optimum values of the likelihood under the current model 
and under the saturated or full model, f. The saturated model,f, as beholds this 
description, is characterised by the property that its fitted values are the empirical 
responses themselves, thereby ensuring a perfect fit with zero residuals. For 
binomially distributed responses, Ax˜B(Rx, qx), as is the case here, with 
expected values, mx= Rxqx, and log-likelihood: 

it follows that the model deviance is given by: 

where denote the fitted values under the current model, c. Then for a 
given data set, specific link, g, and nested polynomial predictor structures, c1 and 
c2, of degree s1 and s2 (s1<s2) respectively, the differences: 

are referred approximately to the chi-square distribution with (s2–s1) degrees of 
freedom. Further, since the value of lf is invariant across links for a specific data 
set, the relative magnitudes of the deviances S(c,f) for a fixed model structure, c, 
provide a means of comparison across links. There is, however, no reference 
distribution. 

The deviances play the same role as the log-likelihood plus large unspecified 
constant quoted in Forfar et al. (1988). Indeed, the former are clearly a linear 
(straight-line) transformation of the latter with a scale factor of 2 and in which 
the value of the large constant is revealed! In particular, since differences in the 
deviances can be referred approximately to the chi-square distribution, an 
‘improvement’ of at least 4 is sought in the deviance for one extra parameter, 
corresponding approximately to the 95% point on a chi-square distribution with 
one degree of freedom. This is, then, equivalent to an improvement of at least 2 in 
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the log-likelihood, an initial sifting criterion used extensively by Forfar et al. 
(1988) to identify possible optimum predictor structures. 

Scrutiny of Table 5.1 lends support to the choice of straight-line predictor and 
marginally supports the choice of logit link over the classical Gompertz formula. 
The residual plots associated with the fit, some of which are reproduced in Figure 
5.1, are highly supportive of the graduations presented by Forfar et al. (1988). In 

Residuals vs. fitted values (grouped date) 

Residuals vs. age (grouped data) 

Figure 5.1. Residual Plots: Pensioners' Widows. 
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particular, the lack of any trend in the residuals plotted against age is consistent 
with the supportive evidence of the formal tests applied by Forfar et al. (1988), 
while the null pattern in the residuals plotted against fitted (expected) values is 
supportive of the assumed variance function. 

5.1.2 The Poisson GLM with log-link, offsets and with straight-line and 
quadratic predictors were fitted to the data presented in Table 15.5 of Forfar et 

al. (1988). The resulting deviances are presented in Table 5.2. 

Table 5.2. Model deviances 

Degree 
1 2 

60.98 60.94 

(Link: log) 

For Poisson distribution responses, with expected values 
and log-likelihood: 

it follows that the model deviance is given by: 

where are again the fitted values under the current model. 
Table 5.2 lends support to the choice of straight-line predictor, while the 

residual plots, which are not reproduced here, arc highly supportive of the model 
used by Forfar et al. (1988). 

5.2 The CMI Report No. 2 (1976) 
Data are presented for the pensioners’ 1967–70 experience for both male and 

female normal lives and amounts (Tables 3,4,5,6) and for the annuitants’ 1967– 
70 experience for both females and males, each at duration 0 and at duration 1 or 
more (Tables 14, 15, 19, 20). In the event, with one exception, graduations were 
based on a straight-line predictor in conjunction with the Wilkie GLM; the 
exception being that for female annuitants, duration 1 or more, where a cubic 
predictor was used. 

Binomial GLMs with all three of the links discussed in Section 4 and with 
straight-line, quadratic and cubic predictors were fitted to all eight data sets and 
the resulting model deviances presented in Table 5.3. 

Scrutiny of the deviances in Table 5.3 for all eight data sets separately leads to 
the following conclusions: 
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Table 5.3. Deviances, binomial models, various links, various 
polynomial predictors 

Pensioners 1967–70: Normal 

Type Lives Amounts 
Degree 1 2 3 1 2 3 
Link 

Male 1 90·27 82·78 82·36 247·40 238·48 238·46 
2 84·96 83·14 82·13 241·21 238·43 238·04 
3 91·71 83·16 82·18 246·35 238·83 237·88 

Female 1 53·36 53·28 52·68 89·53 89·01 79·23 
2 53·52 52·87 52·63 89·24 87·33 79·46 
3 64·01 52·85 52·85 102·95 85·38 81·08 

Annuitants 1967–70: 
Duration 0 1 or more 
Degree 1 2 3 1 2 3 
Link 

Male 1 37·78 36·69 34·62 81·15 80·50 80·18 
2 37·92 36·51 34·64 83·01 80·96 80·35 
3 39·78 35·99 34·71 95·00 81·40 80·63 

Female 1 52·49 52·14 49·70 74·35 73·19 65·41 
2 53·13 52·60 49·97 75·78 70·96 65·46 
3 56·94 53·41 50·66 113·91 68·30 65·86 

(Link: 1-complementary log-log, 2-logit, 3-probit.) 

(i) supports the use of a cubic predictor for pensioners, female, amounts as 
well as for annuitants, female, duration I or more, which, presumably, 
was rejected because of other considerations; 

(ii) endorses the use of the linear predictor in the remaining six categories; 
(iii) offers strong support for the logit link over the other two links in only two 

of the eight categories, namely for pensioners, male, both lives and 
amounts; 

(iv) offers evidence, albeit marginal, that Gompertz complementary log- log 
link is to be preferred over the Wilkie logit link in five out of the remaining 
six cases, so that the graduations could possibly have been improved 
upon; 

(v) indicates that the probit link performs less well than the other two links in 
all eight categories; and 

(vi) as an example of questionable modelling assumptions, the residuals 
plotted against both fitted values and against fitted values transformed to 
the constant-information scale for female annuitants, duration 1 or more, 
with logit link and cubic predictor are reproduced in Figure 5.2. These 
possibly cast suspicion on the nature of the variance function. One 
possible explanation could lie with the presence of duplicate policies in 
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Figure 5.2. Residual Plots: Annuitants, Females, Duration 1+. 

the data set. It goes without saying that each of the graduations finally 
adopted in the CMI Report No. 2 were subjected to the battery of formal 
tests. 

5.3 The CMI Report No. 6 (1983) 
Graduations for the assured lives’ 1975–78 experience are presented with the 

ultimate rates of mortality (Appendix 3, pp. 20–21) based on a Wilkie GLM with 
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quadratic predictor. Unfortunately, it has not been possible to reproduce these 
results exactly, as the relatively small number of experiences in the age range 15– 
19, used in the construction of the CMI ultimate table, have been omitted from 
the report. Subject to this very minor omission in the data set, the residual plots 
are supportive of the model adopted in the Report, but the probit link gives a 
better fit; a deviance of 86·84 compared with 89·39 for the logit link and 90·26 for 
the complementary log–log link. Thus, again, it is conceivable that the 
graduations could have been improved upon using this wider array of modelling 
techniques. An over parameterised predictor has been selected for the reasons 
given in the Report. 

6. GRADUATION AND SOME SPECIFIC GNLMS 

6.1 The Makeham GNLM 
Again, it is most fitting to commence with a GNLM motivated by an historic 

formula, namely the three parameter Makeham form: 

It is well known that it is not possible to transform this non-linear form into a 
linear form unless A = 0. However, introducing a trivial reparameterisation, it is 
possible to write: 

which is perceived to be linear if the third parameter 6, is assumed known. This 
points the way forward. 

In keeping with McCullagh & Nelder (1989) let g(x; ), with parameter 4, 
denote a typical non-linear term in any linear predictor. Specifically: 

here. Expansion, to first order terms, about an initial value & yields: 

so that, to a first approximation, the non-linear term pg(x; ) in the linear 
predictor can be replaced by two linear terms: 

with covariates: 

and where: 
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So, given a starting value; covariates: 
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are computed, and the parameters (along with the parameters of any 
other linear terms present in the predictor) estimated by fitting the model. Then 

is updated, using: 

and the process repeated until convergence. Convergence is not guaranteed for 
distant starting values. A starting value of 0 = 0·0005 has been found to induce 
convergence in two or three iterations in all of the many typical data sets 
graduated in this way. Since µx is being targetted for graduation, the Poisson 
modelling distribution with the natural log-link is selected. 

6.2 The Forfar et al. GNLM 
Forfar et al. (1988) have proposed a non-linear predictor based on their so- 

called Gompertz-Makeham formula, GMx(r, s), defined by equation 3.4. To 
place these models within the generalised linear and non-linear modelling context 
it is necessary to consider a number of separate cases. 

6.2.1 The graduation of qx using the binomial modelling distribution in 
conjunction with the inverse-odds transformation is defined by equation 3.6. 

(a) If r=0 and s>0, then equations 3.4 and 3.6 together yield the Wilkie 
GLM already discussed in Section 4. 

(b) More generally if r> 0, then equation 3.6 can be trivially rewritten as: 

with inverse: 

the odds-link function. It is, therefore, something of a misnomer to refer to 
equation 3.6 as the logit Gompertz–Makeham formula, since it involves 
the odds and not the log-odds transformation as this choice of name 
implies. If, in addition, s = 0 or 1, the predictor 3.4 in this combination of 
link is linear, otherwise it is non-linear. 

As already intimated, this particular predictor link combination (r > 0) 
does not automatically preclude the possible occurrence of negative 
probabilities. (It may well be a case of the ends justifying the means.) For 
this reason, the odds-link in combination with the binomial modelling 
distribution is not automatically available for implementation within the 
GLIM software package. It can, however, be accommodated through the 
interactive user own macro facility. There is also the additional complica- 
tion of the non-linearity of the predictor to be taken into account if s > 1. 
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6.2.2 The graduation of µx, using the Poisson modelling distribution in 
conjunction with the identity: 

µx=GMx(r,s). 

(a) If r=0 and s>0, then equations 3.4 and 3.7 together yield the Poisson 
GLM with natural log-link, polynomial predictor and declared offsets 
log(Rx) already discussed in Section 4. In addition, this particular model 
formulation ensures that the force of mortality cannot be negative. 

(b) For the more general case, with r>0, any s, the modelling technique 
advocated in Forfar et al. (1988) is equivalent to a Poisson GNLM with 
responses Ax/Rx, weights Rx, identity link and non-linear predictor 
x=µx = GMx(r, s). This becomes immediately apparent on writing the 
log-likelihood of this Poisson model: 

independently for all x, as: 

It should be noted that this particular modelling formulation does not 
exclude the theoretical possibility of a negative force of mortality. 

7. STANDARD TABLES AND GNLMS 

Graduations for both male pensioners (Example 2, Section 16) and for male 
assured lives (Example 3, Section 17) presented by Forfar et al. (1988) are based 
on the non-linear Gompertz- Makeham predictor. We concentrate on the latter 
example, since the majority of graduations quoted are based on the GMx(2, 2) 
predictor which, although non-linear, can be handled by the GLIM software 
package as described above. 

7. 1 The Male Assured Lives U.K. Experience 
The Poisson GNLM based on the response and weights stated above, with 

identity link and non-linear predictor GMx (2,2) has been successfully applied to 
the male assured lives, permanent, U.K. experiences for duration 0 and duration 
2–4, confirming the results presented in Tables 17.4 and 17.5 of Forfar et al. 
(1988). The same model has also been successfully applied for duration 5+, 
confirming the results presented in Table 17.9 of Forfar et al. (1988), in which the 
data were first transformed before modelling by dividing both the exposed to risk 
and numbers of deaths by the so-called variance ratios for each age derived from 
the count of duplicates among the deaths from the experience. The residual plots 
for this model, some of which are reproduced in Figure 7.1, are particularly 
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Figure 7.1. Residual Plots: Male assured lives permanent U.K., Duration 5+. 

revealing. The distinctive cyclical pattern in the residuals plotted against age, 
very marked for ages in excess of 48 years, is consistent with the failure of a 
number of the formal tests conducted by Forfar et al. (1988). However, the null 
pattern in the residual plot against fitted values transformed to the constant- 
information scale is supportive of the variance function and is consistent with the 
data transformation before modelling. 
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8. SUMMARY 

The generalised linear and non-linear modelling frameworks provide the ideal 
setting for existing actuarial graduation techniques. Not only do these offer a 
more unified approach to graduation, but they also offer a more comprehensive 
set of modelling techniques, which have only partially been explored here. In 
particular, use of parameterised families of link functions and variance modelling 
techniques in relation to duplicate policies are developed elsewhere. It is 
particularly gratifying to note how long-established mortality formulae, such as 
those of Gompertz, in particular, and Makeham, feature within these settings, 
leading to more general treatments. Further, the graphical analysis of residuals is 
a highly informative diagnostic check which should not be ignored. 
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