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ABSTRACT 

The paper reviews the mathematical models of transmission of infection that have been put forward 
for representing the spread of HIV infection and AIDS. It describes and compares the main models 
that have been proposed and thereby provides some guidance on how such models might be 
constructed and utilised. There is also discussion of the importance of constructing such 
mathematical models of transmission of infection which further our understanding of the 
transmission dynamics of the epidemic and help to identify important epidemiological parameters 
and their likely influence on the epidemic’s course. 
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1. INTRODUCTION 

The aim of this paper is to provide a review of the mathematical models of 
transmission of infection that have been proposed for representing the spread of 
the AIDS epidemic. The literature on this topic is very large and is continuing to 
expand and so, necessarily. this review is not intended to be exhaustive. The aim 
is to describe and compare the principal models that have been proposed; 
however, it is likely that new approaches may be put forward while this paper is 
being written and printed. Further, the review is not intended to be a 
comprehensive guide to the mathematical techniques that have been used. The 
excellent review paper by Isham (1988) would fit these terms of reference more 
adequately. It is hoped that the paper will be of value to actuaries who would like 
some guidance on how models might be constructed and, indeed, how the models 
proposed by the Institute of Actuaries AIDS Working Party fit into the wider 
umbrella of suggested approaches (Daykin et al., 1988). At this point, it should 
be mentioned that the author is a member of the Working Party and has 
benefited considerably from the input of the other members of the Working 
Party; however, the views expressed here are the sole responsibility of the author 
(as are the remaining errors). 

What is the point of attempting to model the spread of the AIDS epidemic? 
Firstly, it must be admitted that this mathematical modelling is being carried out 
even though much of the underlying numerical information needed is not 
available, and, therefore, the models cannot yet be used to give reliable 
predictions of the future incidence of AIDS. Nevertheless, such modelling is 
of considerable epidemiological importance. The most important purpose of 
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mathematical modelling is to provide a means of gaining understanding about 
the transmission dynamics of the infection and, in particular, of learning which 
features are likely to have substantial influence on the course of the epidemic and 
what sort of effects are to be expected. It is thus possible to investigate how 
changes in the various assumptions and parameter values of the models would 
affect the course of the epidemic. This understanding, in turn, helps to clarify 
what behavioural changes are needed and what intervention strategies should be 
pursued in order to reduce the spread of the infection, and to enable sensible 
decisions to be made on the sort of data that should be collected in order that 
better predictions can be obtained and the consequences of the epidemic can be 
better managed. Thus, the whole process of modelling and data collection is 
iterative, but the act of modelling helps to structure thoughts about the spread of 
infection and provides a framework within which to consider questions of the 
form: what would happen if A were changed to B? The modelling process then 
provides a guide to the sorts of data that should be collected to make better 
information available to society about the epidemic. From an actuarial point of 
view, such modelling is of vital importance in investigating the implications of the 
AIDS epidemic for insurance and pensions. 

2. GENERAL POINTS ON EPIDEMIOLOGY 

The earlier paper by Daykin (1990) provides a full review of the epidemiology 
of HIV infection and AIDS. 

It is worth noting the following definitions relating to the course of AIDS in 
a particular susceptible individual (Figure 1 provides an illustration of the 
corresponding stages): 

There is a latent period extending from infection until the individual 
becomes infectious. This is followed by an infectious period during which the 
individual is termed an infective and can pass on the disease to susceptibles. 
The individual infected with HIV is described as being seropositive when 
antibodies are normally detectable in the blood. This tends to occur a few 
weeks after infection. 
The period from infection until overt symptoms appear is the incubation 
period. For many diseases, the individual will be isolated and unable to pass 
on the infection once symptoms appear, so that, essentially, infectivity 
ceases at this time. 
The individual may in due course recover or die (from the infection or from 
other causes) and, if he recovers, he may be immune to the disease or may 
return once more to the susceptible state. 

As Daykin (1990) notes (Section 6), the incubation period may be very long and it 
is still too early to say definitively whether all those infected with HIV will 
ultimately progress to AIDS or whether only a fraction will. Given the likely 
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Figure I. Stages for an infectious disease 

length of the incubation period. it is convenient in modelling the epidemic to 
assume that all those infected with the virus are seropositive. 

For modelling purposes, it is also convenient to make the simplifying 
assumption that, after AIDS is diagnosed, the individual concerned is effectively 
isolated and unable to infect further susceptibles. This means that the infectious 
period is contained within the incubation period. It is thought (Anderson et al., 
1986) that the latent period is a matter of days or a few weeks, which again is 
negligible when compared with the incubation period, but it is not known how 
long the infectious period lasts and whether or not infectivity is a constant 
throughout. For any seropositive individuals who do not develop AIDS, there is 
the further question of whether or not they are infectious continuously after the 
short latent period (Hyman & Stanley, 1988; Daykin et al., 1989). 

At present, recovery from AIDS does not appear possible and so models have 
tended to avoid including a class of ‘recovered-immune’ individuals. 

The models described in detail in later sections have been progressed to 
providing numerical results by a variety of means including analytical 
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approaches, numerical approximation methods and simulation. Further infor- 
mation on mathematical models of the spread of infectious diseases (both in 
general and for specific cases) can be found in one of the standard textbooks, for 
example Bailey (1975) Hethcote & Yorke (1984) and Dietz & Schenzle (1985) 
each of which contains a substantial bibliography. 

At this point, it is worth noting the type of data that are being collected in 
respect of AIDS cases in the United Kingdom. Thus, a surveillance scheme was 
introduced in 1982 at the Public Health Laboratory’s Communicable Disease 
Surveillance Centre (CDSC) and at the Communicable Diseases (Scotland) Unit 
(CDSU). An AIDS case reported to the U.K. surveillance scheme will have six 
key dates, five of which are recorded in the scheme where possible: 

(1) Date of infection: this will be known for a few patients, for example where 
infection is due to a single episode of blood transfusion. 

(2) Date of seroconversion, production of antibody to HIV. Seroconversion 
takes place some weeks or months after infection. It is sometimes 
accompanied by a mild illness, but this illness is seldom, if ever, recorded 
on a surveillance report form. 

(3) Date of onset: the first symptom likely to be HIV related is noted and the 
date coded. When the onset is insidious or the early symptoms are unusual, 
then this date may not be accurate, and information on early symptoms is 
not always recorded. 

(4) Date of diagnosis: this is coded as the month in which the patient was 
recognised to fulfil the current official case definition. It is possible that a 
patient may have been at that stage for some months before the fact is 
recognised, but, with an infection which has been present in that patient 
possibly for many years, some imprecision has to be accepted. Cases by 
date of diagnosis are the data used internationally to describe the epidemic 
curve of AIDS. 

(5) Date of report: the date at which the surveillance form is received at CDSC 
and accepted as being an AIDS case may be a few days or months after 
diagnosis. This is the only date which is known for each patient. 

(6) Date of death: if the patient has already died at the time of reporting then 
this fact is coded together with the date, where known. Doctors are asked 
to inform CDSC or CDSU if a patient dies after the initial report is made. 
This is not always practical, especially if the patient has moved. Copies of 
death entries which mention AIDS, Kaposi’s sarcoma or HIV infection as 
a cause of death are sent to CDSC by the Office of Population Censuses 
and Surveys (OPCS). This identifies some additional deaths in surveillance 
patients. 

3. DIFFERENT APPROACHES TO MODELLING AND PREDICTION 

Three distinct approaches have been put forward in the literature for 
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modelling and predicting the spread of HIV infection and AIDS. These are as 
follows: 

(1) extrapolation over time by regression or associated methods of the number 
of reported or diagnosed cases of AIDS so far; 

(2) multi-state mathematical models of the transmission of infection and 
progression of disease; and 

(3) back projection methods. 

We review each of the approaches in the following sections. Methods (2) and (3) 
enable properties of the epidemic to be understood as well as assisting with 
prediction of the future course of the epidemic. Method (1) would be useful only 
for short-term extrapolation. 

The model-based approaches rely upon estimates of the principal parameters 
being made, which will depend on the case data available. Extrapolation 
forecasts (method (1)) are not necessarily model-free, as is described in the next 
section. 

This paper does not set out to provide a review of the adequacy of the 
predictions made so far by the various models. Such a review is provided by the 
General Accounting Office’s (1989) report (in respect of the United States of 
America). However. it should be noted that the likely accuracy of a forecast 
depends on both the model that is used and the quality of data supporting the 
model. It is possible to have a mathematical transmission model that is 
comprehensive, in the sense that it takes into account all the relevant parameters 
for estimating the future course of the HIV/AIDS epidemic, but which relies on 
poor data, makes unreasonable assumptions and/or fails to allow for known 
inadequacies in the data. The uncertainty attaching to predictions (or forecasts) 
stems from statistical fluctuations, but also from ‘structural’ errors, including 
uncertainty about the choice of a model, the correct value for a key parameter, or 
the assumptions regarding the future spread of the epidemic. 

A useful summary of some of the models that have been proposed under each 
of the three headings is provided by Gail & Brookmeyer (1988). 

PART I 

4. REGRESSION AND ASSOCIATED METHODS FOR SHORT-TERM 
EXTRAPOLATION 

4.1 Description of the Methods Used 
The approach here is to use the pattern of recent trends in AIDS cases and, 

with a variety of statistical methods of curve-fitting, project forward the future 
course of the epidemic, 

Short-term projections, based on an extrapolation of the data for reported 
cases of AIDS in the U.K. have been published by a number of authors, including 
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McEvoy & Tillett (1985) Tillett & McEvoy (1986) and Healy & Tillett (1988). 
Similar projections have been made for other countries—for example for the 
U.S.A. by Curran et al. (1985, 1988) Hyman & Stanley (1988) Hellinger (1988) 
and Fuhrer (1988). 

The principal limitation of these empirical ‘curve-fitting’ approaches is that 
many different curves are consistent with the historical data and will lead to 
widely differing predictions over even a modest time range. However, the 
approaches can be useful for predictions over a short time span, for example the 
next few years. 

McEvoy & Tillett (1935) fit a linear regression equation to log N(t), where N(t) 
is the annual number of new patients with AIDS first presenting for medical 
advice in a calendar year. The model is: 

log N(t) = a + bt + et 

where the errors, et, are assumed to be independent, identically distributed 
(IID) normal random variables with zero mean and constant variance (as 
in a conventional regression analysis). Using observed values of N(t) for 
1979–84, estimates of a and b are made and then predictions are made from 

for 1985–88. 
Tillett & McEvoy (1986) repeat the analysis, using updated observed values of 

N(t) for 1979–984. Updating is necessary because of the variability in delays 
between the date of presentation for medical advice and the date of reporting of 
cases to CDSC. Thus, the observation for 1984 is revised from 58 to 111 cases. 
Predictions, for 1987 and 1988 are similarly revised upwards. 

The model advocated in these two papers is a poor one in that the errors are 
unlikely to be symmetrically distributed—a Poisson assumption might be more 
satisfactory and also the correlation between N(t) and N(t + 1) (i.e. between et 
and et, + 1 is unlikely to be zero (as the conventional regression approach would 
assume) and is likely to be an increasing function oft. It should also be noted that 
both papers use data collected by date of first presentation for medical advice. 
This date was sometimes closer to the onset of the first HIV-related symptom 
than to the diagnosis of full AIDS. This date is no longer recorded. 

Iverson & Engen (1986) similarly use a least squares approach to the fitting of a 
linear function to log Ht, where Ht is the number of persons infected with HIV by 
blood transfusions during a time interval indexed by t. Data from Peterman et al. 
(1985) for the period 1978 to 1983 are used for the estimation of the parameters. 

Mortimer (1985) predicts the number of reported U.K. AIDS cases in a 
simpler way, viz. by dividing the U.S.A. cases by 4 (to allow for the difference in 
population size) and assuming a time lag of 3 years between the U.S.A. and U.K. 
epidemics. This appears to be equivalent to assuming exponential growth with a 
doubling time of about 2 years. The results are in agreement with the earlier 
results of McEvoy & Tillett (1985)—as noted above, these were subsequently 
rejected by Tillett & McEvoy (1986). 

Curran et al. (1985) report on the epidemiology of AIDS and mention some 



Predicting the Spread of HIV Infection and AIDS 325 

estimates of the future number of AIDS cases for the U.S.A. The numbers of 
cases reported per month to CDC, the public AIDS registry at the Centre for 
Disease Control in Atlanta, are adjusted, on the assumption that the distribution 
of delays between the actual diagnosis of AIDS and the report of these cases to 
CDC remains constant over time, to give estimates of the cases actually 
diagnosed per month. 

A polynomial model is then fitted to these adjusted case counts, as transformed 
by the Box–Cox method, in order that the errors become homoscedastic (Box & 
Cox, 1964): 

where N(t) is the number of cases diagnosed in month t. The data for fitting relate 
to the period June 1981 to April 1985, and predictions are made up to the end of 
June 1986. 

Morgan & Curran (1986) extend this work. The data up to April 1986 are used 
for re-fitting the above model after the adjustment for reporting delays and then 
predictions are made up to the end of 1991. The method of fitting is described as 
being by weighted least squares. 

Both papers use ad hoc methods for obtaining confidence intervals: standard 
results from the theory of non-linear regression are not used. In this sense, the 
estimates quoted are not ‘optimal’. 

The predicted values of N(t) for the total U.S.A. population are used then to 
estimate the predicted values for various sub-populations, defined by risk group, 
region, sex, race and age group. For each month from January 1983 to April 
1986, the logit of the proportion of AIDS cases in each sub-population are 
calculated, p(t) say, and fitted by the method of weighted linear regression to the 
following model: 

Predicted from this model are then applied to the predicted totals to 
obtain predictions for each sub-population. These projections are likely to be 
conservative in that they are based only on cases reported to CDC. Also, patients 
are identified according to the surveillance criteria then prevailing. Thus, 
Morgan & Curran (1986) view their projections as being underestimates by 
about 20%. 

WHO Collaborating Centre (1988) provides an outline report of projections of 
AIDS cases made for a series of western European countries. The methodology 
of Downs et al. (1987) is followed. For each country with at least 50 cases in the 
region as at the end of 1987, reporting delays are assessed and the reported cases 
are adjusted to give an estimate of the number of cases diagnosed. Unweighted 
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linear regression analyses of these adjusted data (after taking logarithms) are 
carried out over successive (overlapping) 3-year time periods for each country in 
order to monitor the evolution of the doubling time, td, defined by 

Short-term predictions (up to the end of 1989) are then made on the basis of 
estimated current doubling times for each country and for principal risk groups 
within each country (where the data permit). The results for the E.C. as a whole 
show doubling times steadily increasing. Trends within individual countries are 
less evident, although doubling times in most countries have clearly lengthened 
since the start of the epidemic. It is not clear from the analyses presented to what 
extent this trend is continuing. 

Whyte et al. (1987) assume that the number of cases of AIDS diagnosed among 
homosexual and bisexual men in Australia at time t has a Poisson distribution 
with mean 

They fit this model using the GLIM package and 14 quarterly data points, from the 
first quarter in 1983 to the second quarter in 1986 inclusive. The fit is not 
particularly good! For other risk groups, they use a linear model, also with 
unsatisfactory results. 

Fuhrer (1988) uses a logistic formula fitted by the method of least squares to 
the observed numbers of AIDS cases in the U.S.A. diagnosed per calendar 
quarter, t, viz: 

with t measured from 1982. The parameter estimates are not given in Fuhrer’s 
paper. Fuhrer also provides bounds for the projection: the lower bound is based 
on a quadratic formula for log N(t), whereas the upper bound is based on a linear 
equation with a Box-Cox transformation. 

Hellinger (1988) uses reported cases in the U.S.A. (adjusted by a flat inflation 
factor to allow for reporting delays, under reporting and for illnesses not defined 
as AIDS until September 1987) to fit polynomial trends. With t representing 
calendar months measured from 1984, Hellinger provides two bounds for the 
trend, viz: 

LOWER 

UPPER 

where the parameters are again estimated by the method of least squares. The 
average of these two forecasts is offered as a ‘best’ estimate of the future trend. 

Hyman & Stanley (1988) use the number of AIDS cases diagnosed in the 
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U.S.A. to fit a cubic polynomial to the cumulative number of cases, for 
t ³ 1982.5: 

where t is considered as a continuous variable and the rate of new AIDS cases p.a. 
would be represented by A’(t) or a quadratic polynomial. In deriving this 
formula, a Box–Cox transformation is used initially, with a non-linear regression 
approach; however, these results are found to approximate those given by the 
above simpler approach based on a cubic formula. The authors also find that this 
polynomial growth pattern is evident in nearly every CDC-defined category, 
including risk behaviour, age, region and ethnic group. 

Healy & Tillett (1988) provide short-term predictions for the epidemic in the 
U.K., using date of diagnosis as the basis for the forecasts. They investigate the 
reporting delays (i.e. the difference in months between date of report and date of 
diagnosis) over the period 1984-86. The distributions over these 3 years are 
pooled and smoothed and then random samples are used to impute dates of 
diagnosis to the cases for which the date is partially or wholly unknown. Thus, a 
series of cases reported in 1982–86 by date of diagnosis is created. Further 
adjustments are made to allow for the fact that a number of cases diagnosed 
during 1986 would not have been reported by the end of December 1986. The ad 
hoc procedure used leads to large upwards adjustments being made to the most 
recent counts. 

The procedure is then to fit a simple exponential curve to the monthly numbers 
of reports up to the end of 1986. This is then extrapolated forwards to give the 
expected numbers of reports in each month in 1987 and 1988. For each month, 
the distribution of delays is then used to work backwards to give the expected 
numbers of diagnosed during 1985 and 1986. 

Two regression models are then fitted: 

and 

where, in the first model normal errors are assumed and in the second model 
Poisson errors are assumed. GLIM is used to carry out the fit. Predictions are made 
up to the end of 1988. 

The authors investigate the inclusion of a quadratic term, ct2, in both models. 
The differences in the fitted values are small over the data period; however, the 
differences become large when the model is projected forward over 2 years. In 
both models the estimate is negative, which confirms the results of Downs et al. 
(1987) and the WHO Collaborating Centre (1988) who found parabolic fits 
which correspond to increasing doubling times. 

Healy & Tillett also experiment with adjustments so that the early data, even 
with the weighting implied by the two models, do not have a high degree of 
influence in forecasting the future. Accordingly, they repeat the above linear fits, 
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but impose weights that are geometrically decreasing into the past (with common 
ratio 0·8) so as to give greatest importance to the data from the recent past. (This 
approach is in the style of an exponentially weighted moving average model.) 

This paper is accompanied by a discussion. Here it is mentioned that the set of 
geometrically decreasing weights, mentioned above, places low weight even on 
the recent past and so the results can be questioned. Transformations of the Box– 
Cox type (as used by Curran et al. (1985) and by Morgan & Curran (1986)) are 
advocated. Further, Downs compares and contrasts his methods for adjusting 
for reporting delays with those of Healy & Tillett (1988). Both methods use 
period of diagnosis as an independent variable and adjust the data for reporting 
delays. Downs’ method of data adjustment, however, is conceptually different. 
Rather than using the observed distribution of reporting delay times among cases 
already reported (requiring predictions of the number of cases to be reported in 
forthcoming months to correct for reporting delays), he attempts to estimate the 
distribution of delay times among the (unknown) number of cases actually 
diagnosed. In this approach, the adjusted case numbers are estimated along with 
the reporting probabilities. 

In more recent work, published as an Appendix to the Cox report, Healy 
(1988) extends these analyses. The same methodology is applied, except that the 
series of numbers of diagnosed cases by month are derived in a more 
sophisticated manner. The monthly numbers of diagnosed cases from 1984–87 
are fitted by a log-linear model with Poisson errors using GLIM: 

which incorporates seasonal terms. The series is projected forwards for 30 
months and the monthly predictions are then combined with the estimated delay 
distribution (derived as before) to give the numbers of diagnoses for 1986–87 
expected to be reported during 1988–90. 

Then, log-linear models with Poisson errors of the form: 

are fitted to successive 24-month slices of the data starting at January 1984. After 
an initial decrease, the slopes, b, are roughly constant. Forecasts are made based 
on this model using the average of the estimates of â and b. The improvement in 
fit arising from the inclusion of a quadratic term is investigated—the statistical 
significance of the quadratic coefficient is not high (p = 0.09). 

Zeger et al. (1989) provide an interesting set of statistical techniques for 
monitoring the AIDS epidemic and for providing short-term predictions. As 
with earlier works reviewed in this section, they propose using log-linear models 
to estimate the number of AIDS cases and trends in incidence while correcting for 
reporting delays, The cases for a given sub-population are arranged in a two-way 
table by date of diagnosis and length of reporting delay—as for a claims run-off 
triangle in general insurance. The marginal distribution by date of diagnosis is of 
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interest and parametric models for estimating this distribution are considered. 
The data set used is the publicly accessible AIDS registry obtained from CDC in 
Atlanta as at December 1987. 

Let Ntu be the number of cases diagnosed in quarter t and reported u quarters 
later. Ntu is assumed to be a Poisson random variable with: 

where 

(4.1) 

Here s(t; β) is a function oft with unknown parameters, β, which characterises the 
trend in AIDS incidence. The authors use a cubic spline function with 2 knots for 
s(t; β). d(u; θ) is a delay function with unknown parameters, θ. The authors use a 
non-parametric step model for the delay function: 

The additive form of the link function (4.1) assumes that the reporting delay 
distribution has not changed over the period under discussion (1982–87): this 
assumption can be checked by an analysis of residuals. 

The model is fitted using GLIM and the predicted values for the missing lower 
triangle are obtained for each subpopulation. 

Trends in incidence can be monitored by, for example, considering: 

where 

The variability in such an index derives from the missing data and from the 
assumed randomness in the observed Ns. The index is likely to be smoother than 
one based on rather than because the log-linear model, represented by 
equation (4.1), has been used both to fill in the missing triangle and to estimate a 
parametric and smooth time trend which is assumed to underlie the observations. 

The authors consider trends in incidence for the latest year for different 
subpopulations. In particular they consider: 

for risk group i in region j. A separate two-way model is examined for these 
‘growth rates’: 

In subgroups with few cases, such trend estimates will be highly imprecise. The 
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authors propose an Empirical Bayes approach—this idea underpins modern 
Credibility Theory and has been suggested for the actuarial analogue of claim 
run-off triangles by Verrall (1988). 

The aim is to borrow strength, from the data available for other subgroups, to 
improve the precision of the trend estimate for the particular subgroup under 
focus. Of course, the AIDS epidemic has different features among different risk 
groups and regions, owing to different modes of transmission, levels of public 
awareness and so on. It would be desirable to borrow strength only from similar 
subgroups; however, by introducing limited bias through relying on groups with 
possibly different growth rates, it may be possible to achieve a dramatic 
improvement in the precision of estimates of the rates for risk groups and/or 
regions with very sparse data. The technique is thus employed to produce an 
Empirical Bayes estimate of the trend for risk group i in region 

Stroinski (1990) also considers the two-way table by date of diagnosis and 
length of reporting delay, but in a more restrictive way. He proposes a series of 
ANOVA type models, similar to Kremer’s (1982) analysis of the claims run-off 
triangle: 

which are used to obtain predicted values for the missing lower triangle for some 
U.S. populations. Such an approach (like the Chain Ladder method) relies on 
assumptions about the constancy of the delay distribution, represented by β u, 
across dates of diagnosis. 

A number of the models proposed for short-term extrapolation of the 
incidence of AIDS cases fall into the category of log-linear models. These log- 
linear models for the expected AIDS incidence over calendar time lead to 
exponential growth. This is unrealistic, mainly because the underlying epidemic 
of aggregated infections is probably not growing exponentially (see Part II), but 
also because the presence of extended incubation period may lead to subexpo- 
nential growth of AIDS incidence, even if the underlying infections are growing 
exponentially (Gonzalez & Koch, 1987): we shall return to this point in a later 
section. 

Cox & Medley (1989) describe a rather formal method of prediction of 
numbers of diagnoses on the basis of data with reporting delays. (A summary 
of this paper appeared earlier as Appendix 7 to the Cox Report—Department 
of Health (1988).) It is assumed that diagnoses occur in a Poisson process of 
rate λ (t;p), where p are unknown parameters, and that reporting delays are 
independent random variables with constant probability density fx(x; θ), where θ 
are unknown parameters. Then, if in a time period ending at t0, diagnosis-delay 
pairs (ti,xi) for i = 1, 2, . . . n, are observed, the log likelihood is: 

(4.2) 

where F is the cumulative distribution function associated with ƒ. In practice, 
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there are some complications associated with the discreteness of the data, for 
example being recorded in calendar month intervals. 

For the delay distribution,fx, a mixture of two gamma distributions of index 1 
is found convenient. (It is necessary to restrict the upper tail of the distribution to 
avoid indeterminancy in λ.) For the incidence curve, λ, three forms are used: 

(a) λ ( t;p) = p0exp(p1t) representing the simplest case, namely of exponential 
growth; 

(b) λ (t;p) = p0exp(p1t – p2t2), very convenient for representing small perturba- 
tions from exponential growth; and 

(c) λ (t;p) = ( p0 + p1t)( 1 + p2exp( –p3t))-1, representing an initial exponen- 
tial phase converting ultimately into linear growth. 

Full numerical results are not given here. The authors place most emphasis on 
(c), with the above suggested form for fx, viz.: 

7 parameters are being fitted and the maximum likelihood estimates are: 

θ0 = 0.5654, θ1 = 11.35, θ2 = 1.496 
p0 = 71.43, p1 = 162.0, p2 = 13.49 p3 = 0.8233. 

Approximate values for the confidence limits for the prediction for, say, 1992, 
underestimating the variability involved, are obtained by fixing and then 
computing a profile likelihood function for the 1992 value essentially by 
computing the maximised likelihood for a large grid of values in the p-space, and 
filling in the maximised curve by eye. The θ − values are fixed to cut down on the 
substantial computer time involved. 

The differences between the forecasts based on (a), (b) and (c) are significant 
even after only one year. The logistic curve ((c) with p1 = 0) moves relatively 
quickly to an asymptote after departing from simple exponential growth (a): this 
is probably unrealistic in view of the heterogeneity in progression from infection 
to disease in individual patients. The quadratic exponential (b) is valuable for 
representing small perturbations from exponential growth, but it results in an 
early peak and then numbers that decline symmetrically—these features are 
probably unrealistic in the current context in the U.K. The linear-logistic model 
((c) with p1 0) seems the most plausible choice at present. Cox & Medley 
conclude that the choice of incidence function represents a major source of 
variability and that present predictions are, at best, reasonably accurate for 
homosexual men and for perhaps 3 years ahead; current information on other 
risk groups is considered too scanty for separate prediction to be sensible. 

Cox & Davison (1989) present a method of prediction for small subgroups of 
the population. Prediction limits are calculated for the number of events likely to 
occur in a specified period in an exponentially growing epidemic. The basis for 
the prediction is the total number of events observed in the past and a binomial 
probability model for the number of events occurring in the past and the future. 
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4.2 General Comments 
In considering these forecasts based on extrapolations, we need to note three 

general sources of uncertainty that are present: 

(1) The forecasts are of expected values; there will be variability about these 
means, which will be roughly Poisson in nature. 

(2) The parameters of the forecasting curves are subject to sampling error. 
(3) The forecasts make assumptions about the underlying epidemic curve and 

about the pattern of variability about it; both of these are subject to 
uncertainty. 

For projecting some time into the future, with fairly large numbers, the third 
type of error is likely to dominate. This would be the case, for example, in 
forecasting the number of AIDS cases in the U.K. for 3-4 years ahead. This arises 
because, essentially, many different shapes of curve are consistent with the data 
on which the forecast is based. Thus, Healy & Tillett’s (1988) attempt to 
introduce a quadratic term into the exponential growth model for N(t) indicates 
how quite minor changes in the model assumptions can lead to very large 
differences in forecast, even over short periods of time. For shorter-term 
forecasts, the third error becomes less important and, ultimately, when 
forecasting rather small numbers a short time ahead, Poisson-type errors will be 
the major source of uncertainty. This is particularly relevant if one wishes to 
forecast events within a small geographical area for a fairly short time ahead. 

Apart from these methodological uncertainties, there are others connected 
with the data themselves. A major concern is the completeness of the surveillance 
data that are used for the fitting of models. 

Uncertainty also comes from the use of date of diagnosis as the time origin for 
forecasting. The adjustments, for example used by Healy & Tillett (1988) and 
Healy (1988) can be large and must be influential in assessing the recent course of 
the epidemic and the forecasts made. 

A comparison of different forecasting models would, however, be useful in 
assessing how sensitive the short-term forecasts are to changes in the basic model. 
Also, it would be useful to incorporate collateral information for other countries 
or regions in making forecasts-in particular, for small countries or for 
subgroups of countries like the U.K. Such an approach would be hindered by 
difficulties stemming from differences of case-finding methods and recording 
conventions, but, nevertheless, may be worthwhile. 

Finally, it should be noted that these forecasting methods based on short-term 
extrapolation implicitly assume that the epidemiological features of the epidemic 
remain constant and take no account of any changes in the epidemic’s spread. 
For example, they assume that the past trends of reported cases will continue 
over the short-term future in a similar pattern-however (within a risk group), 
the ratio of infected to susceptible subjects will clearly change as the epidemic 
spreads and control measures may affect the rate of spread of the infection 
between and within risk groups. Further, these forecasting methods do not allow 
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for differences between the pattern of growth in different at-risk groups, changes 
in the surveillance definition of AIDS, temporal changes in the distribution of the 
reporting delay, changes in the level of under-reporting of cases of the disease. 
Only models that are founded on the transmission mechanisms of HIV can show 
how the early infection of high-risk groups, behavioural changes, and future 
medical advances such as treatments and vaccines will affect the future course of 
this epidemic. The effects will be highly nonlinear functions of the parameter 
values and, at times, may even lead to changes that are counter to both intuition 
and simple extrapolated predictions. Forecasts of these counterintuitive mecha- 
nisms, using a mathematical model, may greatly improve our understanding of 
the observations. 

A by-product of the development of mathematical models would be the 
creation (as noted in Section 1) of a logical structure that organises existing 
information on AIDS into a coherent framework and suggests new information 
that should be collected about a wide variety of topics, such as drug use, sexual 
activity, and the interactions between HIV and the immune system. Models can 
provide qualitative insights, even when data are lacking, and can help to focus 
priorities in terms of the data to be collected. 

Short-term forecasting methods are likely to be of practical use in many 
developing countries, but, increasingly in developed countries, it will be 
necessary to stratify past trends carefully by risk group for the purposes of 
extrapolation. For developed countries. the reliability of short-term projections 
is likely to decrease as the epidemic slows in particular risk groups. It is then of 
importance to use models based on the transmission dynamics of the disease, to 
allow for the increasingly non-linear patterns that are emerging. The real 
observed epidemic is formed from a complex network of separate, identifiable, 
but interlinked subepidemics within the different at-risk groups and classes 
within a specific group, defined by activity/behaviour/geography. Only transmis- 
sion models can represent this network of relationships and the spread of the 
infection from high-risk to lower-risk groups. This brings us to Part II of this 
paper. 

PART II 

5. MATHEMATICAL MODELS OF EPIDEMIC TRANSMISSION: INTRODUCTION 

5.1 General Comments 
In this section we consider the transmission models that have been proposed 

for representing the spread of HIV infection and AIDS. 
As has been described by Daykin (1990) in his epidemiological review, there 

are a number of modes of transmission of the infection, each of which would be 
differentiated in a transmission model, viz: 
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(a) by sexual contact between male homosexuals and bisexuals, one infected 
and one not; 

(b) by injecting drug use (IDU) involving the sharing of needles or syringes 
contaminated with the blood of an infected person; 

(c) by receiving blood or blood products contaminated with HIV, this having 
been a particular hazard to haemophiliacs. This route of transmission has 
now been virtually eliminated in the U.K. as a result of measures taken to 
treat and/or screen blood and blood products; 

(d) by sexual contact between infected and susceptible heterosexuals; and 
(e) by vertical transmission from seropositive pregnant women to their babies 

during pregnancy or around the time of birth. In the U.K. the great 
majority of women transmitting the infection in this way have been IDUs. 

The models proposed tend to focus on homosexual males, considered as a risk 
group on their own, and aim to represent the progression of the disease 
mathematically by systems of equations in which the rates of transition between 
the various ‘states’ are specified quantitatively. This broad idea has a long 
history, but the application to AIDS brings in many new features. The rate of 
occurrence of new infected individuals is determined by the numbers of 
susceptible and infected individuals, the pattern of interaction between these two 
groups and the magnitude and distribution in time of infectivity of an already 
infected individual. Any such mathematical representation is, of course, 
idealised: the more realistic the models, the more quantities, e.g. transition rates, 
have to be specified numerically. As has been stressed, there is a paucity of 
information on many of these points. Note, for example, that if relevant aspects 
of sexual behaviour are changing over time, this should be introduced into the 
model. 

The approach of this section of the review paper is to introduce the simple 
deterministic epidemic model, consider the choice between a deterministic and a 
stochastic approach to modelling and then consider in a broad fashion the 
models that have been proposed by various workers in the field. It is not intended 
to provide complete mathematical descriptions of each model. However, 
comparisons of approach will be made. 

5.2 A Simple Deterministic Epidemic Model 
A basic deterministic model is as follows. Suppose that at time t, a fixed 

population, of size n, can be separated into a group of x(t) susceptibles and y(t) 
infectives, where x(t) + y(t) = n, and where both x(t) and y(t) are sufficiently 
large that they can be regarded as continuous variables. Assume the population 
mixes homogeneously, so that in any small time interval (t,t + h) the number of 
contacts between a susceptible and an infective is proportional to both x(t) and 
y(t) (and h) and that a fixed proportion of these contacts results in the susceptible 
becoming infected. Then, the number of new cases of infection in the time 
interval is a(t) x(t) y(t) h for some constant of proportionality a(t), so that x(t) 
satisfies the differential equation: 
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(5.1) 

Note that the rate of increase of y(t) is equal to the rate of decrease of x(t). We 
may regard n α (t) as a rate of contact between the two groups. Then, an intuitive 
explanation of the above equation is that each of the x(t) members of the not 
infected population are in contact with n α (t) other people in unit time, chosen at 
random, and there is a probability y/(x + y) that each of them is infected. 
Alternatively, each of the y(t) members of the population is in contact with n α (t) 
other members chosen at random, and there is a probability that x/(x + y) of 
these are not infected, but become infected by the contact. 

If a(t) has a constant value, α, then the solution of (5.1) is: 

x(t) = n x(0)[x(0) + (n-x(0)) exp (n α t)]-1. (5.2) 

It then follows that, if we assume that initially the number of infectives is 
relatively small so that x(0) n, then for small t: 

(5.3) 

Thus, the prevalence of the infection increases exponentially in the early stages of 
the epidemic. As before, we define the doubling time, td, of the epidemic to be the 
time taken for the number of infectives to double. We then find that in the early 
stages of the infection: 

or 

(5.4) 

Since individuals will not usually remain infectious indefinitely, the model can be 
made more realistic by assuming that individuals leave the infective class at a rate 
ν to play no further part in the epidemic. It is irrelevant, at this stage, whether 
they are recovered but immune, have been isolated or withdrawn from the 
population, or are dead. Then equation (5.1) is replaced by: 

(5.5) 

The solution of (5.5) is much more difficult than that of (5.1). An approximate 
solution was obtained by Kermack & McKendrick (1927) and a full discussion is 
given in Bailey (1975). However, suppose, as before, that we assume that 
x(0) n. Then, for small t, it follows from (5.5) that: 

(5.6) 

where again the prevalence increases exponentially, as long as n α > ν. In this case 
the doubling time in the initial stages of the epidemic will satisfy: 

(5.7) 

A few authors have used the above simple deterministic model to represent the 
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AIDS epidemic. Thus, Bailey (1988) applies equation (5.1) to data on the 
prevalence of HIV in the San Francisco City Clinic Cohort of homosexual and 
bisexual men (enrolled between 1978 and 1980 for a series of studies connected 
with hepatitis B). 

The equation is modified to refer to the prevalence of HIV antibody p(t) = y(t)/n 
and to allow for a fraction, k, of the population having a relatively safe lifestyle: 

where α is taken to be a constant. As before, this can be solved to give a logistic 
type formula, which Bailey has fitted to the empirical data. 

Chin & Mann (1989) also provide numerical projections based on simple 
mathematical models such as the above. 

Some general comments about the interpretation of the doubling time statistic 
would be appropriate here, since this is a widely quoted figure used to indicate the 
rate of spread of the epidemic. 

As de Gruttola & Lagakos (1989) report, the doubling time of the AIDS 
epidemic in the U.S.A. increased from 5 to 13 months between 1982 and 1987 
(CDC, 1986). What can be inferred from this increase? Does it mean that the 
epidemic may have begun to ‘run its course’, or that behavioural changes have 
had a major impact in reducing the incidence rate‘? More generally, how is the 
unobserved epidemic of HIV infection reflected in the observed epidemic of 
AIDS? 

De Gruttola & Lagakos (1989) consider the value of AIDS incidence data in 
estimating and interpreting the extent of HIV infection. Apart from modifica- 
tions of behaviour, changes in the cumulative incidence of AIDS are influenced 
by three phenomena: 

(1) as the prevalence of HIV infection among individuals at highest risk 
increases, the rate of growth in incidence of infection in that population 
decreases: 

(2) the populations at risk for AIDS are highly heterogeneous: some, such as 
homosexually-active men practising high-risk behaviour with many 
partners can be almost entirely infected, while others have lower 
prevalences and rates of spread of HIV infection; and 

(3) the incubation time between infection with HIV and the onset of AIDS can 
last many years. 

The first two of these phenomena are characteristic of many epidemics resulting 
from the introduction of a new infectious agent into a population, and tend to 
cause the doubling time for the cumulative infection rate to increase over 
chronologic time. The third phenomenon, which is not characteristic of most 
infectious diseases, also can increase the doubling time. Thus, the observed 
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increase in doubling time for AIDS is influenced by several factors that are 
unrelated to behavioural changes. De Gruttola & Lagakos show, from examples, 
that, currently, it is not possible to determine the degree to which behavioural 
changes may have contributed to the increase in doubling time, and that changes 
in doubling time are not particularly informative about the future spread of the 
epidemic to lower-risk populations such as heterosexually-active individuals. 

5.3 Stochastic Models: Background Comments 
In using a deterministic model rather than a stochastic one, it is assumed that 

the numbers of persons at risk and infected are sufficiently large that they can be 
approximated by continuous variables and that the spread of any infection, 
starting from specified initial values, will always take exactly the same course. We 
obtain only an approximation to the average behaviour of the underlying 
stochastic model and, in some situations. the variation between realisations of 
the epidemic could be such that knowledge of the behaviour of the average is not 
particularly helpful. This would be true for small subgroups of the population or 
at the very beginning of the epidemic. 

Thus, HIV infections can persist (apparently dormant) in a few isolated 
individuals with low sexual activity for extended periods-unlike many other 
infectious diseases. This particular feature can cause sporadic local epidemics, 
whenever the infected individual passes the virus to a highly sexually active 
person. In such situations, the virus could spread rapidly and widely without 
warning, infecting many people. These sporadic outbursts should be represented 
by a stochastic rather than a deterministic model, which would smooth over the 
sporadic effects of such local random events. 

The justification for the deterministic approach (and it is worth noting that a 
deterministic approach has been used by most investigators in this field) is three- 
fold: 

(1) solutions are more difficult to find for stochastic than for deterministic 

(2) given the large populations involved in the AIDS epidemic and, once the 
epidemic is established, the large numbers infected, the deterministic 
models should give results that are approximately valid, especially when 
modelling is at its present embryonic stage; and 

(3) the considerable uncertainty attaching to estimates of the important 
parameters means that further sophistication may not be warranted. 

Comment (2) has to be tempered with a qualification. Populations under 
consideration can be large, but what is important is the number of people with 
whom an individual interacts: this number is probably small as far as HIV and 
AIDS are concerned. This points to an advantage of the stochastic approach 
over the deterministic one. Further, for models involving a stratified population 
(see later sections), it would be necessary for all the subpopulations to be large. 
This may be difficult to achieve in practice, especially for models that involve a 
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continuous stratification. Ball points out in his contribution to the discussion of 
Isham’s (1988) review paper, that a deterministic approach (to the equations of 
the next section) will underestimate the doubling time and will overestimate the 
spread of the infection, relative to a corresponding stochastic approach. 

A further problem in relation to (2) is knowing exactly which stochastic 
process the deterministic approach is approximating. As Mollison points out 
in the discussion of Isham’s (1988) paper, it is not at all clear what assump- 
tions have to be made in connection with a particular deterministic model. 
Isham comments that, for any completely specified stochastic model with state 
(X(t), Y(t), . . .) at time t, the set of conditional expected increments of the form 
E{dX(t)  X(t) = x(t), Y(t) = y(t), . . .} can be written down. The deterministic 
model is then obtained by equating each such expectation to the corresponding 
increment dx(t). While each stochastic model determines a unique deterministic 
model, of course the converse does not apply and there will be a whole family of 
stochastic models corresponding to the same deterministic model. Thus, there 
can be problems, for example, in interpreting the parameters of a deterministic 
model. In particular. these would not have to be interpreted as corresponding to 
the specific stochastic model originally described, to motivate the deterministic 
model! In view of these difficulties, Isham comments that it would be important 
to study the applicability of solutions to deterministic models in stochastic 
solutions. 

A few stochastic studies have been reported in the literature. Barrett (1988) has 
developed a stochastic simulation model of the heterosexual spread of HIV, 
focusing on the beginning of the epidemic in a small population. The model does 
not incorporate mortality or the removal of infected persons (with AIDS). The 
results indicate, primarily, the wide range and variability in the number of 
persons infected directly or indirectly by one infector. The simulations indicate a 
small degree of selection for risk of infection among infected women. The 
implication is that ‘lifestyle underwriting’ may not be able to eliminate a high 
percentage of heterosexual persons in the ‘at risk’ category, since the character- 
istics of infected persons considerably overlap, as found here, those of uninfected 
ones. Further, discrimination between characteristics of seronegative and 
seropositive persons may not be possible in studies of less than a few dozen 
seropositive persons. 

This may explain the absence of a significant positive correlation between 
seropositive status and frequency or number of sexual contacts with infected 
spouses, as noted by Daykin (1990) in his review paper. 

Barrett’s model represents variations between people in risk of infection per 
partner month for both new and old partners. It incorporates variability in the 
length of partnership and in the rate of partner change. The results show whether 
infection tends to spread first to those with the highest risks of infection (per 
infected partner) or to those with the most partners. Correlations between the 
distribution of risks of infection and of numbers of partners or of partner changes 
have not been included, because of the lack of empirical data to provide any 
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guidance. It is possible that the monthly risk of infection could be negatively 
correlated with the number of partners or with the rate of partner change 
(because promiscuous people may have fewer acts of intercourse per partner 
month) or be positively correlated (because of the presence of venereal disease, 
for example). 

Mode et al. (1988) formulate a stochastic model of an AIDS epidemic in a 
population of male homosexuals. Computer-intensive (rather than analytical) 
methods are used to investigate some properties of the model. Three factors of 
importance in the evolution of the epidemic are studied in a numerical factorial 
experiment, viz: distribution of the incubation period; probability of infection 
with HIV per sexual contact with an infected individual; and the distribution of 
the number of contacts per sexual partner per month. The numerical results 
suggest that the distribution of the incubation period will have a decisive impact 
on the evolution of the AIDS epidemic, but that this impact depends critically on 
the levels of the other two factors. A Monte Carlo experiment suggests that, if 
forecasts of an epidemic were made solely on the basis of the deterministic non- 
linear difference (or differential) equations embedded in the stochastic process, 
then predictions of the number of individuals infected with HIV and AIDS cases 
may be too pessimistic, reinforcing the earlier point attributed to Ball (discussion 
of Isham, 1988). 

Tan & Hsu (1989) go further in the development of stochastic models. They 
propose a model for the spread of AIDS in a homosexual population. The 
probability generating function of the numbers of susceptible persons (seroposit- 
ive latent, but not infective). infective persons and AIDS cases is derived. It is 
then shown that the expected numbers, variances and covariances of these 
persons satisfy a set of ordinary differential equations, which are then solved 
numerically to assess the effects of various factors on the spread of AIDS (e.g. the 
initial number of infective persons, the rate of sexual contact between susceptible 
and infective persons, the mortality rate from AIDS). They show that, if the 
number of susceptible persons is large, then, as expected, the deterministic 
approach is equivalent to working with the expected numbers in the stochastic 
model. The stochastic model is able to indicate how various factors affect the 
variances and covariances of infective persons and AIDS cases-results which 
are obviously not attainable using a deterministic approach. In particular, the 
relative size of the variance terms in certain of the simulations suggests that a 
deterministic approach would not be adequate. 

5.4 Deterministic Models with Aggregate Representation of Infections 
Certain modellers have taken a half-way house in their approach to the 

mathematical representation of the spread of AIDS, half-way, that is, between 
the extrapolation approach of Section 4 and the detailed transmission models to 
be presented in Section 6. 

These models simulate epidemiological processes at the society-wide or 
‘macro’ level-without addressing the individual-level events that combine to 
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determine the epidemic trend. Two steps are typically involved. First. distribu- 
tions are used to model or project the spread of HIV infection during past, 
present, and future years. Second, having projected HIV infections (including 
future infection), the models then proceed to estimate the numbers of AIDS cases 
that will result from these infections, as of a specific future date. This approach 
will be seen to resemble closely the back calculation method (to be presented in 
Part III of this review). Like the back calculation method, the second step of these 
models consists of combining the estimated number of HIV infections with 
information on the time-to-AIDS distribution in order to predict AIDS cases for 
selected future years. 

Unlike back-calculation models, however. these macro-level models typically 
predict,furure HIV infections, and they include in their forecasts AIDS cases that 
are expected to result from these new infections. Also, unlike back-calculation 
models, macro-level models can use distributions that have built-in alternative 
scenarios for the future course of the epidemic. For example, in Artzrouni & 
Wykoff’s (1988) model, HIV-infected persons decrease or entirely cease risky 
behaviours when they contract AIDS. 

While risk-transmission groups have been examined separately in some 
macro-level models, other demographic groups (such as geographically defined 
subpopulations) have not been examined. 

The principal ‘macro’ models that have appeared have actuarial origins. The 
first such model was proposed by Cowell & Hoskins (1987). Cowell & Hoskins 
focus on modelling the progression from HIV infection to onset of AIDS and 
ultimate death, using a discrete-term Markov chain based approach. Individuals 
progress through successive states of morbidity (according to the Walter Reed 
Staging Method): 

1A seronegative and at risk, 
1 B seropositive and asymptomatic, 
2A with HIV infection and lymphadenopathy syndrome, 
2B with HIV infection and AIDS-related complex, and 
3 with AIDS. 

There is no skipping of stages allowed and no reverse transitions. 
Transition probabilities are assumed to depend only on the stage and the 

current duration in that stage (hence, they are assumed to be independent of age, 
sex, duration since seroconversion, calendar year) and are estimated by Cowell & 
Hoskins in an approximate (and non-optimal) way from published data from the 
University of Frankfurt Centre for Internal Medicine study of homosexual males 
at risk of HIV infection (Brodt et al., 1986). Mathematically, Cowell & Hoskins 
consider Z(t), the number of infected individuals without AIDS at time t, split 
into three sections for states lB, 2A and 2B (say, Ij(t), j = 1, 2, 3). 

If S(t) is the number of susceptible individuals at time t and A(t) the number of 
AIDS cases at time t, then Cowell & Hoskins effectively consider the discrete time 
versions of the following set of differential equations: 
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(5.9) 

The model has been represented in this form to facilitate comparison with the 
transmission models described in Section 6. Here, the i are transition intensities 
(analogous to the force of mortality) and is the force of mortality from AIDS. 
The flow of new cases into state 1B is represented by S(t) and here Cowell & 
Hoskins take to be a parameter to be specified, whereas, as we will see later, the 
transmission epidemic models would allow to be a function of time t and to 
depend on the relationship between the numbers of persons infected at time t and 
the total population at time t. This latter point is a particularly significant 
deficiency which, as will be seen, is allowed for in the models of Section 6. 

The Canadian Institute of Actuaries set up a Task Force on AIDS. Three 
subcommittees were formed in 1988. The Subcommittee on Modelling published 
two reports in November 1988. dealing with Canada and the U.S.A., respect- 
ively. Their approach to modelling the HIV epidemic in Canada was to focus on 
the male homosexual population without identifying particular ‘at risk’ groups. 
As with Cowell & Hoskins (1987). an aggregate approach to representing the 
spread of infections is used. The cumulative number of persons infected with 
HIV up to time t is assumed to follow a stochastic process with mean: 

for t > t0 (5.10) 

where t0 represents the origin. k, t0 and ß are estimated by maximum likelihood 
methods from the published population case data up to 1987. For Canada, 

= 2·5 (to be compared with the corresponding work of Hyman & Stanley 
(1988), who found = 3·0 for the U.S.A., when modelling the cumulative 
number of AIDS cases up to time t). 

The incubation period, from infection to development of full AIDS, is 
represented by a Weibull model with probability density and cumulative 
distribution functions: 

(5.11) 
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respectively. From a review of the literature, a was taken to be 2·5 and b was 
chosen so that the median of the distribution was 10 years, i.e. b = 0·0864. 

The time from development of full AIDS to death is represented by an 
exponential distribution with parameter µ, i.e. with probability density and 
cumulative distribution functions: 

and 

respectively. From mortality data for Canada, µ was taken to be 1/1·40. 
Then it can be shown that the AIDS cases form a stochastic process with mean 

(t) where: 

and 

and the AIDS deaths form a stochastic process with mean D(t) where: 

and 

for t > t0. 
Alternatively, these formula may be written: 

Up to this point, the model has been used for all ages combined. In order to 
obtain age specific results, the deaths in each year are distributed in accordance 
with the currently (at 1988) experienced age distribution of deaths in the 
Canadian populations (which are graduated using a lognormal distribution). In 
studying the future course of mortality, the Sub-Committee on Modelling 
follows an approximate approach (for reasons of expediency) which has serious 
shortcomings. 

The key assumption is that new infections are assumed to stabilise at the level 
estimated to have been effective in the first half of 1984. In other words, 
behavioural change is assumed to have been so marked from the beginning of 
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1984 as to have resulted in a flattening off of new infections at that point. This 
level is then sustained indefinitely, initially by new infections from the group 
originally at risk, but subsequently by infections from new entrants to the at-risk 
group. 

There are a number of problems with this approach. First and foremost, there 
is no rationale for assuming a levelling off of new infections; a more likely pattern 
would be a rise to a peak, followed by a long decline, even with assumptions 
involving an early change of sexual behaviour. 

Furthermore, although there is some evidence of behavioural change having 
begun as early as 1984, it would have had to have been very dramatic at about 
that time in order to achieve a sudden levelling out of the number of new 
infections. If it were as dramatic as that, then the number of new infections could 
be expected to fall in future years, rather than to remain at that level. Thus, 
implicitly, continuing new entrants to the risk group are assumed (at 1·7% of the 
male population reaching age 20), all of whom are assumed to develop HIV and 
die of AIDS. 

The approach of Artzrouni & Wykoff (1988) is similar to the above. They 
assume that the new-infection rate is a decreasing function of the cumulative 
number of HIV infections: using the national surveillance data, together with a 
model based on this assumption. results in an estimated epidemic in which new 
infections peak in 1983. The results of this model are linked to two key ideas: (1) 
virtual ‘containment’ of the epidemic within high-risk groups (male homosexuals 
and IV-drug users)—that is. little or no expansion of the epidemic in the non- 
drug-using heterosexual population-and (2) relatively early ‘saturation’ of the 
high-risk groups (homosexuals and IV-drug users). Within these parameters. 
Artzrouni & Wykoff’s best estimate is based on a time-to-AIDS distribution 
with a median of 8 years. 

Dahlman et al. (1987) also use an aggregate approach to the modelling of 
infections. 

6. MATHEMATICAL MODELS OF EPIDEMIC TRANSMISSION 

6.1 General Comments 
The models described in this section involve the representation of individual 

risk behaviours, HIV transmission from infected to previously uninfected 
persons, and the development of the disease (AIDS) among those infected with 
HIV. In this way, the spread of HIV infection is modelled for past, present and 
future years, and future AIDS cases are projected. These models require 
estimates of the size of the various risk groups (such as homosexuals, IV-drug 
users, and non-drug-using heterosexuals) and the frequency of corresponding 
risk behaviours, as well as of the ‘transmission efficiencies’, or probabilities that 
HIV transmission will occur when an uninfected person becomes exposed to the 
virus. 
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Unlike the aggregate models described in Section 5.4, these models of HIV 
transmission also involve specifying the ‘mixing’ of individuals within or across 
the risk groups (for example, the number of homosexual partners that a male has 
or the percentage of non-drug-using heterosexuals who have sexual contact with 
IV-drug users). Mixing behaviour can also be defined in terms of racial, 
geographical or other kinds of population subgroups. Finally, in addition to 
modelling HIV transmission, the models consider disease development (progres- 
sion or conversion to AIDS) among HIV-infected persons. Disease development 
is linked back to HIV spread in terms of the decreasing tendency of an infected 
person to continue the risk behaviour as the disease develops. 

Because of their detailed depiction of the individual-level processes involved in 
the HIV epidemic, these models are useful for producing considerable policy and 
research-related information, such as examining and/or comparing the likely or 
potential effects of the different kinds of possible interventions on different 
components of the epidemic. 

A complete model of the spread of the AIDS virus in the sexually active and 
IV-drug-using community must account for the complicated interactions 
between people. However, one must begin by understanding the behaviour of 
simple models before going on to explore more complex ones. Two different 
approaches to this modelling have been developed. 

One approach considers the behaviour of individuals as they form and break 
partnerships. Here, paired individuals become infected through multiple con- 
tacts when one partner is infected. but remain protected for the duration of the 
partnership if both are uninfected and also individuals cannot become infected 
between partnerships-see, for example Dietz (1988). These models are difficult 
to stratify, because of the wide variations in risk behaviour within the 
community. 

The other approach considers the risk to the individual. The population is 
stratified according to the amount of risk that individuals incur, but this 
approach does not represent well the risk (or protection) of longer-term 
relationships. 

In this and subsequent sections we concentrate on the second approach, being 
primarily concerned with the models proposed for the spread of HIV in high-risk 
populations. Account is partially made for partnership duration by allowing a 
variable number of contacts in each partnership (see later). 

6.2 Deterministic Epidemic Transmission Models: Basic Approach 
The description here begins with simple models for the spread of HIV infection 

within a closed group of male homosexuals. 
The model is then made more realistic and complex by allowing for immunity 

from infection, allowing for an open population with migration and deaths being 
incorporated, allowing for variations due to the progression of the infection and 
for variations in the population according to risk behaviour (i.e. heterogeneity in 
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the population). Failure to segment the population according to risk behaviour 
or other important characteristics, like geographic region, would have the effect 
of overstating the number of HIV infections, because the model would fail to 
take into account the fact that, to some degree, the epidemic may be limited or 
contained within a subgroup. 

The models may be adapted to deal with heterosexual spread in a two-sex 
population and with needle-sharing associated with IV-drug abuse (to be 
discussed in more detail in Section 6.7). 

In this and later sections, models will be described in terms of stochastic 
behaviour, but the equations considered will usually be those of a deterministic 
approximation. This approach, while standard in the literature on AIDS 
modelling, does mean that potential ambiguities hover in the background. If a 
specified stochastic model is approximated by a deterministic process, then the 
interpretation of the latter is fairly clear. However, as noted earlier, since a 
particular deterministic process may reasonably approximate a variety of 
stochastic models, a unique set of stochastic assumptions cannot be deduced 
from a set of deterministic equations. and this may lead to problems, for 
example, in interpreting the parameters of those equations. 

We start with a simple model for the spread of HIV infection within a closed 
male homosexual community.. and assume that the total population has a fixed 
size, n. 

We use the following notation: 

t = time. 
S(t) = number of susceptible individuals at time t, 
I(t) = number of infected individuals without AIDS at time t, 

A(t) = number of AIDS cases at time t, 
AC(t) = accumulated number of AIDS cases up to time t, 

= rate of developing AIDS for infected individuals, 
ß = probability of infection from a sexual contact with an infected 

individual, 
c = average number of contacts between sexual partners, and 
r = average number of new sexual partners per year. 

Suppose that susceptibles become infected through sexual contacts with 
partners, whom they choose randomly at a fixed rate from the community. If N(t) 
is the number, at time t, at risk of being chosen in this way, then two extreme 
values for N(t) would be N(t) = n, the whole population, or N(t) = I(t) + S(t) if 
each individual who develops AIDS is withdrawn from the class of infectives. We 
shall take the latter case as representing a reasonable approximation to reality. 

Then a deterministic approximation to the underlying stochastic process 
governing the behaviour of S(t), Z(t) and A(t) is provided by the following set of 
ordinary differential equations: 
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where 

and 

(6.1) 

can be interpreted as the parameter for an exponentially distributed random 
variable representing the length of time that infected individuals remain infective. 

The behaviour of the epidemic in the early stages, when S(t) N(t) is given by: 

and 

Thus an infective in an otherwise wholly susceptible population will pass on the 
infection to an average of: 

susceptibles. (6.2) 

R is the reproductive rate of the infection and must satisfy R > 1 if an epidemic is 
to develop. Some empirical estimates of R are provided by Anderson & May 
(1987) (R may be compared with the gross and net reproduction rates used in 
demography). 

Lemp et al. (1988) provide some numerical projections of the epidemic in San 
Francisco among male homosexuals up to 1993, using the above simple 
mathematical model. 

A more general model separates the infectives into two classes, according to 
whether or not they ultimately develop AIDS. This allows for the possibility that 
the mean incubation period for AIDS ( 1–¹) is different from the mean infectious 
period among those seropositives who do not develop AIDS ( 2–¹)—in the 
extreme case, 2 = 0, so that the seropositives remain infectious indefinitely, as 
investigated by Bailey & Estreicher (1987). We now modify the notation, so that 
I1, I2, A1, A2 denote, respectively: the numbers of infected individuals who will 
ultimately develop AIDS; the number of infectives who do not develop AIDS; the 
number of AIDS cases; and the number of non-infectious seropositives. 
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Then the ordinary differential equations become: 

(6.3) 

where I(t) = I1(t) + I2(t) is the total number of infectives at time t, is the 
probability that an individual enters the class of potential AIDS patients on 
withdrawal from the class of infectives and a suitable choice for N(t) in the 
definition of i.(t) might be as before, or with: 

If 1 = 2, then equations (6.3) reduce to (6.1). 
Then, for this model. the overall reproductive rate of HIV infection is given by: 

The model represented by equations (6.3) has been studied numerically by 
Anderson & May (1986), Anderson et al. (1986) and by Blythe & Anderson 
(1988). 

So far, the model has applied to a closed population. In order to apply the 
model to time periods beyond the initial stages of the spread of infection, it is 
necessary to allow immigration to the class of susceptibles and deaths from all 
classes. 

Suppose: 

m(t) = rate of immigration to the class of susceptibles at time t 
µ = death rate of individuals without AIDS (in the form of the force of 

mortality) 
= extra death rate of individuals with AIDS (with µ). 
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Then the differential equations (6.3) are modified as follows: 

(6.4) 

where N(t) = S(t) + I1(t) + I2(t) + A2(t) in the definition of (t). 

This model has been presented and analysed by many authors for the spread of 
various sexually transmitted diseases: the interested reader is referred to 
Hethcote & Yorke (1984) for a full review. 

This model has been studied numerically by Anderson & May (1986) 
and by Anderson et al. (1986) using the simpler form 1 = 2 and 
N(t) = S(t) + I1(t) + I2(t) + A1(t) + A2(t) and by Hyman & Stanley (1988) using 
the simpler form m = µS0 where S0 is the population size before the AIDS virus 
was introduced (so that there is a balance between flows into and out of the 
population) and = 1 (so that I2(t) 0 and A2(t) 0). Similarly, Thompson 
(1987) explores numerically = 1 and m(t) = m, but does not test the model for 
goodness-of-fit against observed data. 

An analytic solution has been found by Birkhead (1987) under certain further 
restrictive assumptions. Firstly, it is assumed that N(t) = S(t) + I1(t), so that, not 
only the AIDS patients but also the non-infectious seropositives, are excluded. 
Secondly, it is assumed that the immigration of susceptibles is at a rate 
proportional to N(t), i.e. m = m0N(t), rather than being constant. Neither 
modification will be significant in the initial stages of the epidemic, and as the 
epidemic progresses it is plausible that changing behaviour could result in a 
reduced level of immigration into the homogeneously mixing male homosexual 
community being modelled. Then, explicit analytic formulae for Z(t) and N(t) can 
be derived. Birkhead uses a different interpretation of : a proportion of the 
seropositives are assumed to develop full-blown AIDS and then cease sexual 
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mixing, with the rest remaining infective and sexually active. Thus, the equation 
for I1(t) becomes: 

where (6.5) 

Equations (6.4) can be modified to model purely heterosexual spreading, by 
splitting the population according to sex and including ‘partnership balance’ 
relationships. These balances are necessary to take account of situations where 
there are not enough women, so that men cannot have as many partners as they 
might like. and vice versa. 

Other modifications have been introduced to the above basic model by van 
Druten et al. (1987). to allow for the fact that, at the start of the spread of 
infection in the population, few of its members are at risk and that the size of the 
population at risk should, therefore. be a dynamic variable. The effect of 
modelling the risk population in this way is to slow down the initial exponential 
rate of increase in the number of infectives (relative to the models described 
earlier), with most effect when the average number of sexual partners per 
infective is ‘small’ (this parameter is proportional both to r and the mean 
duration of a partnership and, for a fixed value of r, would be small when 
partnerships are short lived). 

6.3 Deterministic Epidemic Models: Allowing for Time Since Infection 
If we include the time since infection or AIDS, then variable infectivity and the 

distributions of times from infection to AIDS and of times from AIDS to death 
may be explicitly modelled. Following Anderson et al. (1986), we break down the 
infected population I(t) according to the, time, , since infection, 
I(t,0) is now the rate at which people become infected, and I(t, ) has the units of 
people/year. Similarly, we distribute AIDS patients according to time since 
AIDS, Defining: 

I(t, ) = distribution of infecteds according to time since infection. I(t, ) is 
the number of people infected per year years before time t, 

A(t, ) = distribution of AIDS cases according to time since they developed 
AIDS, 

ß( ) = probability of infection from a contact with a person infected years 
ago, 

( ) = rate of developing AIDS at a time after infection, and 
( ) = death rate at time after developing AIDS, 
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the system of equations (6.4) becomes: 

(6.6) 

where, for convenience, we have followed Hyman & Stanley (1988) and put 
= 1. A corresponding version of equations (6.4) can be set up with 1. The 

infectivity/?(r) is an average over all individuals infected at time . For constant , 
ß and , I(t) and A(t) would satisfy the corresponding version of (6.4). It would be 
possible to vary c and r also with time since infection and thus to take account of 
behavioural changes induced by infection. Similarly, for transmission in a 
heterosexual population, the model can be generalised to incorporate numbers of 
infected individuals distributed according to time since infection and the AIDS 
cases distributed by time since diagnosis. 

An early example of the use of this model with 1 is van Druten et al. (1986). 
They fit the model by simulation to the data from the San Francisco hepatitis B 
study cohort of homosexual and bisexual men, which numbered 6875 in 1978. 
The infectious period was assumed random and exponentially distributed with a 
mean of 3, 5 or 10 years and the incubation period was assumed to follow a 
similar distribution. The value of was 0·10, which now seems a gross 
underestimate. Van Druten et al. conclude that, if the numbers of sexual contacts 
were halved, the predicted numbers of AIDS cases (and infected cases) for 1988 
would fall by only 13% (and 14%). 

Anderson et al. (1986) have studied the version of equation (6.6) with 1. 
Their numerical investigations compare the model with a variable incubation 
period (represented by a Weibull distribution) with the simpler model, in which 
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the incubation period is assumed to be constant, –¹, and independent of the 
duration of infection. They show that, ceteris paribus, the main effect of the 
variable incubation period is to alter the shape of the epidemic over time, in such 
a way that the rise in cases of AIDS follows the patterns set by the rise in 
seropositivity (i.e. incidence of HIV), but with a pronounced delay: the simpler 
model displays a less marked lag between the rise in seropositivity and rise in 
AIDS cases. However, the time to peak incidence is little changed. Anderson et 
al.’s Weibull model is: 

Such a choice follows the intuitive belief that the incubation period should have 
an increasing hazard function, representing progressive deterioration of the 
infective’s immune system, and that a linear approximation to the function might 
be adequate. The hazard function for a Weibull distribution with cumulative 
distribution function is so Anderson et al.’s (1986) 
choice corresponds to a = 2. 

Blythe & Anderson (1988) take this work further and compare four different 
parametric representations of the incubation period distribution: 

exponential 

Weibull 

Erlang 

rectangular for 

and their effects on the models of the transmission dynamics of HIV. 
A numerical solution of the full non-linear models suggests that the four 

distributions listed above yield similar results with respect to the steady-state 
behaviour of the respective models and their local stability properties. The full 
nonlinear transient (i.e. t finite) behaviour of the four models is also similar, given 
the same mean incubation period for the distributions. In this study, the authors 
prefer the flexibility of a low-order Erlang distribution-it should be noted that 
in this case, as increases, but is bounded above. The exponential 
distribution is found to provide a crude, although not unreasonable, first 
approximation, despite the fact that a constant (t) is at odds with observations. 

However, it should be noted that uncertainty concerning the precise choice of 
parameter values, created by data limitations and inadequate parameter 
estimation procedures, can cause variation at least as large as that generated by 
the four different incubation period distributions described above. This is 
discussed further in a later section. Also, it is possible that in the presence of 
heterogeneity of sexual activity, the differences between various parametric 
representations of the incubation period distribution may be more significant. 
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The Weibull distribution has the advantage of a hazard function which is 
analytically simple. On the other hand, the gamma distribution, at least for 
integer values of the index, can be modelled using the method of stages which 
exploits the fact that a gamma variable can be regarded as a sum of exponential 
variables. This model is described by Bailey & Estreicher (1987) who also 
describe a preliminary investigation in which the incubation period is constant, 
corresponding to the limit as the number of stages tends to infinity, although this 
may be biologically implausible. In Bailey (1988) (in an extension to the simple 
model referred to in Section 5.2), the incubation period is split into two parts, the 
first of which is regarded as the period when immune defences are breaking down 
and is modelled by a gamma variable via a series of exponentially distributed 
stages. During the second part, the individual is at major risk of opportunistic 
infection and, after an exponentially distributed interval, develops AIDS. In 
general, this representation will not lead to a gamma distribution for the 
incubation period, since the parameter for the latter exponential distribution is 
not assumed to be the same as the (common) parameter of the earlier stages. 
However, in this model, which is illustrated by fitting data from San Francisco, 
Bailey assumes that all those who are infected will ultimately develop AIDS, so 
obtaining a much longer-tailed distribution for the incubation period. (The 
optimum fit involves 7 stages for the first part of the incubation period.) 

Similarly, Panjer (1987, 1988) uses a multi-stage approach to modelling the 
incubation period (and the time from development of AIDS to subsequent 
death). In work related to the report of the Canadian Institute of Actuaries 
Subcommittee on Modelling (1988) and described in Section 5.4, Panjer adopts 
the Walter Reed Staging Method for the classification of AIDS-this leads to the 
identification of 5 states labelled, as before, 1A, 1B, 2A, 2B and 3. 

Panjer represents the transitions from stage to stage by a continuous time 
Markov process. An exponential distribution is used-specifically if Tj denotes 
the time in stage j: 

so the transition intensity (or force of transition) depends only on stage and not 
on the other factors such as age, sex or length of time in the stage. Hence, the 
incubation period would be represented by a sum of three exponential random 
variables (T1b + T2a + T2b)—i.e. a generalised Erlang distribution. Using the 
grouped data from the Frankfurt study (Brodt et al., 1986) Panjer uses 
maximum likelihood methods to estimate the parameters. Comparisons are 
made with the more ad hoc methods of Cowell & Hoskins (1987). 

A similar approach is used by Salzberg et al. (1989). 
Longini et al. (1989) fit a five-stage, time-homogeneous Markov model to 

heavily censored data from a cohort of 513 homosexual and bisexual men from 
the San Francisco area found to be HIV seropositive. 73 individuals known to 
have received transfusions of HIV-infected blood, and 17 haemophiliacs who 
received HIV-infected factor VIII. The model partitions the infected period into 
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four progressive stages. The first stage is HIV infection, but with antibody- 
negative status. Stage 2 is antibody-positive status, but asymptomatic. The third 
stage occurs when an individual develops an abnormal haematologic indicator 
and/or prodromal illnesses (pre-AIDS symptoms), such as persistent generalised 
lymphadenopathy, Stage 4 is clinical AIDS, and a fifth stage is included in the 
model—death due to AIDS. 

The homosexual and bisexual men come from a random sample from the 
larger cohort of men who were enrolled at the San Francisco City Clinic between 
1978 and 1980 for studies of hepatitis B. It is assumed that infected individuals 
progress irreversibly through the stages of infection. According to this model, the 
waiting time from when an individual enters stage 1 until reaching stage 4 is the 
AIDS incubation period. The exact transition times are not available in these 
data i.e. there is interval censoring. In addition, data may be right censored (that 
is, at the last observation an individual may still be in one of the infected stages) 
or left censored (that is, at the time of the first observation an individual may have 
already been in that stage for an indeterminate amount of time). 

If the transition intensities are i (independent of time) and the probability that 
an individual who is in stage i at time t will be in stage k( i) at time (t0 + t) is 
pik(t), then the probability density function for the AIDS incubation period is: 

(This density is of the form of an Erlang distribution.) 
Using numerical methods. maximum likelihood estimates of the parameters i 

are obtained. 
Longini et al.’s estimated mean incubation period is 9·8 yrs (for primarily 

sexually-infected homosexual and bisexual men and transfusion-infected indi- 
viduals) and is longer than the earlier estimates of Medley et al. (1988, 1988a) and 
Lui et al. (1986). 

6.3.1 Statistical Problems in Modelling the Incubation Period 
Daykin (1990) in his Section 6, provides a full review of estimates of the 

incubation period. Our purpose here is to focus on the statistical and modelling 
issues raised by attempts to represent the incubation period distribution. 

Historically, the first information on the incubation period distribution was 
derived from studies of transfusion-associated cases of AIDS, so that models 
fitted to these data are not necessarily applicable to other categories of AIDS 
patients. For example, the suggestion is often made that the mean incubation 
period for transfusion-associated cases of AIDS will be less than that for other 
methods of transmission, since the transfusion recipient is likely to receive a 
much larger number of infected cells. The other obvious problem with these data 
is that a length-biased sampling is in operation, with the longer incubation 
periods less likely or impossible to be observed while the epidemic is still in its 
early stages, since most infections will have occurred not long before, or during, 
the observation period. Most attempts to fit these data focus on the Weibull and 
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gamma distributions, which are flexible in shape and are both reasonably 
tractable and plausible. However, Rees (1987, 1987a) fits a normal distribution 
using trial and error methods. His fitted distribution has a mean of 15 and a 
standard deviation of 5, so that the chance of negative incubation periods is very 
small; however, Lawson & Dagpunar, in the discussion on Isham’s (1988) paper, 
point out that these parameters are sensitive to the use of an unbounded 
distribution like the normal-they obtain maximum likelihood estimates of 6 
years and 2 years for the mean and standard deviation using a truncated normal. 
Further, they point out the problems caused by a flat likelihood function and the 
imposition of a symmetric distribution. 

Rees’ approach has been extensively criticised also by Barton (1987) Lui et al. 
(1987) Costagliola & Downs (1987) and Beal (1987). 

Another (perhaps more subtle) problem with studies of transfusion-associated 
AIDS cases, is that inclusion in these studies is conditional on developing AIDS. 
Hence, the data cannot provide information on the probability that an infected 
individual develops AIDS unless further assumptions are made-the technical 
issues underlying this point have been discussed by Kalbfleisch & Lawless (1988) 
and by Lagakos et al. (1988) inter alia. 

These technical problems must be borne in mind when interpreting the results 
of the various studies. 

An early attempt to fit a Weibull distribution to the transfusion-related 
incubation period data is reported by Lui et al. (1986) who obtain a mean of 4·5 
years. However, although their method takes account of the fixed period of 
observation in which the diagnoses of AIDS occur, it does not allow adequately 
for the increasing rate at which transfused blood was infected. 

In order to emphasise the importance of considering the increasing rate of 
infection, we shall digress and consider the incubation period distribution from 
first principles. 

Suppose infections occur in a Poisson process of rate a(t). To each infection is 
attached an incubation time, x, having a distribution with density f(x) and 
cumulative distribution function F(x). Observations are made over a period 
(– , t0) and suppose the incubation times are sorted by time of onset of AIDS. 
Then the distribution of the incubation time for individuals observed to have 
AIDS at time t has the truncated distribution (if we 
ignore mortality of AIDS cases). But if individuals are sorted by time of report, 
then biases arise. If S is a random variable representing time of report, then the 
conditional distribution of X, given S = s, is: 

for all x and s if and only if cc(t) is constant. In particular if the 
conditional density is, for all s: 
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So, if ß > 0, the bias is in favour of the shorter incubation times, the 
conditional distribution showing no trend in time, i.e. it is independent of s. If 
infections grow sub-exponentially so that, in effect, ß is slowly decreasing with s, 
then the conditional distribution of x, given time to report s, shows increasing 
incubation times as s increases. This is a natural consequence of the ‘biased’ 
sampling. It can be shown that, more generally, this conditional density is 
independent of s, if and only if x(t) is exponential. 

Using data from the U.S.A. (CDC—Atlanta) on patients who have no other 
risk of acquiring infection other than having received a transfusion of infected 
blood or blood products. Medley et al. (1987, 1988) fit various distributions, 
making an explicit allowance for the effect of the increasing rate of infected 
transfusions (as discussed above). The rate at which transfusions of infected 
blood occur is modelled by a linearly or exponentially increasing function 
(appropriate until such transfusions cease because of mandatory screening of 
donated blood) and the incubation period is represented by a Weibull or gamma 
distribution. The probability of diagnosis is allowed to be time-dependent (via a 
probit function, i.e: 

where () is the standard normal integral) and the model is fitted by numerical 
maximisation of the log likelihood. The data are divided by sex and age (under 5 
years, 5–59 years, 60 and over) and, as is to be expected from the theory described 
in Section 6.2, inter alia, Medley et al. find that an exponential increase in the rate 
of transfusion-related infections fits the data better than a linear growth 
function. 

Medley et al. conclude that, for the data available at present, the Weibull and 
gamma distributions for the incubation period both give equally good fits and it 
is interesting to note that the index of the fitted Weibull distribution (for the 
whole data set) is 2·4 as compared with a = 2 used by Anderson et al. (1986, 
1987). These results indicate that incubation periods for men may be shorter than 
for women. Using an exponentially increasing rate function and Weibull 
incubation period. Medley et al.’s fitted means are 8·9 years for females and 5·6 
years for males. There is no obvious explanation for this difference, since the 
method of infection (blood transfusion) is the same in each case. One possibility 
is that there is an immunological difference between men and women, but, 
alternatively, perhaps there are biases in diagnosis which result in men being 
diagnosed earlier in the course of the disease. Further investigation of existing 
and subsequent data is needed to resolve this point. When a single Weibull 
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distribution is fitted to all the data (297 observations thought to be reliable, 112 
females and 185 males, corresponding to diagnoses made up to mid-1986), the 
mean is 6·3 years. As expected on theoretical grounds, this mean is larger than 
that obtained by Lui et al. (1986) (4·5 years) although the bigger data set may be 
partly responsible. The incubation periods for the youngest age group (fitted 
mean 2·3 years) and the oldest group (5·6 years) are found to be shorter than 
those for the central (5– 59 years) age group, for whom the fitted mean is 8·1 years. 

In interpreting these fitted mean values, it is important to bear in mind that the 
data being fitted lie in the lower tails of the fitted distributions, while the mean is 
estimated on the assumption that the fitted distribution would work equally well 
in the upper tail, on which it is highly dependent. Estimation of the mean from 
data in the lower tail alone is likely to be unreliable. As more data become 
available, it should be possible to obtain better information on the shape of the 
upper tail of the distribution, enabling a distinction to be made between the 
Weibull and gamma alternatives and better predictions to be made of the 
eventual magnitude of the epidemic. 

Boldsen et al. (1988) explore the parametric fitting of the incubation period 
distribution to data from Peterman et al. (1985) (referring to transfusion- 
associated cases) and from Curran et al. (1985) (referring to longitudinal data 
from the San Francisco City Clinic Cohort of homosexual and bisexual men). 
Using a Weibull distribution with hazard function with the former 
data set, an exploration of the form of the likelihood region suggests that the data 
mainly tend to provide information on a (rather than b) i.e. the data determine 
the shape of the left-hand tail of the distribution. but not the total probability in 
that tail. Experiments with the latter data set indicate that a Weibull curve is 
more satisfactory than either a gamma or a log-normal. They comment that 
Brookmeyer & Gail (1986) choose a value of the parameter b for their back 
projection calculations (see Section 7) that is unreasonably high (being based on 
the same data). Lagakos et al. (1988) fit Weibull models to data on 258 adults 
with transfusion-related AIDS and they confirm that the likelihood function is 
very flat over a range of parameter values, representing a wide range of possible 
incubation distributions. 

Costagliola et al. (1989) estimate the incubation time distribution from a data- 
set of transfusion associated cases provided by the French Ministry of Health. 
Using a Weibull distribution, they estimate the mean to be 5·3 years with a 90% 
confidence interval of [4·4, 8·91, following the methodology of Medley et al. 
(1987, 1988, 1988a). 

Consideration of the infection rate (t) leads to further statistical problems, 
which have been the subject of some debate in the literature. 

Suppose transfusion-associated infections occur at a Poisson process of rate 
(t). Kalbfleisch & Lawless (1988) point out the identifiability problems arising 
from attempts to estimate simultaneously the infection rate a(t) and the 
probability density function, for the time from infection to diagnosis of AIDS: 
these problems lead to unreliable estimates. The data available from the 
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transfusion studies are only sufficient to identify the shape of the early 
distribution and cannot strictly be used for estimation of the mean or median 
incubation period. It is thus not possible to discriminate between high infection 
rates coupled with long incubation times on the one hand, or low infection rates 
coupled with short incubation times on the other. 

In reply, Medley et al. (1988a) point out the possibility of using external 
collateral information to eliminate the identifiability problem. They apply the 
methods described earlier to an extended data set of transfusion associated cases 
from CDC, comprising 512 cases aged over 12 years at diagnosis of AIDS. The 
most satisfactory fit to the incubation period distribution is a Weibull with mean 
7·6 years. allowing for an implied annual rate of infective transfusion which is 
consistent with other data. The fit based on a gamma distribution is associated 
with a much higher rate of new infections, since the introduction of screening, 
than seems likely from other information. Until more data become available and 
more of the incubation period has been observed, these results must remain as 
tentative. The confidence intervals (not presented) are likely to be very wide, 
reflecting the fact that only- a portion of the incubation period has been observed 
in most patients. 

As noted earlier, the data sets used by Lui et al. (1986) and Medley et al. (1987, 
1988, 1988a) are subject to length-biased sampling, since all individuals are 
ascertained because they had an AIDS diagnosis. Thus, these cohorts include 
only those individuals who had relatively short incubation periods. Although 
both analyses attempt to adjust for bias, the corrective measures are indirect and 
may have achieved only partial success. In addition, other sources of bias may 
have occurred due to the increasing hazard function of the Weibull distribution 
used in both analyses (this is pursued further by Brookmeyer & Gail (1987) and 
by Brookmeyer et al. (1987)). In some studies, there are biases arising from the 
fact that all the individuals are infected prior to enrolment and the exact dates of 
infection are unknown-also discussed by Brookmeyer & Gail (1987) and by 
Brookmeyer et al. (1987). 

As described in Section 6.3. Panjer (1987, 1988) and Longini et al. (1989) use a 
staged Markov model, with the incubation period split into 3 stages, where each 
stage is associated with a constant hazard function. This renders the analysis less 
subject to those forms of bias that affect estimation based on models that do not 
have constant hazard functions. Ascertainment of individuals used in Longini et 
al.’s analysis occurs only because of their known infection and, thus, length- 
biased sampling is probably not a problem either. If, however, the assumption of 
constant hazard functions within stages is violated, then this analysis would be 
subject to model mis-specification biases. 

A number of other investigators have estimated the AIDS incubation period as 
the waiting time from stage 2 to the entering of stage 4 (according to the Walter 
Reed Staging Method). De Gruttola & Mayer (1988) fit a Weibull distribution 
to data for men from the San Francisco cohort observed to seroconvert; the 
estimated mean waiting time is 9·1 years. (This is relatively close to Longini et 
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al.’s corresponding estimate of 9·6 years.) Lui et al. (1988) fit a Weibull 
distribution to data for 84 men from the San Francisco cohort observed to 
seroconvert within a one-year period. Their estimate of the mean waiting time 
from the first seropositive blood test, i.e the early part of stage 2 to AIDS 
diagnosis, is 7·8 years, with a 90% confidence interval of [4·2, 15·0] years. Harris 
(1988) combines cohorts of HIV-infected individuals from the San Francisco 
cohort, transfusion recipients and adults with haemophilia. He estimates the 
mean AIDS incubation period as 9·8 years, which is identical to Longini et al’s 
estimate. 

Longini et al.’s data, as noted in Section 6.3, exhibit considerable censoring. 
This makes it impossible to specify exact transition times for individuals, requires 
the use of a time-homogeneous model and makes it very difficult to test the 
appropriateness of such assumptions. As more data with less censoring become 
available, it may then be possible to use a time-dependent specification where 
(t) are functions of time. 

Peto (1988) in his contribution to the discussion of Anderson’s (1988) paper, 
also criticises the parametric modelling of the incubation period distribution, 
because of the inappropriateness of the distribution chosen in the presence of 
very high mortality rates from other causes of death, and because the assumed 
exponential increase in the underlying incidence rate is not appropriate-as 
noted elsewhere, the incidence rate increases very rapidly and then, because of the 
saturation effects among the most promiscuous, the rate slows down. 

Kalbfleisch & Lawless (1988) and Peto mention the importance of non- 
parametric methods for estimating the incubation period distribution, but, it 
should be noted, these cannot provide estimates of the progression to AIDS at 
durations greater than have been observed. Parametric methods do enable such 
extrapolation to take place, although widely different results can be obtained 
using different parametric distributions. As noted earlier in this section, it is 
sometimes possible to use the chosen distribution to make estimates about other 
quantities which can then be checked for reasonableness. 

Lagakos et al. (1988) consider the estimation of the incubation period 
distribution, using information on persons infected with the AIDS virus from a 
contaminated blood transfusion. Of persons infected in this way, only those who 
develop AIDS by a certain date can be identified. The statistical problem is one of 
making inferences about a stochastic process of infection and subsequent 
disease, in which realisations are right-truncated in time. Lagakos et al. consider 
the process in reverse time and transform the problem to one of survival data that 
are left-truncated in ‘internal’ time. This approach is used to develop non- 
parametric methods for estimating and comparing the identifiable aspects of the 
incubation distribution for various groups. 

Generally, in many studies of infectious diseases, the times of infection are not 
known precisely, although they are known up to an interval. Brookmeyer & 
Goedert (1989) consider this problem and develop a methodology for analysing 
data generated by cohort studies during an epidemic in which the exact times of 
infection cannot be ascertained, although the times may be known up to an 
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interval. A 2-stage parametric regression model is proposed for jointly estimating 
the effects of covariates on risk of infection, as well as risk of progression to 
clinical disease once infected. The two stages refer to infection followed by onset 
of clinical disease. The methodology tackles three important features of the data: 

(1) the calendar dates of infection are interval censored; 
(2) the times from infection to clinical disease are not known precisely because 

of the interval censoring in (1) and because some infected individuals may 
not have developed the disease by the last date of follow-up (right- 
censored): and 

(3) there are two types of covariates: X1 which modify risk infection and X2 
which modify risk of disease once infected. Some covariates may be 
included in both vectors. 

Brookmeyer & Goedert fit the model to data available from the Hershey 
Hemophilia Cohort. San Francisco City Clinic Cohort and National Cancer 
Institute Multicentre Hemophilia Cohort Studies. 

In a parallel paper. de Gruttola & Lagakos (1989a) consider issues in the non- 
parametric estimation of the distribution function of the time to onset of clinical 
disease following infection. allowing for the interval- and right-censoring 
features of the data. but not allowing for the presence of covariables. 

A further statistical problem that arises is the difficulty of interpreting events 
near to the start of an epidemic in the presence of a skewed incubation period 
distribution. Gonzalez & Kocn (1987) and Gonzalez et al. (1987) consider this 
and related problems. by investigating the effect that a non-exponentially 
distributed incubation period has on the start of the epidemic. 

They make the following (reasonable) assumptions about the initial stage of 
the epidemic. for a sufficiently homogeneous subset of the population: the 
number of virus carriers is very small compared to the number of susceptibles 
and the factors which govern the transmission of the disease are roughly 
constant. In these circumstances. the number of virus carriers grows exponen- 
tially. They show that the observed slowing in the rate of growth of recorded 
AIDS cases within the first 3-6 years of the epidemic can be explained as a 
spurious effect (rather than being attributable to optimistic influences e.g. 
changes in the behaviour of risk groups, to prophylactic measures and/or the 
depletion of subsets of the population). Thus, Gonzalez & Koch (1987) show that 
the initial exponential increase in AIDS incidence can, itself, be temporarily 
increased so that the doubling time for AIDS cases is less than that for HIV 
incidence, and they suggest that this is one factor contributing to the observed 
slowing in the rate of growth of AIDS incidence. Section 5.2 has indicated that 
another important factor is heterogeneity of sexual activity, which can lead to a 
decrease in the growth rate of the epidemic once most of the highly active 
individuals are infected. The doubling time of the epidemic in its early stages is 
one easily observed property which is used in estimating parameter values, so 
that, if there is a non-negligible distortion due to non-exponential incubation 
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periods, then this should be taken into account. In Gonzalez & Koch (1987) and 
Gonzalez et al. (1987), curves are fitted to the total incidence of AIDS for a 
number of countries, using a gamma distribution for the incubation period 
(mean 5 years, variance 8 years) and it is shown that their model is consistent with 
data for the early part of epidemics, during which exponential growth of HIV 
infections applies. 

We consider the convolution equation that forms the basis of the back 
projection method (Section 7): 

where a(t) is the intensity of the point process for new diagnoses of AIDS, f(u) is 
the pdf of the incubation period distribution and h(u) is the HIV infection rate. 
Then it can be verified, from the above equation, that for a broad class of 
incubation distributions, f, a(t) can grow exponentially over much of its range if 
h(t) is exponential. Exponential h(t) corresponds to a constant doubling time in 
the cumulative number of HIV infections. Even if h(t) were exponential, 
however, a(t) may be dominated by non-exponential terms for small values oft. 
As Gonzalez & Koch (1987) point out, the doubling time in the number of AIDS 
cases may initially be shorter than the doubling time in the number of people 
infected with HIV. Although exponential h(t) might ultimately induce an 
exponential a(t), exponential growth in h(t) will only occur early in the epidemic, 
when the number of infectives is negligible relative to the number of susceptibles. 
This is true even in simple epidemics in homogeneous populations (Bailey, 1975). 
As the epidemic spreads, the reduction in the proportion of the population that 
remains susceptible causes h(t) to become subexponential; that is, the doubling 
time in the number of infecteds will increase with chronological time. The 
proportion infected does not have to be very large for the doubling time in AIDS 
incidence to increase substantially. For example, with a simple epidemic model 
for infection and a Weibull induction distribution with a median of 9·6 years, the 
doubling time in cumulative incidence of AIDS increases by more than 50% by 
the time the prevalence of infection is 25% (see de Gruttola & Lagakos (1989, 
1989a) for further details). 

An additional factor that can cause h(t) to be subexponential is that the 
populations at risk are heterogeneous. Heterogeneity refers not only to different 
‘risk groups’ for AIDS (for example, homosexually-active men, IV-drug users, 
etc.), but also to variations in behaviour within groups. For example, variations 
in the rate of new partner acquisition, type and frequency of sexual acts per 
partner, and duration of relationship all affect h(t). This heterogeneity is believed 
to be the reason that the observed rise in infection in some cohorts of 
homosexually-active men is more nearly linear than exponential (Anderson & 
May, 1987; Peto, 1986). 

If h is linear or quadratic in t, it can be shown that, for a(t) to grow 
exponentially, f(t) must also grow exponentially over its range-but such an 
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incubation distribution is uncommon in biological processes, and is inconsistent 
with what is currently known about the incubation period for AIDS. SO, the 
conditions needed for a constant doubling time in AIDS incidence seem 
unrealistic. 

6.4 Deterministic Epidemic Models: Allowing for Heterogeneity of Sexual Activity 
So far, the models presented do not treat variations in risk behaviour between 

different people in the group. These models would be sufficient if the variations in 
risk behaviours were not large and did not play such a significant role in the 
epidemic. However, surveys of risk behaviour in the homosexual communities 
demonstrate that the variance in the number of sexual partners per year is large. 

In the AIDS epidemic, it is significant that the people with many partners tend 
to become infected first and then become carriers who infect less active people. 
This feature can have a marked effect on the course of the epidemic and on which 
risk group is currently at highest risk of infection. 

To model risk behaviour, we suppose that the population can be distributed 
according to their numbers of new sexual partners per year. Letting: 

r = number of new sexual partners per year, 
S(t,r) = distribution of susceptibles according to the number of partners per 

year, 
I(t,r, τ) = distribution of infecteds according to the number of partners per 

year and the time since infection, 
c(r,r’) = total number of contacts in a partnership between people with r and 

r’ partners per year. and 
m(t,r) = immigration rate at time t of people with r new partners per year, 

we have the model: 

(6.7) 
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where, for convenience, we have followed Hyman & Stanley (1988) and put 
= 1. 

We repeat here the model represented by equations (6.7), but allow for the 
presence of an immune group, i.e. we are combining equations (6.4) and (6.7) 
viz.: 

(6.8) 

where the notation has been extended with I1, I2,, A1, A2, representing respectively 
the number of infected individuals who will ultimately develop AIDS, the 
number of infectives who do not develop AIDS, the number of AIDS cases and 
the number of non-infective seropositives. 

If we are not interested in I2, and γ 2 as functions of τ, then the equations simplify 
as follows: 

and (6.9) 

These models have been pursued by many investigators-in particular by 
Anderson et al. (1986), May & Anderson (1987), Blythe & Anderson (1988b) and 
Hyman & Stanley (1988). 

We must still define λ (t,r). We discuss below two possible choices: random 
partner choice and a bias of people towards partners like themselves. Note that 
now S(t,r) has the units people time/partners, and I(t, τ ,r) has the units people/ 
partners. 
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6.4.1 Random Choice of Partners 
If we assume that partners are chosen at random from the entire population, 

then λ (t,r) is given by: 

(6.10) 

This model, except with no differences in partnership durations and no 
variability in infectiousness [c(r,r’) and β (τ) constant], was first proposed by 
Anderson et al. (1986) i.e.: 

The model assumes that the average (r-r’) partnership is sufficiently short and 
infectivity is sufficiently low that the probability that a person has already 
become infected in the partnership is small, i.e.: 

Furthermore, the epidemic cannot grow so fast that the chance that a partner is 
infected becomes significantly different, during the course of the partnership, 
from an unmatched person from the same risk group. Anderson et al. (1986) 
show that the initial growth of this model is determined, not by the average 
number of partners/year, , but instead by ( + / ), where is the variance 
about this mean. They then proceed to approximate the model by replacing r 
with ( + ). 

Thus, for small t, it can be shown that: 

and (6.11) 

Anderson et al. (1986) investigate numerically the results from a model based 
on equations (6.8), that allows for recruitment and heterogeneity of sexual 
activity and a model that allows for recruitment, variable incubation periods and 
heterogeneity of sexual activity. A continuous gamma distribution is used to 
represent the variability of sexual activity within the population: for numerical 
work this is then approximated by a discrete distribution. The distribution of r is 
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used to determine the distribution of new susceptible migrants to the various 
discrete classes. The authors show how the prevalence of HIV in the population 
and the incidence of AIDS are affected by changes in the value of . In 
particular, the time at which the maximum incidence of AIDS cases occurs is 
little affected by heterogeneity of activity. On the other hand, if the initial 
doubling time of the epidemic, the mean activity rate and the withdrawal rate γ 
are fixed, then the magnitude of the epidemic decreases as the heterogeneity of 
sexual activity in the population increases (see May & Anderson, 1987). The 
intuitive argument for this is that, if is large, then the infection spreads quickly 
through the most highly active individuals. who are relatively rapidly withdrawn 
into the AIDS or non-infectious seropositive classes. The remaining individuals 
will then have an average activity that is noticeably lower than the original mean 
rate , so that the epidemic will ultimately affect fewer individuals than in a 
homogeneous population all of whose members have activity rate . Mathemati- 
cally, of course, if td, γ and Fare all fixed, then increasing the heterogeneity of the 
population corresponds to decreasing the value of the parameter λ, which 
represents the probability that a susceptible acquires the infection from an 
infected partner. 

Thus, a slowing up in the rate of increase of the incidence curve is an inevitable 
consequence of heterogeneity in sexual activity and, when observed, is, therefore, 
not necessarily a consequence of individuals changing their behaviour (see May 
& Anderson (1987) for further discussion). This same effect is illustrated by the 
results of a simulation study described by Peto (1986) using a simple model in 
which r takes just two values, with a small minority of individuals having a very 
high activity rate while the majority of the population have a low rate. 

In the models described so far, the transmission coefficient, λ, represents the 
(average) probability that a particular infective transmits the infection to a 
specific susceptible partner, while the activity rate, r, measures the rate at which 
the infective acquires new sexual partners. Thus, this probability should depend 
on the number of acts of intercourse with the susceptible partner; one might also 
expect it to depend on other quantities whose possible variability has so far been 
ignored, for example, the infectivity or susceptibility of the individuals 
concerned. Peto (1986) discusses the effect of changing the model so that an 
infective has a rate, k, of acts of intercourse, with a fixed probability of of 
transmitting infection to a susceptible partner per act, which is assumed to be the 
same for all infective-susceptible pairs. 

The model may be further detailed by allowing simultaneously for hetero- 
geneity in both r and k and correlations between these factors—e.g. it is possible 
that, in heterosexual populations, these factors may be negatively correlated; the 
penalty attaching, however, to models that incorporate greater realism is the 
increased number of parameters, about whose values and/or distributions there 
is much uncertainty-thus, here there is little information available on the 
suitable form of the joint distribution for r and k. 

Anderson & May (1988) display a scatter plot of the logarithm of the variance 
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in reported numbers of different sexual partners, versus the logarithm of the 
mean number of sexual partners from several published and unpublished studies. 
The variances and means are drawn from studies that utilise a wide range of 
sampling methods, sample different populations and record numbers of different 
sexual partners over differing time intervals. Excluding the data from Africa, 
they find that a best fit to the scatter plot is obtained by a power model of the 
form: 

where a = 0·555 and b = 3·231. This relationship is then built in to a series of 
projections, which allow for heterogeneity of sexual activity. 

Blythe & Anderson (1988b) describe in detail a proportionate mixing one-sex 
model of sexual transmission of HIV, in which sexual activity (new partners per 
unit time) is defined as a continuous variable in a set of integro-partial- 
differential equations, as above. They point out that there are considerable 
computational problems surrounding the numerical solution of equations like 
(6.7) or (6.8). An alternative approach proposed by Anderson et al. (1986) is to 
assign individuals to groups depending on whether they had 0, 1, 2, …, M 
partners in a chosen time interval such as one year. The difficulty with this 
approach is that M is often very large for male homosexual communities 
(c. 1,000) producing a system of equations which is unmanageably large. Some 
progress can be made by summation and reformulation to arrive at a small set of 
equations that denote changes in the moments of the statistical distribution of the 
rate of partner change (as in Anderson et al. (1986)). Blythe & Anderson (1988b) 
follow a different course and set up a discrete activity-class approximation to the 
continuous variable model-this is developed by matching equilibrium state and 
rate variables as closely as possible with the continuous variable model, and 
consists only of ordinary differential equations. Activity-class boundaries are 
arbitrary, and each class is characterised by a single level of activity-thus the 
range of activity, r, is partitioned into N discrete classes with boundaries, ri, such 
that: 

Given these N classes, the level of sexual activity of (N – 1) of them is such that 
the steady-state susceptible class sub-population is equal to the population in the 
equivalent section of the continuous model. (Technical reasons prevent the level 
of activity for all N classes being fixed in this way.) The activity level for the 
remaining class (or ‘balancing’ class) is chosen so that the condition for 
endemicity of the infection (related to the reproductive value-see equation 
(6.2)) in the approximation, is equal to that for the equivalent continuous- 
variable model; this minimises errors in the steady state population. 

The relationship between the discrete and continuous-variable models is 
explored via numerical and analytical studies, in order to evaluate the accuracy 
of the approximation. The numerical studies relate to the U.K. Comparisons are 
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made using a sequence of increasingly fine partitions of r, beginning with N = 1 
(homogeneous mixing approximation). For N > 1, each class is considered in 
turn and used as the ‘balancing’ class. Blythe & Anderson find a consistent and 
convergent approximation to the continuous variable model for N = 6 (with the 
second highest activity class being used as the ‘balancing’ class). The particular 
partition of the continuum of values of r is: 

Among the conclusions arising from their numerical experiments are the 
following: 

(1) The time taken to attain a peak incidence in AIDS varies greatly between 
the different sexual activity classes. 

(2) There are marked differences in the numerical magnitude of the incidence 
rate in each class, where a high fraction of the higher-activity classes will 
acquire AIDS while a low fraction of the lower-activity classes will do so. 

(3) The absolute incidence of AIDS in the lower-activity classes is higher than 
in the higher-activity classes, as the system approaches equilibrium, 
because a greater proportion of the total population resides in the lower- 
activity classes. 

(4) The distribution of sexual activity in the susceptible and infected classes 
changes as the epidemic progresses, because of the increased likelihood of 
a more active person becoming infected and dying prematurely of AIDS. 
Changes in sexual behaviour may thus become apparent in the susceptible 
subpopulation which do not reflect changing habits (as a result of 
education, for example). 

The model first introduced by Anderson et al. (1986) and extended later by 
Blythe & Anderson (1988b) involves what may be called ‘proportionate mixing’. 
It is assumed that individuals choose sexual partners according to their own and 
their partner’s activity class, such that, for any individual in the population, the 
fraction of partners chosen who have activity r, say, is proportional to r times the 
proportion of people with activity r in the population. The assumptions lie 
somewhere between the two extremes of homogeneous mixing (individuals 
choose partners at random regardless of their activity level) and of partner choice 
entirely restricted to those with identical activity levels. It has the useful property 
that the total number of partners chosen by people with activity r1 from among 
people with activity r2, is equal to the total number of partners chosen by people 
with activity r2 from among people with activity r1. 

6.4.2 Biased Partner Selection 
The possibility that non-promiscuous individuals may preferentially select 

non-promiscuous partners (and similarly for the promiscuous) can be allowed 
for by a suitable choice of the λ (t,r) function. 
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The λ (t,r) given by equation (6.10) takes no account of the fact that people do 
not choose partners at random from all groups, but, instead, prefer partners of a 
certain type and choose them when available. Ideally, the partner selection in any 
model should be based on sociological data. As a first step towards addressing 
this question, Hyman & Stanley (1988) present a model with a strong bias of 
people toward partners of similar risk behaviour. 

They introduce a partnership acceptance function, f(r,r'), which represents the 
frequency that partners of risk r' are accepted by persons of risk r, and take a 
particular Gaussian form for f(r,r’), viz.: 

and a particular form for N(t,r), i.e. N(2 + r)-4, derived from some empirical 
data quoted by May & Anderson (1987). With these assumptions, an approxi- 
mate form for λ (t,r) is obtained. This is described as a ‘diffusion risk model’. 

Hyman & Stanley (1988) also present a ‘biased mixing model’, with contact 
function: 

which only permits individuals to have contact with individuals of similar ‘risk 
behaviour’. c0 and c1 are here constants to be estimated from empirical data. 

Neither totally random choice nor biased choice solely from neighbouring risk 
groups captures individuals’ true behaviour. In the absence of data, however, it is 
worthwhile to postulate these two extremes and compare the epidemics that each 
predicts, but it is also necessary to look at mixtures of the two behaviours. 

Hyman & Stanley (1988) compare the two extremes via a series of numerical 
projections and show that there are considerable differences in the results. 
Jacquez et al. (1988) have used a linear combination of the two extremes to 
examine the transition from pure random selection to pure self-selection, using a 
model with four discrete activity levels. They see a large difference in epidemic 
growth rates, the time to spread across the different activity groups, and the 
endemic state when the pure self-selection term dominates (over 90%). 

A number of other investigators have considered the effects of biased partner 
selection. 

Thus, Colgate et al. (1989) employ models similar to those introduced by 
Hyman & Stanley (1988) in order to understand why the early growth of AIDS in 
the U.S.A. can be represented by a polynomial function of time, rather than an 
exponential function (see results quoted in Section 4.1). Hyman & Stanley find 
that cumulative cases of AIDS-grow as a cubic function of time, leading to a 
decreasing growth rate. Colgate et al. (1989) use a biased mixing model for male 
homosexuals that reproduces this initial growth curve on the assumptions that 
the level of risk behaviour is distributed as r -3, that either new partner frequency 
or sexual contact frequency dominates the risk behaviour separately (or when 
both are positively correlated) and that the probability of conversion to AIDS 
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per unit time is approximately constant (i.e. a constant hazard rate for the 
incubation period distribution, Several results of the model agree with 
observations, e.g. decreasing risk behaviour with time, numbers infected, 
decreasing growth rate. The authors comment that a decreasing doubling time 
may not reflect efficiency and efficacy of education and a decreasing participation 
in risk behaviour, but may be the natural consequence of such a biased mixing 
model, in which the virus is transmitted from high-risk to low-risk groups over 
time. The assumption regarding the correlation between new partners and sexual 
contacts and regarding the incubation period distribution are somewhat crude 
and are critical as regards the use of the model for extended projections. 

Roberts & Dangerfield (1988) describe a simulation model of the spread of 
AIDS among homosexual males, parametrised with respect to available U.K. 
data and based on the paradigm of system dynamics. The model is used as a tool 
for exploring the relative effects of varying scenarios. Despite their reference to 
system dynamics, the equations used correspond to the difference equations 
mentioned earlier. Like Longini et al. (1989) they effectively use an Erlang 
distribution (type 3) for the incubation period. The model allows for the 
incorporation of varying parameter values (e.g. proportion of HIV infecteds 
contracting AIDS, average time to death of newly diagnosed AIDS cases), 
disaggregation of the susceptible population in order to reflect heterogeneity in 
sexual behaviour, changes in number of sexual partners, scenarios concerning 
anti-viral therapy (e.g. a vaccine for seronegative members of the at-risk 
population, a drug to reduce the infectivity of seropositive members of the at-risk 
population). Dangerfield & Roberts (1990) extend the model to allow for a 
variable infectivity profile and describe a parameter optimisation experiment in 
relation to the quarterly time series data on cumulative reported cases of AIDS in 
the U.K. 

Stigum et al. (1988) investigate the effect of selective choice of partners on the 
spread of AIDS in a male homosexual population. The model follows a 
simplified form of equations (6.7). The development of the HIV epidemic is 
simulated, under various assumptions with regard to partner choice, in a 
population structured in groups according to promiscuity. Three scenarios are 
compared: a homogeneous population, a group structured population with 
random partner choice; and a group structured population with positive 
selection of partners within the same group. 

The model describes changes over time in the prevalence of HIV infection in 
groups of sexually active individuals. The model contains biological parameters 
(transmission rates, incubation periods and fractions of the infected who develop 
AIDS) and population parameters (group sizes, frequency of intercourse, 
frequency of partner change and preferences in choice of partner). 

The following simplifying assumptions are used: 

(1) The number of individuals in each group is constant over time except for 
death due to AIDS. 
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(2) A fraction of the infected individuals develop AIDS after years and are 
no longer contagious. 

(3) The transmission rate is independent of the time since infection. 
(4) Sexual behaviour does not change over time. 
(5) Within each group, behaviour is described by average parameters for the 

group. 

The rationale behind assumption (1) is that the majority of the infected 
individuals belong to an age group with low mortality (from other causes than 
AIDS). Other causes of mortality are not considered, nor are other factors that 
may change group size. Assumption (2) describes a simplified incubation time 
distribution (with density function given by the Dirac generalised b-function: 
δ (t - )). Assumption (3) is not necessarily realistic, but represents a straightfor- 
ward assumption in the absence of precise knowledge. The effects of behaviour 
changes are not considered (assumption (4)). A population with large variance in 
sexual behaviour will, in this model. be subdivided into groups so that each group 
is reasonably described by its average (assumption (5)). 

These assumptions simplify the model beyond the point of realistic predic- 
tions, but make it a useful tool for investigating the effects of different 
phenomena (such as long short incubation times, group structure, selective 
partner choice, age structure). In particular. it should be noted that assumption 
(2) would not take into account the wide variability in duration of infections 
preceding AIDS. It is necessary; to allow for this factor in order to predict, with 
some accuracy. the correct distribution of people developing AIDS and to ensure 
that infected people in the model remain infectious for lengths of times that 
reflect the actual infectious periods. A person who is healthy, but infected for a 
long period, has a higher probability of infecting someone else than a person who 
develops AIDS relatively early. 

Stigum et al.'s study shows that group structure and selective partner choice 
need to be considered in a model describing the spread of HIV, and that without 
such information model predictions may be unreliable, even when other 
parameters are known (or can be estimated reliably). 

Data on this type of selective choice of partners are difficult to obtain directly 
from populations. In some instances, they may be obtained indirectly, if both 
promiscuity and choice of partners correlate with a third variable that is more 
easily assessed. An example of this may be age: promiscuity tends to vary with 
age, and there may be strong positive selection for partners within the same age 
group. 

In a different type of study, Eisenberg (1989) analyses the probability of 
contracting the AIDS virus in relation to the number of sexual contacts and the 
number of different partners. Using the basic mathematical theory of probabi- 
lity. it is shown that in the case of a fixed number, n, of sexual contacts there is the 
following ranking from least risk to greatest risk: 

(1) monogamous relationship with a non-infected partner, 
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(2) monogamous relationship with a randomly selected partner, 
(3) relationship with more than one randomly selected partner, 
(4) n randomly selected partners, and 
(5) monogamous relationship with an infected partner. 

All of these values are estimated to be much higher ‘on the average’ for the male 
homosexual population than for the heterosexual population. 

6.5 Institute of Actuaries Working Party Model 
The Institute of Actuaries Working Party, of which the author is a member, 

has presented a mathematical model representing the transmission of HIV and 
the spread of AIDS. The model has been widely published and full details can be 
found in Daykin et al. (1988), Wilkie (1988, 1988a, 1989). 

The Institute of Actuaries Working Party model is of a similar type to the 
models described earlier in Sections 5 and 6. However, because of the emphasis 
on applying this model to assessing the effect of HIV and AIDS on life insurance 
underwriting, life insurance premiums and reserving (as well as permanent health 
insurance and pension provision), the focus of this actuarial model has been 
different. The model follows on from the terms of reference of the Working 
Party; these include: 

“To show the potential impact of HIV on mortality and morbidity and the implications for the 
use of existing actuarial bases and standard tables for premium rating and reserving.” 

Actuaries require such a model to be age-specific, in order to consider the 
progress of individuals of a given age and sex through future calendar years, to 
consider the longer-term trend in transmission and to produce numerical results 
(although not necessarily by analytical means). Thus, equilibrium models would 
be of less interest. It is also important for the model to reflect the type of data that 
would normally be available to an insurance company. 

For the above reasons, the Working Party’s model is age-specific and the 
resulting numerical complexity has meant that elements that depend on detailed 
assumptions about sexual behaviour (as described in Section 6.4) have been 
avoided. 

The model belongs to the family of stochastic processes that have been 
introduced by others, but it addresses male homosexuals only. Each cohort (of a 
single age) is dealt with independently of other cohorts. It is assumed that 
infection occurs from a contact between two individuals within a single age 
group. This assumption is artificial, but, if infections between those of different 
ages balance out, it may be considered to be a reasonable representation of 
reality. The transition intensities between states are allowed to vary with attained 
age and time. The model allows for immigration of susceptibles and for normal 
mortality as well as extra mortality from AIDS. 

A further simplification is the assumption that all those males described below 
as being ‘at risk’ of infection behave in the same manner at any one time, so that 
the chance of infection depends on the age of the individual at risk and the 
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Figure 2. Institute of Actuaries AIDS Working Party model: States and Transitions (*denotes 
possible infection). 

particular calendar year, but not on any sub-division according to frequency of 
sexual contact or frequency of change of sexual partner. 

The members of one cohort at age x may be in any one of the eleven discrete 
states that are indicated in Figure 2. Five of these are live states: ‘clear’; ‘at risk’; 
‘immune’; ‘positive’; and ‘sick’ from AIDS. Six are dead states; these are kept 
separate simply to show the live state that someone died in. The dead states are: 
‘dead from clear’; ‘dead from at risk’; ‘dead from immune’; ‘dead from positive’; 
‘dead from sick’ (other than from AIDS); and ‘dead from AIDS’. It may not be 
possible to distinguish the last two categories, but calculated deaths, other than 
from AIDS, of those who suffer from AIDS are comparatively trivial. 

Those in the clear state are those whose assumed sexual activity is such that 
they run no risk whatever of becoming infected with HIV. They form the 
‘normal’ pre-AIDS population for comparative purposes. Those in the at risk 
state are treated as exposing themselves to the risk of acquiring HIV infection by 
reason of sexual contact with infected people. Those in the immune state are 
assumed to have acquired HIV infection and to be infectious, but to be wholly 
immune from becoming sick from AIDS or dying from AIDS. 

Those in the positive state are HIV seropositive, but not yet sick from AIDS; 
they are infectious and not immune. It is assumed that it is possible to distinguish 
between those who are HIV seropositive and those who are sick from AIDS. In 
reality, there are several stages in the transition from HIV infection to death from 
AIDS. Those who are suffering from AIDS are thought to be highly infectious, 
but it is possible that their sexual activity may be considerably reduced. The 
model makes it possible to choose whether those sick from AIDS are treated as 
contributing to further infections or not. 
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It is assumed that the current age is part of the status, and that transition 
intensities can all vary by current age. In addition, since each age cohort (or year 
of birth cohort) is treated separately, each transition intensity can also be varied 
by calendar year, so that each cohort has its own set of transition intensities. 

Duration since entry to the states, immune, positive and sick from AIDS are also 
relevant to the transition intensities. This duration is denoted in each case as z. 

Possible transitions are as shown in Figure 2. Those in any of the live states 
may die, and those who are sick from AIDS may die from AIDS or from causes 
other than AIDS. Those who are at risk may change their behaviour and become 
clear, for example, by giving up sexual activity altogether, or by restricting 
themselves to one equally monogamous partner. There is no representation in 
the model of transfer from clear to at risk. Those who are at risk may become 
infected, and at that point are immediately allocated either to the immune state 
or to the positive state, in proportions that may depend on age (and on calendar 
year, though it seems unlikely that this would actually exercise any influence). 

Those in the positive state may become sick from AIDS, if they do not die first. 
Infection is possible from the immunes, positives and sick to the at risk. 

A series of ordinary and partial differential equations (in the form of equations 
(6.6)) are then set up and solved by numerical means, given assumptions about 
the form of the transition intensities. Various sets of assumptions have been 
explored and the sensitivity of the results tested. For example, in their Bulletin 
No. 4, Daykin et al. (1989) consider the effects of: 

(1) a transition intensity from ‘at risk’ to ‘clear’ that varies with time, 
(2) a transition intensity from ‘at risk’ to ‘positive’ that varies with age, time 

and duration since becoming infected, 
(3) a transition intensity from ‘positive’ to ‘sick’ that varies with duration in 

the ‘positive’ state, and 
(4) a transition intensity from ‘sick’ to ‘dead’ that varies with age and time. 

The force of mortality from the ‘clear’, ‘at risk’ and ‘positive’ states is represented 
by a current level of population (England and Wales) mortality. The transition 
intensity from ‘positive’ to ‘sick’ is the hazard rate for the incubation period 
distribution—Gompertz and Weibull forms have been used in experiments: 

(6.12) 

Other critical assumptions needed in this model are the proportion of the starting 
population assumed to be at risk or positive and the proportion of future new 
entrants (at age 15) assumed to be at risk or positive. 

The model assumes, through the equations describing transmission from the 
infected to the susceptible, homogeneous mixing as far as sexual activity is 
concerned. However, it should be noted that the ‘clear’ group could be said to 
have zero new sexual partners per unit time (r = 0) while the ‘at risk’ and 
‘positive’ groups have r > 0. Allowing the transition intensity from ‘at risk’ to 
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‘positive’ (via infection) to vary downwards over time, allows the model to 
attempt to mimic the rate of spread of the infection from the very promiscuous to 
the less promiscuous, as would happen in a heterogeneous (real) population. 

The model has proved to be both flexible and practicable and very useful for its 
intended purposes of assisting actuarial applications and for providing projec- 
tions for the total population. However, it should be pointed out that the model’s 
failure to allow for epidemiological features of the spread of HIV and AIDS (in 
particular, the heterogeneity of sexual activity in the population) means that it is 
unlikely to produce forecasts (in terms of cases or deaths) that will be exactly 
fulfilled. However, it does serve the purpose of providing a benchmark set of 
forecasts. 

The separate treatment of age cohorts contains the major restriction that 
infection can only be transmitted within cohorts and not between them. It would 
be possible to augment the model to permit some assumption about mixing of 
partners between cohorts-the complications caused to the numerical solution 
of the resulting equations have meant that this is yet to be pursued. 

6.6 Allowing for Variable Infectiousness 
As Daykin (1990) notes, there are suggestions in the literature of a pattern of 

two peaks in the antigen concentration in the serum of infected persons and that 
this may be mirrored in a pattern of variable infectiousness with similar peaks 
(Anderson & May, 1988). 

The inclusion of variable infectiousness in models has been considered by 
Blythe & Anderson (1988a) and Hyman & Stanley (1988) in detail and by Daykin 
et al. (1989). 

Both Blythe & Anderson (1988a) and Hyman & Stanley (1988) base their 
model of fluctuating infectiousness during the long and variable incubation 
period on the simple homogeneous mixing model in a male homosexual 
community as described in Sections 6.2 and 6.3. Hyman & Stanley (1988) 
represent variable infectivity by a piecewise linear approximation and then use 
numerical techniques to carry out the evaluation of the necessary convolution 
integrals. Blythe & Anderson (1988a) divide the infected population into a series 
of subclasses with different levels of infectivity (fixed for each subclass) and 
different durations of occupancy (exponentially distributed)-this corresponds 
to considering a generalised Erlang distribution for the incubation period 
distribution, as described in Section 6.3.1. Blythe & Anderson also adopt a 
second approach, which is more mechanistic in character and is based on an 
attempt to relate changes in viral abundance within an infected person to the 
duration of the incubation period and hence the likelihood that the AIDS 
develops. Variable incubation is induced by variation in the rate of change of 
viral abundance in the infected population. 

Numerical projections of changes in the incidence of AIDS through time, 
generated from both types of model, are compared with projections based on the 
assumption of constant infectivity throughout the incubation period of AIDS. 
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Blythe & Anderson’s models, in particular those with parameter values 
reflecting two peaks in infectiousness, show how temporal variation in infectivity 
can influence the qualitative shape of the AIDS epidemic. In broad terms, the 
initial phase of infectiousness will tend to drive the early doubling time of the 
epidemic (i.e. the rate of increase in the incidence of the disease), while both 
episodes of infectiousness will determine the overall magnitude of the epidemic 
and the level of the endemic equilibrium state. The models also show how much 
variability influences the derivation and interpretation of estimates of the basic 
reproductive rate, R, of infection. If infected persons are infectious for only a 
fraction of the incubation period, then past estimates of the transmission 
probability must be revised upwards, to take account of the shorter duration of 
infectivity. In other words, it may be that infectiousness is of shorter duration, 
but of greater intensity, than has previously been envisaged. 

The impact of variable infectivity on the possible spread of HIV infection 
could be considerable (Daykin, 1990). The initial stages of the epidemic would be 
determined by the early phase of infectiousness, and some levelling out could be 
expected before increasing numbers of the infections begin to occur, as a result of 
the second phase of infectiousness. This pattern will tend to be blurred by the 
variability in the incubation period, but the general effect will be to slow down the 
rate of new infections after the initial surge. Whether or not a further increase in 
new HIV infections will be observed, as a result of more people entering the 
second phase of infectiousness, will depend on whether or not behavioural 
change is sustained. 

Given the limitation in our quantitative understanding of variability in 
infectiousness, it is likely that Blythe & Anderson’s first (and simpler) model, 
based on a multi-stage classification, would currently be of more value. It permits 
a certain degree of analytical investigation (e.g. the determination of the 
probability distribution of the incubation period of the disease, in terms of the 
number of infected substages, and the parameters controlling the rates of 
movement of individuals between them), and its structure facilitates numerical 
study. At present, Blythe & Anderson believe that three subclasses (N = 3) are 
probably sufficient to capture current epidemiological understanding, with high, 
low, and high infectivity, respectively, as an individual follows the progression 
from infection to AIDS (but using the six stages of the Walter Reed Staging 
System would be an obvious elaboration). Whichever model proves itself to be 
the more valuable in the future, it will be necessary to allow also for heterogeneity 
of sexual activity as well in the modelling (Section 6.4) in order to produce a more 
refined analysis and improved understanding of the dynamics of the epidemic. 

One further point, that does emerge from these preliminary investigations, is 
the limited nature of current understanding of the factors that control the length 
of the incubation period in different patients and the infectiousness of infected 
persons throughout the incubation period of the disease. 

6.7 Models Allowing for Heterosexual Spread 
The models for the transmission of HIV infection, described in previous 
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sections, have been devised with a male homosexual population in mind, in which 
the infection is spread by sexual contact and in which any infective member of the 
population can pass on the infection to any susceptible member. For transmis- 
sion between heterosexuals, the model has to be made more complicated, since 
there are two groups of individuals with the infectives in one group spreading the 
infection to the susceptibles in the other group. If we denote the numbers of 
female susceptibles and infectives at time t by FS(t) and FI(t), with MS(t) and 
Ml(t) being the corresponding quantities for males, then in the analogue of the 
basic homogeneous mixing model (described by equations (6.1)), the following 
would hold: 

(6.13) 

where 

and 

In the above, the mean incubation periods ( ) and ( ) and the transmission 
coefficients ( = M,F) for the spread of infection from male to female and 
from female to male are assumed to be different. 

May & Anderson (1987) suggest that < < , the corresponding 
coefficients for homosexual males. Similarly the rates of partner change rM and rF 
are likely to be different and much smaller than the homosexual rate of partner 
change. 

However, the actual numbers of partner changes for the two groups must be 
exactly the same (assuming that there are no other groups of potential partners) 
and so, if there are approximately equal numbers of males and females (that is, if 
MN = FN), then necessarily rM = rF. The reproductive rate for female male 
infections is , while that for male female infections is . 
Whether or not the epidemic is self-sustaining (by purely heterosexual contact) in 
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the heterosexual community depends on the product 
which represents the average number of females infected indirectly, via a male 
intermediary, by a single female infective (or, equivalently with female and male 
interchanged) at the start of the epidemic when all contacts are with susceptibles. 
It appears likely that the reproductive rate β cr/ γ of the infection in the male 
homosexual community is appreciably greater than 1, but much less is known 
about heterosexual transmission. If we assume that then it is crucial 
to know the relative magnitudes of β ' and c' as compared with β and c and of r' as 
compared with r, in order to predict whether or not a purely heterosexual 
epidemic will occur. 

In equations (6.13) only the spread of HIV infection is modelled. To extend 
these equations to include the incubation period distribution of AIDS, non- 
infectious seropositivity, together with immigration of susceptibles and natural 
mortality and heterogeneity of sexual activity, extra variables and parameters 
must be introduced, as in the more complex models of Sections 6.3 and 6.4: the 
mathematical details are not pursued here. 

It is of interest to investigate the effect on the heterosexual community of the 
current epidemic in male homosexuals, as bisexuals transfer infection between 
the two groups, and for this the model must be extended still further. The model 
described by Knox (1986) has a population made of 12 groups or ‘behavioural 
classes’, each having its own rate of partner change. It includes classes of female 
prostitutes and bisexual males and separates heterosexual men and women and 
homosexual men into promiscuous and non-promiscuous classes. Inevitably, such 
a model involves many parameters, about which little is known. Knox discusses the 
information which is available and suggests sets of suitable parameter values, 
which are then used to estimate the incidence and prevalence of HIV infection 
when the system is in equilibrium. In this process, assumptions are made that 
various parameters are constant over time, which is restrictive-this particularly 
applies to the mortality rate and the rate of change of sexual partners. 

Perhaps of more immediate concern while the AIDS epidemic, particularly 
among heterosexuals. is in an early stage is the transient process. A simulation 
study, concentrating on the German (Federal Republic) population, is reported 
by Kiessling et al. (1986) and Stannat et al. (1987). In this study, there are six 
groups: bisexuals; female prostitutes; homosexual males; and heterosexuals (no 
distinction is made between the sexes), where the last two classes are each divided 
in two by the rate of sexual activity. Again, suitable parameter values have to be 
assumed. For example, it is assumed that only the bisexuals and higher activity 
rate heterosexuals have contacts amongst the prostitutes. Those infectives who 
do not develop AIDS are assumed to remain infectious indefinitely. One 
difference from the models previously described is that although, as before, the 
newly infected are divided into those who will develop AIDS and those who will 
remain seropositive, there is also a constant drift from the seropositive class 
across into the AIDS class. The aim of this is to make some allowance for the 
non-exponential nature of the incubation period distribution. 
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Another exploratory simulation study is described by Gonzalez et al. (1987) 
(referred to in Section 6.3.1), in which individuals are divided by age and sexual 
preference and a class of intravenous drug users is included, and where a random 
(non-exponential) incubation period is incorporated. The study investigates the 
effects of changes in parameter values on the growth of the epidemic. 

The above formulation of the model, leading to equation (6.13) follows that 
for the homosexual spread of the epidemic. The presentation focuses on the risk 
of transmission per partner rather than per sexual contact. The implications of 
switching the model to examine the latter would be dramatic for the heterosexual 
spread of the epidemic. Thus, it should be more likely to pass on the infection 
with one partner over n years than with a single contact. The pattern of 
heterosexual sexual activity among young adults could be that someone lives 
with a person for a year and then changes partners and lives with someone else for 
a year and so on-the risk of infecting each partner may then be high relative to a 
promiscuous person who may have 10 different partners occasionally and hence 
have fewer sexual acts. However. the model may be extended to allow for this 
finer level of description. 

Farmer & Emami (1987) describe a simulation model for the heterosexual 
transmission of HIV and the evolution of the AIDS epidemic. The population is 
considered to be made up of four groups: homosexual males; bisexual males; 
heterosexual males; heterosexual females. The model allows for biased selection 
of partners. Given somewhat arbitrary estimates of various parameters, 
including: the probability of transmission of HIV from group i to group j; and the 
average number of sexual encounters of a person in group i per unit of time, 
Farmer & Emami produce graphs of the trend over time in the level of 
seroprevalence, the numbers of new cases of HIV arising and so on. The graphs 
depict clearly the likely pattern of a wave of cases among homosexual and 
bisexual men, followed by a wave of heterosexual cases. 

This model is relatively simplistic. It does not allow for inflow of susceptibles; 
mortality of infecteds; movement of individuals into and out of the sexually 
active pool; presence of prostitutes or IV-drug users in the population and for 
transmission of HIV via needle-sharing; heterogeneity of sexual activity and 
behaviour. 

Lorper (1987, 1989) sets up a model for the spread of AIDS in the Federal 
Republic of Germany, to assist with the actuarial discussions within his 
employer, a reinsurance company. The model projects new infections, new AIDS 
cases, deaths and so on for the sexually active population. The model is not age 
specific. It allows for eight risk groups within the general population, viz.: 

Heterosexual females (not drug addicts or prostitutes), 
Prostitutes, not drug addicts, 
Intravenous drug-addicted prostitutes, 
Other intravenous drug-addicts (inclusive of homosexual drug addicts), 
Heterosexual males with no prostitute contacts, 



378 Actuarial Review of Models for Describing and 

Heterosexual males with prostitute contacts, 
Bisexual males, and 
Homosexual males. 

It allows for heterosexual spread of the disease and random selection of partners, 
but it does not allow for biased selection. A series of difference equations are 
used, with the time variable measured in days, and simulations are run once the 
various transition probabilities have been estimated. 

Kanouse et al. (1988) set up a simulation-based model which incorporates 
heterosexual and IV-drug sharing transmission of HIV. The model classifies the 
resident population of the U.S.A. using two sets of categories. The first set 
describes key demographic, behavioural, and other characteristics than can be 
used to stratify the population according to the risk of acquiring or transmitting 
HIV infection. People are classified according to their gender and sexual 
behaviour (five categories), IV needle sharing status (two categories), region (ten 
categories), and age group (nine categories). Thus, the model contains 900 risk 
categories that are based on combinations of factors considered to be important 
in the epidemiology of HIV infection. 

By focusing on transmission through homosexual and heterosexual inter- 
course and the sharing of intravenous needles, the model addresses the dominant 
transmission modes, which account for at least 95% of the adult cases reported to 
date in the U.S.A. 

The second set contains epidemiological and clinical categories that describe 
serological status and, for those infected, stage of disease. The model dis- 
tinguishes 13 stages, which are treated as mutually exclusive and exhaustive. 
Once infected, individuals move through these stages probabilistically and 
unidirectionally, at rates that are estimated from cohort studies. In the initial 
stage of infection (Stage 2). individuals have not yet developed antibodies, 
though they are capable of infecting others. In Stages 3-10, they have developed 
antibodies but have no clinical symptoms. The successive asymptomatic stages 
can be thought of as representing a progressive deterioration in the underlying 
state of the immune system, much like the deterioration represented by the 
categories in the Walter Reed Staging System. When HIV-infected persons first 
develop symptoms, their symptoms may be ones that immediately classify them 
as having AIDS by the CDC definition (Stage 12), or they may develop other 
HIV-related symptoms, including those often referred to as AIDS-related 
Complex or ARC (Stage 11). The final stage, death from HIV-related causes, 
may occur as a result of AIDS, ARC, or other conditions that are induced or 
complicated by HIV infection. 

The spread of HIV infection over time is tracked by computing, for each 
month, the number of people in each risk category who shift their epidemi- 
ological status from uninfected to infected. These computations require 
estimates of the values of key epidemiological and behavioural parameters, 
describing how many people engage in behaviours that could expose them to 
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HIV and how likely it is that these behaviours will actually result in transmission. 
The estimated values differ across specific populations, reflecting differences in 
both behaviour and exposure. 

The simulations presented illustrate how the virus spreads from the risk groups 
and regions that serve as initial ‘epicentres’ to other risk groups and regions with 
which they are linked. In the process, the epidemic growth gradually slows-a 
feature that may be of particular relevance to recent developments in a number of 
western countries. 

The base case version of the model assumes, as a plausible hypothesis, that 
infectivity through sexual transmission increases exponentially over the course of 
infection. Results demonstrate that this hypothesis is consistent with the known 
history of the epidemic. If true, the hypothesis implies much slower future decline 
in the rates of growth in sexually-and especially heterosexually—transmitted 
cases than would otherwise occur. But this is not the only hypothesis or 
associated future scenario that fits available facts. If infectivity follows some 
other time pattern, such as a sharp initial ‘spike’ shortly after the initial infection, 
followed by a long period of low infectivity, and then a substantial increase in the 
late stages of infection, the implications for future spread and control are quite 
different. 

Other key parameters, whose values have an especially important bearing on 
the future course of the epidemic, include (1) the extent of population 
heterogeneity in infectivity and susceptibility; (2) the degree of asymmetry in the 
efficiency of male to female v’. female to male transmission; and (3) possible sex 
differences in natural history. If women transmit the virus to men less efficiently 
than men do to women, that is ‘good news’ from an epidemiological standpoint, 
because any weakness in the chain of transmission slows the overall rate of 
spread. If, on the other hand, women are slower than men to progress through 
the stages of infection, this is not entirely ‘good news’, because it implies that 
more women are now infected than might otherwise be inferred from the number 
of reported cases. and, because it means that there is a longer delay in the 
transmission chain. warning of rapid growth in the future. 

Plumley (1989) presents a discrete-time model of the progression of the AIDS 
epidemic in the U.S.A. It is developed by projecting forward the spread of the 
epidemic within various major categories of the population, based on the sexual 
and intravenous drug activities that cause its transmission from one person to 
another. Hence, it is more comprehensive than the models of Bongaarts (1989) 
and Gail et al. (1989) described below. 

The model begins with a population in 1981 and an assumed number of 
persons infected with HIV at that time. Using assumed frequencies of the various 
types of sexual and IV-drug behaviour, combined with probabilities of risk of 
infection from these acts and rates of progression from infection to AIDS, the 
number of AIDS cases and other relevant data can be calculated year by year. 
Next, the number of modelled AIDS cases for each year through 1988 are 
compared with known data, in order to validate the assumptions. It then is 
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possible to project the epidemic based on any desired assumptions as to future 
sexual and IV-drug behaviour. 

Plumley’s model would not accurately depict the spread of the epidemic for 
various subgroups of the U.S.A. population-this restriction is imposed by the 
desire to avoid extra complications and also by the availability of data for 
estimating (or guessing) parameter values. 

Among the simplifying assumptions that Plumley adopts are the following: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

Age-specific effects can be ignored. The ageing of the population and 
inflow of new cohorts of young adults are not allowed for, although the 
model does incorporate a global population growth factor. 
Within each racial group, it is assumed that the various types of sexual 
and IV-drug activity are not segregated by geography, social class or 
other strata such as degree of promiscuity. 
It is assumed that no interracial sexual activity or sharing of IV-drug 
needles takes place. 
No specific allowance is made for prostitution, in particular among the 
IV-drug using community. 
No explicit allowance is made for heterogeneity of sexual/drug activity 
within each population subgroup considered. 
It is assumed that homosexual men engage in sexual activity only with 
other homosexual and bisexual men. 
Bisexual men are assumed to engage in sexual activity with other bisexual 
men, with homosexual men, and with heterosexual women; however, it is 
assumed that their risk of infection comes only from other men, thus 
ignoring the much smaller risk of becoming infected from engaging in 
vaginal sex with an infected woman. 
IV-drug users are assumed to risk infection only from engaging in needle- 
sharing with other IV-drug users, thus ignoring the much smaller risk of 
becoming infected from vaginal sex. 
Those homosexual or bisexual men who are also IV-drug users are split 
between those two categories, so that the IV-drug users have a risk only 
from IV drugs, and the homosexual and bisexual men have a risk only 
from receptive anal intercourse. This ignores the possible increased 
susceptibility to the AIDS virus because of the combination of anal 
intercourse and IV-drug use. 
For years prior to 1987, it is assumed that persons with AIDS are just as 
likely to engage in sexual or needle-sharing activities as are those who 
were HIV positive but who had not actually contracted AIDS. However, 
beginning in 1987, it is assumed that public education has progressed to 
the point that persons who actually have AIDS would no longer be 
having any sexual or needle sharing activity unless their sexual or IV- 
drug partner were fully protected from acquiring the disease. 
For years prior to 1987, it is assumed that heterosexual men engage in 
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sexual activity at random with heterosexual women, both IV-drug users 
and others. However, for years beginning with 1987, a ‘discrimination 
factor’ is added to the formula, so that the model could measure the effect 
of various degrees of avoidance of sexual activity with female IV-drug 
users. 

(12) For years prior to 1987, it is assumed that heterosexual women engage in 
sexual activity at random with heterosexual and bisexual men, including 
IV-drug users. However, for years beginning in 1987, two ‘discrimination 
factors’ are added to the formula. One of these permits the model to 
measure the effect of various degrees of avoidance of sexual activity with 
male IV-drug users, and the other allows the model to measure the effect 
of various degrees of avoidance of sexual activity with bisexual men. 

(13) For years prior to 1987, it is assumed that persons generally do not have 
knowledge of their HIV status, and therefore that, in choosing a sexual or 
IV-drug partner, one would not be able to exclude anyone because he or 
she were infected. However, for years beginning in 1987, a ‘knowledge 
factor’ is added to the formulae for all categories, to permit the model to 
reflect the availability of information on HIV status. 

Plumley’s approach is based on the discrete-time difference equation version of 
the continuous-time partial differential equations described above. For each 
racial group (white, black, other), difference equations are set up for estimating: 

(i) the number of new infections from homosexual activity for the racial 
group in year n; 

(ii) the number of new infections from bisexual activity for the racial group in 
year n; 

(iii) the number of new infections for males from IV-drug activity for the 
racial group in year n; 

(iv) the number of new infections for females from IV-drug activity for the 
racial group in year n: 

(v) the number of new infections for male drug-free heterosexuals from 
heterosexual activity for the racial group in year n; and 

(vi) the number of new infections for female drug-free heterosexuals from 
heterosexual activity for the racial group in year n. 

The mode of transmission in (i) and (ii) is via unprotected receptive anal 
intercourse; in (iii) and (iv) is via unprotected IV-drug activity (i.e. needle 
sharing); in (v) and (vi) is via unprotected penile-vaginal sexual activity. 

Plumley’s paper provides a very useful section on sensitivity analysis, in which 
the sensitivity of the results to changes in parameters and assumptions is 
discussed-this includes variation in the rate of progression from HIV seroposit- 
ive to AIDS, undercounting of AIDS cases, variation in the size of the high-risk 
groups, variation in the rate of population growth, consideration of the use of 
‘average’ number of sexual and IV-drug acts per year, measurement of the risk of 
sexual activity, variation in HIV seroprevalence by race. Finally, he notes that, 
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because his model fails to segment the population by degree of promiscuity, 
geographic reason or other characteristic, it is likely to overstate the number of 
HIV infections, since it does not take into account, to some degree, the potential 
saturation effect of the epidemic becoming contained within a particular 
subgroup. 

Although the approach of Kanouse et al. (1988) and of Plumley (1989) is useful 
for the assessment of different ‘what if?’ scenarios, it suffers from the clear 
disadvantage of having a very large number of parameters which need to be 
specified. 

A model with fewer parameters would clearly be preferable: a model that is 
more parsimonious as regards numbers of parameters is that due to Bongaarts 
(1989). 

Bongaarts (1989) introduces a model that describes the transmission of HIV 
infection by different modes, including homosexual and heterosexual sexual 
contact and transmission from infected mother to newborn baby. The model is 
based on a subdivision of the population into compartments and leads to a set of 
linear differential equations-as in equations (6.8) and (6.13). The model 
proceeds by computer-based simulations and its objective is to project, for 
periods up to one or more decades, the annual incidence and prevalence of HIV 
infection and AIDS in a population with given epidemiological, behavioural and 
demographic characteristics. In addition, the epidemic’s impact on a range of 
demographic variables is calculated. The demographic framework in which the 
model operates is based on the standard, cohort dependent, component method 
of population projection. The population is stratified by age, sex, sexual 
behaviour, marital status and infection/disease status. An important point here is 
the inclusion of the age variable, which enables the model to allow for age- 
specific dependence in a number of the critical assumptions. 

To take account of heterogeneity in sexual activity, each cohort is divided into 
the following strata: 

Mules 
(1) homosexuals (including bisexuals); 
(2) heterosexuals with high sexual mobility (for example, clients of prosti- 

tutes); 
(3) partners in monogamous unions; and 
(4) sexually inactive males. 

Females 
(1) monogamous partners of bisexual males; 
(2) women with high sexual mobility (for example, prostitutes); 
(3) monogamous partners of sexually mobile males; 
(4) partners in monogamous unions; and 
(5) sexually inactive females. 

As a short cut to modelling the incubation period distribution, the number 
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of infected individuals at risk of developing AIDS at time t is subdivided into four 
states with constant transition intensities from (a) → (b) → (c) → (d), and zero 
transition intensities in the opposite direction (as in the work of Panjer (1987, 
1988), Longini et al. (1989), De Gruttola & Mayer (1988) discussed in Section 
6.3.1). The states used by Bongaarts are: 

(a) asymptomatic, normal immune function; 
(b) asymptomatic, impaired immune function; 
(c) persistent generalised lymphadenopathy (PGL); and 
(d) AIDS-related complex (ARC). 

The distribution of the incubation time is given by the convolution of four 
exponential distributions (which yields a gamma distribution if the transition 
intensities are taken to be equal-which is the path chosen by Bongaarts). 

The model allows for the primary mode of transmission being sexual and 
different, but closely related equations are used to estimate infection rates for 
groups with multiple partners and frequent partner change, and for groups with 
single partners and infrequent partner change. 

The model can allow also for other transmission routes: 

(1) infected women who become pregnant can infect their newborns in utero 
or at birth or via breastfeeding: 

(2) sharing of contaminated needles among IV-drug abusers; 
(3) blood transfusions with infected blood; and 
(4) medical injections with contaminated needles (e.g. for vaccination). 

Bongaarts provides an illustrative application of the model to a Central 
African population with no homosexuality and no IV-drug abuse. In this 
hypothetical simulation covering the period from 1975 to 2000, HIV prevalence 
in the adult population rises from 0% to 21%. By the end of the projection 
period, mortality is about double the level that would have prevailed in the 
absence of the epidemic, but, owing to the very high birth rates that prevail in 
most of Africa, the growth rate of the population remains substantially positive, 
although reduced from 3% p.a. to 1.9% p.a. The total number of parameters 
required for this simulation is 32. 

Gail et al. (1989) use discrete-time epidemic models (with an allowance for 
migration) of the form discussed in Sections 5 and 6, to evaluate the potential 
benefits of voluntary confidential testing (VCT) for HIV. The discrete-time 
models rely on the use of transition matrices and are closely related to the 
continuous-time models that have been presented here (however, it should be 
noted that the long-run behaviour of discrete time and continuous time models 
may differ: Gani (1978)). 

Gail et al. consider the number of tests required to prevent one case (called the 
economic ratio, ER) and calculate the number of cases prevented by the 
screening programme. The methods differ from the epidemic models described 
earlier, because susceptibles and infecteds are subdivided according to testing 
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status, in order to permit modelling of the efficacy of knowledge of HIV status in 
retarding epidemic spread. The methods also allow for subdivision into several 
homogeneous subpopulations, whose members may be attracted in varying 
degrees to members of other subpopulations. Thus, the common assumption of 
free mixing across subpopulations is relaxed. 

The models make a number of assumptions. They assume that the forces of 
mortality from susceptibles and infecteds are constant (a common assumption); 
they make no allowance for age-specific effects; and they assume that the 
probability of transmission is independent of how long an infected subject has 
been infected. There is evidence (from the experience of cohorts of homosexual 
men and haemophiliacs) that the hazard rate for AIDS (and hence for mortality) 
increases with the duration of infection and (from the experience of cohorts of 
haemophiliacs) that the risk of transmission may also increase with duration of 
infection—see Daykin’s (1990) review paper for further comments on the 
epidemiology of AIDS. The models of Gail et al. could be generalised to 
accommodate these features, by subdividing the infected state into additional 
categories, defined by duration of infection. 

The model could also be extended to allow for distinct modes of transmission 
like sharing of IV-drug equipment. Thus, subgroups of the population might 
possess each mode of risky activity to varying degrees and separate matrices 
could be specified for each mode of transmission. Extensions of this nature would 
be useful for describing the role of IV-drug users, whose internal risks derive both 
from drug paraphernalia and sexual contact, but whose main threat to the non- 
drug using population would be through sexual transmission. 

Gail et al., on the basis of a number of simulations, reach the following 
conclusions which refer to a population of 100,000 persons over a period of 5 to 
15 years, and are robust to wide variations in assumed parameter values and 
other aspects of modelling: 

(1) VCT prevents hundreds or thousands of infections in isolated high-risk 
populations and ER values are typically less than 100, making VCT very 
attractive economically. 

(2) VCT prevents only a few infections in isolated low-risk populations with 
initial prevalence 0·1% or less, and the ER values are well above 2,000. 
However, in ‘low-risk’ populations with 1% initial prevalence, tens or 
hundreds of infections may be prevented, and ER values fall below 2,000 
for plausible spread rates, indicating that VCT may be economically 
feasible in such settings. 

(3) In a mixed population, a VCT programme that aims primarily at the 
homosexual/bisexual subpopulations prevents more disease in the homo- 
sexual/bisexual populations, prevents more disease in the heterosexual 
populations, and requires fewer tests per case prevented than a VCT 
programme that tests all subpopulations equally. 

The model of Gail et al. can incorporate changes in behaviour as the epidemic 
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spreads. Indeed, Gail & Brookmeyer (1988) describe the results when the spread 
rate is allowed to decrease over time-leading to subexponential growth early in 
the epidemic and delayed onset of saturation. 

In an unpublished paper, Fuxman (1989) produces a series of models for 
populations that are: 

(i) unisexual and homogeneous; 
(ii) unisexual and heterogeneous; 

(iii) heterosexual and homogeneous; and 
(iv) heterosexual and heterogeneous, 

using the same mathematical formulation as presented in Sections 5 and 6 of 
this paper. Fuxman’s approach is conventional, but there is no reference to the 
work of others in this field. A significant departure from the work of others in this 
field is Fuxman’s use of somewhat unrealistic incubation time distributions: 
either γ (t) = γ, where γ = 1/7·5, corresponding to an exponential distribution; or 
γ (t) = δ (t - 7·5), the Dirac generalised δ function. 

As noted earlier, failure to allow for an incubation period distribution with 
sufficient tail, can lead to misleading results and these deficiencies are noted by 
Fuxman in his conclusions. where he suggests a gamma distribution as being 
more appropriate and that the “choice of the distribution has a significant 
influence on the bottom and middle parts of the dynamic curve”. 

The models discussed so far in this section are straightforward, although 
detailed, extensions of those considered in Section 5 and the earlier part of 
Section 6, which were devised mainly with a male homosexual population in 
mind, where individuals change partners frequently and where all members of 
the population are continuously at risk of infection. As noted earlier in Section 6, 
the assumption, that the transmission coefficient β c is a constant for each 
partnership between individuals of specific types, is most appropriate in a highly 
promiscuous community. Also, if two susceptible partners form a pair, they are 
at no risk of infection as long as they have no sexual contacts with other partners. 
In particular, this influences the early stages of the epidemic, when most existing 
pairs will be of two susceptible partners, who will play no part in the transmission 
of infection until a new partnership is formed with an infective. Thus, models are 
needed for populations in which longlasting partnerships are common, be they 
homosexual or heterosexual. 

Daykin (1990) and Wiley et al. (1989) note recent studies which indicate 
variation in the infectivity of HIV among heterosexual couples (β). Wiley et al. 
represent this heterogeneity by modelling β as a random variable. Using data on 
the number of contacts and seroconversion of couples from two partner studies, 
the model is fitted by maximum likelihood estimation with a beta distribution 
and a discrete distribution for β. The models which fit best are those indicating 
extreme forms of heterogeneity, i.e. transmission after a few contacts or not at all. 
Wiley & Herschkorn (1988) show that this type of heterogeneity implies that the 
risk of acquiring HIV infection depends mainly on the number of sexual 
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partnerships formed and not on the frequency of intercourse within the 
partnership. This result supports the models proposed, for example by May & 
Anderson (1987). However, it should be noted that the studies used here for the 
fitting of the models are of modest sample size only and the results will need to be 
checked on other, comparable data sets. 

Readers interested in a full description of micro models of partnerships 
(including their formation and separation) are referred to the extensive work of 
Dietz (1987, 1988) and Dietz & Hadeler (1988). 

Many of the models described above, of the heterosexual transmission of the 
epidemic, allow only for sexual contacts within partnerships. However, casual 
sexual contact may also take place. This is considered in some of the models of 
Dietz (1988) and Dietz & Hadeler (1988), who divide up the heterosexual 
population into eight compartments according to whether an individual is male 
or female, infected or not infected, paired in a sexual relationship with a member 
of the opposite sex or not in a sexual relationship. 

This approach highlights the importance of sexual pair formation, but, even in 
this restricted domain of heterosexual transmission, too much remains presently 
unknown for reliable projections of the spread of HIV infections to be feasible. 
Further, the models involve the introduction of a large number of parameters. 
However, these models can be of value in the qualitative insight which they 
provide. 

A further feature that needs to be incorporated into models of the heterosexual 
spread of the epidemic is the mixing of groups of individuals with different levels 
of sexual activity (as in the homosexual population-see Section 6.4). Also, 
sexual behaviour changes over time, and people with many partners one year 
may have only a few the next, or vice versa. Social groups within which mixing is 
strong, and between which it is weak. may cause low-activity people in one group 
to be infected before high-activity people in another group. 

The social/non-social mixing behaviours modelled by Sattenspiel (1987) and 
Sattenspiel & Simon (1988) may also play an important role in the spread of this 
disease. Models with a variety of mixing assumptions need to be developed and 
compared, both with each other and with behavioural and serological studies, to 
ascertain what complexities are really necessary for modelling HIV spread and 
which are not 

6.8 Models for the Spread of‘ AIDS in Developing Countries 
A further step in modelling the spread of the HIV epidemic in heterosexual 

populations would be to consider the population in toto and focus on its 
(reduced) ability to reproduce itself in demographic terms. This would have 
particular relevance to the developing part of the world. In such a population, it 
would be important to augment the model to allow for vertical transmission of 
HIV from mother to baby-the probability of which has been estimated by some 
workers to be in the range 30%-70% (Anderson et al. (1988)). 

The deaths in the epidemic and much of the morbidity will be in the segment of 
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the population which has not yet reproduced. Moreover, the rate of successful 
reproduction in seropositive mothers will be greatly reduced for several reasons. 
Firstly, they may be unwilling to have children. Secondly, the risk of vertical 
transmission from an infected mother to her baby is very high. Thirdly, the 
seropositive progeny may have a low probability of reaching sexual maturity, 
and those who do will have a reduction in their own probability of reproduction. 
Over several generations this may have an enormous impact on the fertility of the 
HIV-infected segment of a population. 

The negative effects of HIV on reproduction may be observed in males as well 
as in females, as a consequence of the significant (currently unknown) probability 
of infection of the latter by the former. 

At some point, the effect of HIV infection on the fertility of a population, 
‘coupled with the direct effects of the epidemic, may impact seriously on the 
chances of the population to survive, resulting in a possible net decline in the 
population, as well as a shift in mean age. 

Thus, the effects and consequences of HIV positivity on the long-term growth 
and stability of a closed human population could be significant over several 
generations, especially in the absence of the ability to screen and detect infected 
parents. The effective birth rate could fall and may not be correctable because of 
the heavy toll already taken in the young adult population. 

This is explored by Bongaarts (1989) and in detail by Anderson et al. (1988) 
who conclude that AIDS is capable of changing population growth rates in the 
developing world from positive to negative values over timescales of a few 
decades. They estimate that the disease would have little effect on the dependency 
ratio of a population, defined as the number of children (say, aged under 15) and 
elderly (say, aged over 65) divided by the number of adults (say, aged 15-64). 

6.9 Concluding Comments 
Simple mathematical models of the type described in Section 6 can yield 

important qualitative insights about the spread of HIV infection. In particular, 
such models show: 

(a) that the rate of spread of the epidemic depends strongly on initial HIV 
seroprevalence rates and on transition rates; 

(b) that the epidemic will die out if the rate of new infections is less than the 
rate of death of infected individuals; 

(c) that the underlying prevalence of infection will grow subexponentially in 
many scenarios; 

[Subexponential growth of infections can arise because: 

(i) the subpopulation becomes saturated with infected individuals, or 
(ii) individuals modify their behaviour to reduce the risk of HIV 

transmission, or 
(iii) the epidemic spreads from high-risk subpopulations to low-risk 

subpopulations with lower rates of infection, or 
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(iv) the total incidence of infection arises from the aggregation of 
infections in temporally separated subepidemics.] 

(d) the effects of heterogeneous risk behaviours—and, for example, the slower 
growth of the epidemic in a high-risk subpopulation than when it is 
isolated, because some of its contacts are diluted by low-risk contact with 
the low-risk population; and 

(e) the effects of temporal lags between the epidemics in subgroups of the 
population-for example the aggregation of two subepidemics with a 
temporal lag, can lead to the saturation of one group while the second 
group enters its exponential phase (Gail & Brookmeyer (1988)). 

It is thus worth noting that the aggregate annual incidence rate in a population 
may take many forms, including sustained exponential growth. subexponential 
growth, and even undulation, depending on the nature and modes of cross- 
infection of contributing subpopulations. Moreover, these patterns may be 
occurring in underlying infection rates well before they are detectable by their 
effects on AIDS incidence. 

The mathematical models we have described can be considered as being very 
useful for organising facts related to epidemic spread, for identifying gaps in 
epidemiological knowledge, and for determining the kinds of behaviour, 
subexponential growth in particular. that might be anticipated in various 
circumstances. However, it is unlikely that such models will be reliable for 
quantitative predictions of annual incidence of HIV infection in the immediate 
future, though researchers are attempting to devise epidemic models for this 
purpose. One potential application of compartmental models is the comparison 
of alternative strategies for disease prevention, because such comparisons may be 
less sensitive to changes in model assumptions than are quantitative predictions 
of annual HIV incidence (Gail et al., 1989). 

Sections 5 and 6 have indicated how a basic deterministic model of epidemic 
spread may be extended to incorporate more critical and realistic features of the 
transmission of HIV, through sexual and other routes. 

In drawing this section to a close, it may be worth highlighting certain themes: 

(i) Extending the model to a widely varying heterosexual population results 
in an increase in the number of parameters because of asymmetries 
between the sexes (Section 6.7). It becomes desirable to take into account 
partnerships (this is also the case for the non-promiscuous homosexual 
group), since, during a long partnership between two susceptibles, neither 
is at risk of infection if there are no outside contacts. It is then natural to 
model the probability of transmission of infection per sexual contact, 
rather than per partnership. 

(ii) As the model is generalised to apply to increasingly broad communities, it 
is straightforward mathematically to include more and more sources of 
variation between individuals, in an attempt to mimic to an ever greater 
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extent ‘actual’ behaviour. From the perspective of the use of such models, 
however, it is important to identify those sources of variation which are 
critical in their effect on the spread of infection and those which can 
effectively be assumed constant, in order to obtain a broad-brush picture, 
which is the most that is needed for many practical purposes. For 
example, it would be necessary to separate out the highly promiscuous 
individuals from the rest, dividing individuals into ‘high’ and ‘low’ 
activity, but whether further division is advantageous is less obvious. 

(iii) Another important aspect of modelling still to be tackled is the 
incorporation of spatial features. The models have tended to envisage a 
fairly small closed community, but it is also of great relevance to see how 
epidemics in different spatial locations are linked together. The idea of an 
epidemic in one community feeding infectives into another community, in 
which a self-sustaining epidemic may or may not be generated, has 
already been mentioned in the context of homosexual and heterosexual 
populations, but the idea applies equally to communities distinguished by 
spatial location. The geographical spread of infection has been studied in 
particular with regard to influenza in the U.S.S.R. (see, for example, 
Bailey (1975)) but no systematic investigation has been attempted for 
HIV infection. 

(iv) Numerical studies of the models described in this paper have been made to 
judge the effects of changes in assumptions and parameter values and to 
gain a feeling for which of these have a critical influence on the course of 
the epidemic and to which it is reasonably robust. Such studies have an 
important part to play in enabling sensible decisions to be reached on 
intervention strategies to be used, with the aim of reducing the impact of 
the epidemic. There have also been many numerical studies, using various 
models, in conjunction with estimates of parameter values based on 
observational or survey data, to predict the course of the infection in 
particular populations. In these studies there are often large numbers of 
parameters to be estimated, on the basis of rather small amounts of data, 
and it is here that questions of insensitivity to specific parameter values 
need to be addressed. 

(v) The data that are available, relating both to parameter values and to the 
incidences of HIV infection and AIDS, need careful use and interpreta- 
tion for many reasons. The following points merit attention: 

(1) As the epidemic proceeds, with its associated publicity, the underlying 
parameter values relating to sexual behaviour may be changing. 

(2) Much of the data relate to groups that are self-selected to some 
extent—for example, individuals attending STD clinics. 

(3) Some parameter values will vary substantially between subpopula- 
tions and regions. 

(4) There are problems caused by under-reporting and non-detection of 
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cases, time lags between diagnosis and reporting and the differential 
operation of these factors over time and between subpopulations. 

(vi) The use of mathematical transmission models to provide reliable 
estimates of the future course of the epidemic depends on the collection 
and analysis of more data than are currently available. Many authors 
have written persuasively on the importance of this topic (e.g. Bailey, 
1988; May & Anderson, 1987). Collection of data is not, however, merely 
a statistical exercise and needs to be considered in the light of other, 
broader issues that cannot be addressed here. 

PART III 

7. THE BACK PROJECTION METHOD 

7.1 Introduction 
The basis of this method is that, if the distribution of the incubation period is 

assumed to be known, then the distribution over time of HIV infection and of the 
appearance of AIDS are directly linked. Knowledge of one distribution allows 
the other to be estimated. Starting with the observed number of AIDS cases by 
time of diagnosis, one can then estimate the number of HIV infections by time of 
infection. The number of new HIV infections in future successive time intervals 
can then be estimated by extrapolation and the annual future numbers of AIDS 
cases can, in turn, be estimated via the distribution of the incubation period. 

To use a hypothetical example, suppose that at the very start of the epidemic in 
England 100 cases are diagnosed in one year-and that it is known that only 5% 
of all HIV-infected convert to AIDS within a year of infection; calculating 
backwards in time, one would estimate that 20 times 100 persons (or 2,000) had 
become infected during the prior year. Then, to continue the hypothetical 
example, suppose that a forecaster wishes to make a 5-year prediction for 
cumulative AIDS cases and that 35% of HIV-infected persons contract AIDS 
within 6 years; if, as of a year ago, 2,000 were infected and, of these, 100 (5%) 
have already been diagnosed with AIDS, then in 5 more years, an additional 600 
(30% of 2,000) are expected to contract the disease-for a predicted cumulative 
total of 700 cases in 5 years from the forecast date. 

Knowledge of the prevalence of HIV infection in a particular population, and 
the rate at which new infections are occurring, is clearly of great importance. 
However, for most populations of interest, this information is not available. The 
serological data that have been collected usually relate to extremely specific 
groups of mostly high-risk individuals and these data cannot easily be combined 
to predict seroprevalence in a wider, more heterogeneous, population. 

It is reasonable to suppose that new cases of HIV infection occur in a point 
process. For the moment we consider only those cases for which AIDS will 
eventually be diagnosed and denote the intensity of the corresponding point 
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process by h(t). Let the lengths of the incubation periods (between infection and 
diagnosis) for these individuals be independent, identically distributed variables 
with probability density function f. Then new diagnoses of AIDS will occur in a 
point process with intensity u(t), where a(t) is given by: 

(7.1) 

Thus, if the density of the incubation periods were known, together with the 
HIV infection rate h(u), for u ≤ t, we could calculate the distribution of the 
number of new diagnoses of AIDS in any time period up to time t. In many ways, 
this would be the most natural method of predicting AIDS incidence. 

Conversely, we can use the above equation to deduce h if the functions a and f 
are known. This forms the basis of the method known as back projection, in 
which knowledge about AIDS incidence and the distribution of incubation 
periods is used to make inferences about the incidence of HIV infection. It must 
be stressed, however, that, because the proportion of those infected who will 
ultimately have AIDS diagnosed is not known, this method only provides 
information about the process of HIV infections that do subsequently lead to 
diagnosis of AIDS. 

Equation (7.1) shows how growth in the incidence of AIDS lags behind the 
growth in infections. The convolution filters the changes in the underlying 
infection rate. /z(t), so that even abrupt changes in h(t) appear only several years 
later as gradual changes in AIDS incidence, u(t). 

7.2 Applications of the Back Projection Method 
Iversen & Eugen (1986) use this approach to estimate the proportion of those 

infected with HIV who develop AIDS within a period of 8-10 years, using data 
from Curran et al. (1985) and Peterman et al. (1985). They assume a normal 
distribution for f(t), with parameters estimated from the same data set. The 
truncation at 8-10 years occurs because, at their time of writing, there were no 
observed cases with incubation times of more than 8 years. 

Rees (1987, 1987a) similarly uses a normal distribution for f(t) to estimate the 
numbers of new and total infections in the U.K. and the U.S.A. by the method of 
back projection. As has already been noted, Rees’ methodology for fitting f(t) 
and estimating the parameters (based on data from Peterman et al. (1985)) has 
been subject to widespread criticism. A normal distribution seems inappropriate 
for f(t) (see Section 6.3.1) and, as will be noted later, the back projection method 
is particularly sensitive to the choice of distribution for the incubation period. 

Boldsen et al. (1988) consider the total numbers infected in the U.S.A. and in 
Denmark using a back projection method. They assume a Weibull distribution 
for the incubation time distribution, f(t), and a logistic growth curve for h(t). 

Brookmeyer & Gail (1986) use a back projection method in discrete time for 
estimating the number of those already infected with HIV, which is then used to 
project the short-term future number of AIDS cases in the U.S.A. This work 
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yields a lower bound on the size of the epidemic, in the sense that no allowance is 
made for future infections. Specifically, they postulate Weibull or log-logistic 
forms for f(t), and use equation (7.1) to determine h(t), which is assumed to be a 
piecewise uniform step function, viz. taking values: 

1977-1980 h1 
1981-30 June 1981 h2 

1 July 1982-30 June 1984 h3 
1 July 1984-31 December 1985 h4 

where hi are to be determined. 
Given an assumed known parametric form for the incubation period 

distribution, f(t), Brookmeyer & Gail use a maximum likelihood procedure to 
estimate the levels of the step function representation, hi of h(t). The procedure 
relies on the observation that the number of AIDS cases, diagnosed by the jth 
interval, follows a multinomial distribution, with cell probabilities given by 
convolution time integrals of f and h. The projections use counts of AIDS cases 
diagnosed before 1 January 1986, which are obtained from incidence data 
reported to the CDC surveillance system in the U.S.A., after adjustment for 
reporting delays. 

The sensitivity of the results to changes in the cut-off points for the step 
function, h(t), and to assumptions about the incubation period distribution are 
tested. The results are found to depend strongly on the latter-on both the mean 
of the distribution and its shape. The log-logistic distribution, with its longer tail, 
leads to higher predictions for future numbers of AIDS cases diagnosed. 

This approach is criticised by Anderson et al. (1987) on technical grounds and 
because the approach ignores “the number and dynamics of the seropositive 
individuals in the population”. Brookmeyer & Gail (1987) reply that the 
simplicity of their approach is a strength rather than a weakness and that their 
integral equations are correct and not an approximation. The former seems to be 
a valid point-the ‘back projection’ method is of some value, providing its 
limitations are recognised. 

In general, solving the convolution equation (7.1) is mathematically ill-posed, 
in the sense that small changes in u(t) or f(t) may cause large changes in h(t). 

In Hyman & Stanley’s (1988) use of the back projection method on U.S.A. 
data from CDC, h(t) is approximated by piecewise cubic splines (in fact, Hermite 
polynomials). Good results are obtained when 10-30 piecewise polynomials are 
used. When fewer than 10 polynomials are used, the approximation is too coarse 
and above 30, the ill-posed nature of the problem creates high frequency 
oscillations in the solution. The estimates of the cumulative number of infected 
individuals (from h(t)) are most sensitive to the extrapolated estimates of a(t), the 
fraction of the infected population that is eventually reported to CDC as AIDS 
cases and the most likely conversion time to AIDS, i.e. ta, such that f'(ta) = 0. 
The estimates are relatively insensitive to the width of the f(t) distribution 
about ta. 
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Isham (1989) uses the method of back projection specifically in the context of 
the AIDS epidemic within the population of the U.K., partly to see what can be 
inferred about the number of individuals who have been infected with HIV over 
the past few years and the number of those who may become infected in the near 
future, but also to investigate the implications of specific assumptions about the 
functions a and f. The theoretical development is as follows. 

Suppose that ã(s) denotes the Fourier transform of u(t): 

and similarly for ((s) and ((s). Then it follows immediately from (7.1) that: 

(7.2) 

and therefore that h(t) can be obtained by taking the inverse transform of 

. 
Some basic parametric forms are assumed for a and f. In particular, for a(t) it is 

assumed either that: 

(7.3) 
or that: 

(7.4) 

(see Cox & Medley (1989)—discussed in Section 4). As already noted, there are 
good theoretical grounds for expecting that the curve of u(t) should be close to an 
exponential curve in the early part of the epidemic and that this rapid growth 
should gradually slow down as the infection spreads. The quadratic exponential 
function defined by equation (7.3) is a mathematically convenient way of 
representing a curve that, for low values oft, increases exponentially, but has a 
slower growth rate as t increases. The linear logistic function given by equation 
(7.4) also increases exponentially for low values of t, but becomes more nearly 
linear for higher values oft. This curve corresponds approximately, for moderate 
values oft. to the solution of a fairly simple epidemic model (as in equation (5.2)). 
It is not assumed that either of the functions represented by equations (7.3) and 
(7.4) is appropriate for arbitrarily high values of t, hut only over the range of 
values for which the form of h is to be deduced. 

Two flexible parametric families of distributions are often used to model the 
incubation period; the gamma distribution, denoted by Γ(α,λ), has density: 

whereas the Weibull distribution, denoted Wei (β,ρ), has density: 

Modelling the incubation period distribution has been discussed in more detail in 
Section 6.3.1. 

If u(t) follows a quadratic exponential form, as in equation (7.3) and a gamma 
distribution is used for f(t), then explicit expressions for h(t) can be obtained. 
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With a Weibull choice, analytic determination of h(t) is not feasible and it is 
necessary to proceed numerically. 

Thus, Isham (1989) uses the method of back projection to estimate the 
expected numbers of infections, Hi, and diagnoses, Ai, in year i, from the 
integrals: 

using the alternatives of a quadratic exponential or linear logistic for a(t) (with 
parameters estimated by Cox & Medley (1989)) and a gamma or Weibull 
distribution for f(t) with specified parameters. 

There are a number of points to note. Firstly, negative values of Hi are 
obtained in later years, when the quadratic exponential function is used for a(t), 
which means that this function is not compatible with the various assumed 
incubation period distributions over the whole 1980-93 time period. Essentially, 
in such cases, if the early values of h(t) are determined to give the quadratic 
exponential function a(t) for low values oft, then too many AIDS diagnoses will 
occur later. To compensate for these extra cases, negative numbers of infections 
are then needed if the function a(t) is to have the chosen increasing doubling time. 
When a(t) has the linear logistic form, no negative values of Hi are obtained over 
the 1980-93 time period, although there is still an implausible oscillation in the 
later values. However, the function a(t) has been fitted using data only up to June 
1988, and only the lower tail of the incubation period distribution curve can be 
fitted. This lack of compatibility is not, therefore, surprising. On the other hand, 
the figures for expected HIV incidence up to 1986 might be hoped to be 
reasonably reliable. Further, the similarity between the fitted values of the two 
forms of a(t) up to 1987, results in a corresponding similarity in the values of Hi 
up to 1986 (using a particular distribution for the incubation periods). 

Secondly, with the assumption of the gamma distribution, Γ (2,0·14) or 
Γ (3,0·21), only 41% or 35% respectively of incubation periods will be of length 10 
years or less, as compared with 76% for the Weibull distribution. Thus, the 
annual incidence of HIV infection with either of the gamma distributions must be 
much higher than that using the Weibull distribution during the early stages of an 
epidemic, to produce the same function a(t). Thus, the total numbers of HIV 
infections occurring during 1980-87 show that the totals for the gamma 
distributions are almost double, or more, those for the Weibull distribution. 

Thirdly, it is of interest to note that the use of an exponential curve for a(t) with 
no quadratic term, together with the Weibull distribution for the incubation 
period, results in a total of some 22,000 HIV infections over the years 1980-87. 
This number is very similar to those obtained using the quadratic exponential or 
linear logistic curves, although the numbers in individual years follow a different 
pattern. 

The particular incubation period distributions fitted by Isham (1989) are 
obtained from the earlier work of Anderson & Medley (1988), from data relating 
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to recipients of blood transfusions. It is possible that this distribution may vary 
with the mode of transmission, and so these parametric forms may not be 
applicable to a numerical projection for the whole population of the U.K. 
However, there is some evidence that the mode of transmission of infection does 
not have a strong effect on the distribution of the incubation period, and so the 
assumption of a common distribution for the aggregate population may be 
reasonable. 

Day et al. (1989) approach back projection using a discrete time framework: 

where 

(7.5) 

and ai and hi are the number of new AIDS cases and HIV infections in the interval 
(ti-1, ti) for i = 1, …, n. This discrete equation is an approximate version of the 
convolution equation (7.1) and can also be written in matrix form in order to 
facilitate the inversion. 

Day et al. apply the methodology to AIDS among U.K. residents. They 
assume a certain form for f(t) and then, on the basis of observed values of a(t) up 
to the present, a range of values of h(r) consistent with the observed a(t) is 
calculated. This range is then examined. in the light of available knowledge on 
HIV infection in the population, to indicate which ranges are implausible. For 
the projection of future AIDS cases, assumptions are needed regarding future 
HIV infections-the importance of these assumptions for future AIDS cases is 
examined. 

Data on the number of new diagnoses of AIDS by year over the period 1982- 
88 are obtained. Healy’s (1988) estimates, based on reports up to December 1987 
(and discussed in Section 4), are untenable in the light of cases reported during 
1988. New estimates, based on a linear extrapolation of new cases reported by 
quarter and an assumed constancy of the delay distribution, are calculated by 
Day et al. as replacements. 

Three different incubation period distributions are used: based on an observed 
empirical distribution from CDC data, and based on fitting Weibull and gamma 
distribution to observed data (as for Isham (1989)). 

The CDC empirical distribution leads (cumulatively) to 64·4% of cases 
progressing to AIDS after 12 years. A distribution based on half the underlying 
rates lead to a 32·2% progression rate after 12 years. These two distributions 
have been smoothed by a gamma distribution. The Weibull incubation period 
distribution used has an 84·6% cumulative progression rate after 12 years. 

Day et al. assume that h(t) = a exp(bt + ct²), with a time origin at January 
1981 and, for each choice of incubation period distribution, obtain values of a, b 
and c, which are consistent with the number of AIDS cases in 1982-87 (using a χ ² 
goodness of fit measure). 
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The results of this analysis illustrate three points. Firstly, for predictions of 
AIDS cases four to five years into the future, the back projection method is 
largely insensitive to the assumption one makes about the incubation period 
distribution. The two extreme distributions considered represent the fast and 
slow extremes of incubation period distribution usually proposed; distributions 
that lie between these two give predictions within the range of predictions that the 
two generate. The estimated number of new HIV infections, however, is highly 
sensitive to the assumed incubation period distribution; prediction of AIDS cases 
in the long term will be similarly sensitive. 

Secondly, each prediction of AIDS cases within the range of consistent 
predictions corresponds to a particular form for the HIV epidemic. This 
correspondence enables one to use a variety of data, of varying degrees of 
reliability and direct relevance, to assess the plausibility of each prediction. This 
use of additional data is a major attraction of the back projection method, which 
would otherwise be just another form of extrapolation. Assuming a form for the 
HIV epidemic and for the incubation period distribution, is equivalent to 
assuming a certain form for the yearly number of AIDS cases. Unless further 
information is used, the back projection method would be equivalent to 
straightforward extrapolation of the AIDS cases. In this straightforward 
extrapolation, however, there would be no way of incorporating such further 
information-for example, accumulating data on the incubation period, chang- 
ing levels of transmission or rates of HIV infection. Dissection of the 
extrapolation process in the back projection method focuses attention on where 
this extra information can be used. 

Thirdly, the AIDS reports in 1988 make a major impact on short- and 
medium-term projections. The range of predictions is much narrower, and 
considerably lower. than when based on data available at the start of 1988. 
Preliminary estimates for 1988 diagnoses, based on 1988 reports, would generate 
a range of only two-fold for 1992 predictions, compared to the 15-fold range 
based on data to the end of 1987. 

The range of uncertainty in the predictions for 1992 would, of course, be 
reduced if the 1989 data were available and followed current trends. 

Brookmeyer & Damiano (1989) extend the earlier work of Brookmeyer & Gail 
(1986, 1987) and Gail & Brookmeyer (1988). The AIDS cases reported to the 
CDC surveillance system in the U.S.A. by 1 January 1988 are adjusted, using an 
estimated reporting delay distribution to give estimates of the number of AIDS 
cases diagnosed over time. Different reporting delay distributions are used for 
each major geographical region. The incubation period distribution used for f(t) 
is a Weibull form, as used to fit the data from the Hershey hameophilia cohort 
study, with: 

using a method developed by Brookmeyer & Goedert (1989), which allows for 
the censored nature of these data (discussed in Section 6.3.1). Two different 
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parametrisations for the incidence rate, h(t), are considered. As for the earlier 
work of Brookmeyer & Gail, a step function is used with h(t) constant over the 
following intervals: 

1 January 1977-3 1 December 1980 h1 
1 January 1981-30 June 1982 h2 

1 July 1982-30 June 1984 h3 
1 July 1984-30 June 1987 h4 

Also, a log logistic model (similar to one of the parametrisations used by Isham 
(1989)) is employed: 

where K is a normalising constant, to ensure that the function integrates to 1 over 
the 10½-year period under consideration. If θ2 > 1 this density increases 
monotonically to a single mode; if θ2 ≤ 1, the density decreases monotonically. 

The same methodology, based on maximum likelihood estimation, as for the 
earlier work of Brookmeyer & Gail, is used to estimate the parameters (hi or θ). 
For short-term projections, new infections can be incorporated by extrapolating 
the infection rate obtained from the estimate of the last step of the step function 
version, (h4), of h(t) described above. 

Taylor (1989) also builds on the earlier work of Brookmeyer & Gail, and again 
in a U.S.A. context. For his back projection calculations, Taylor uses AIDS 
incidence data reported to CDC in six-monthly intervals from July 1978 to June 
1987. with upward adjustments to allow for the lag in reporting times (based on 
the analysis of Harris (1987)). For the incubation period distribution, a set of 21 
different distributions is used, representing the likely range of the ‘true’ 
distribution and representing the fits that have been carried out on the various 
cohort studies in the literature: all 21 distributions are truncated at 9 years. For 
the incidence of HIV infections five models are considered: 

(1) h(t) = he-ea+bt 
(2) h(t) = hebt1/4 

double exponential incidence 
root exponential incidence 

(3) logistic incidence 

(4) logistic prevalence (as for Brookmeyer & Damiano 

(1989)) 
(5) h(t) = ht² quadratic incidence. 

Strictly speaking, h(t), which is the number of new infections at time point t, 
should be integer valued: however. models (1)-(5) do not restrict h(t) to integers. 

Model (3) represents an initial exponential growth, with the possibility that the 
incidence is reaching a plateau later on in the epidemic. Model (1) is similar in 
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shape to model (3) but the plateau is reached less abruptly. Model (4) represents 
an initial exponential growth, but with the rate of increase of the incidence 
reduced in later years, with possibly even decreasing incidence. Models (1), (2) 
(3) and (5) show an increasing rate of incidence, but increasing at less than an 
exponential rate. None of these models is expected to describe exactly the history 
of the HIV epidemic; however, in the current state of knowledge, there are 
advantages in using simple, plausible, smooth models, rather than more complex 
models with many parameters. 

The limited epidemiologic evidence suggests that incidence of infection is not 
drastically increasing in the later years of the epidemic, with the possible 
exception of the drug-user risk group. Longitudinal studies of homosexual men 
have shown that the incidence of HIV infection has decreased over the years 
1984-87, in cohorts which are under intense study. The introduction of screening 
of the blood supply in March 1985 also had the effect of decreasing the potential 
spread of the virus. Information concerning the incidence of infection among 
drug users and their sexual partners is less well known. This is the risk group 
which is more likely than the others to show a rapid rise in the HIV incidence. 

Two further models, linear incidence (ht) and exponential incidence (hebt) are 
used by Taylor, but give very poor fits to the data and the results are not 
presented. 

For each of the 21 incubation period distributions, Taylor uses maximum 
likelihood procedures to estimate the parameters θ for each of the five chosen 
incidence models h(t; θ). The range of estimates from the 105 fits (together with χ ² 
values with degrees of freedom = 18 – number of parameters) are then exam- 
ined-tabulations are provided of the predicted number of AIDS cases in the 
second half of 1987 (on the basis of the numbers currently infected and the 
assumption that AIDS cannot develop 9 years after infection), of the number of 
currently infected people, of the minimum predicted total number of AIDS cases 
by 1991 (on the basis of the currently infected and the assumption that AIDS 
cannot develop 9 years after infection). Taylor also investigates the sensitivity of 
the results to underreporting of AIDS cases and an inappropriate estimate of the 
number of cases diagnosed in the latest time interval (first half of 1987). 

Taylor also proposes a Bayesian approach to incorporating the uncertainty in 
the knowledge of which HIV incidence model to choose. 

The most satisfactory fit results from the use of model (1) for h(t): the double 
exponential model. 

7.3 General Comments 
There are several important caveats associated with the method of back 

projection. 
Projections of this type depend, of course, entirely on the assumptions being 

made. If the functions u(t) and f(t) are known exactly, then the HIV infection rate 
h(t) could be exactly determined. Error in the assumed forms of a or f(t) will be 
reflected in errors in the estimated h(t) and the estimated annual incidence of HIV 
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infection, Hi In some cases, the assumed forms will be clearly incompatible, at 
least over part of their ranges, e.g. if negative values or unreasonable oscillations 
result (Isham, 1989). 

The estimates provided by back projection for the numbers of individuals 
infected early in the epidemic are more reliable than the estimates for the 
numbers infected in approximately the last year. 

It should be noted that empirical information is only available about the shape 
of the lower part of the incubation period distribution curve. So the predicted 
values of the rate of HIV infection, h(t) (and the associated Hi), obtained by using 
the values of u(t) or f(t) for t lying outside the restricted ranges for which data are 
currently available, must be treated with considerable caution. Thus, Isham 
(1989) notes that even up to 1987 (i.e. for the most recent few years), the projected 
values of Hi vary considerably with the particular incubation period distribution 
chosen to model f(t). 

It is important, therefore, to investigate the sensitivity of the projections to the 
assumed form for f(t). 

Further, an underlying assumption of the method implicit in the convolution 
given in equation (7.1) is that the calendar date of infection is independent of the 
incubation period: the incubation period distribution for individuals infected 
early in the epidemic is assumed to be the same as that for those infected later. 
The assumption could be violated. for example, if cofactors affecting the 
incubation period distribution are more likely or less likely to be present among 
individuals infected in the 1970s compared with those infected in the 1980s. 

Secular change in the incubation period distribution is a definite possibility, 
given that the clinical definition of AIDS is an endpoint of different nature 
affecting diverse risk groups—thus, as Daykin (1990) reports, there are major 
temporal, regional and demographic differences in the epidemiology of AIDS. 

Also, cofactors may be identified which affect the incubation period distribu- 
tion e.g. age at onset, in which case the analysis should be stratified according to 
such important cofactors. 

Short-term projections of AIDS incidence are not very sensitive to the choice 
of model for h(t), because such projections depend mainly on the numbers of 
infected individuals several years in the past. However, longer-term projections 
require data on the numbers infected in approximately the last year, and are, 
therefore. much more sensitive to the choice of model for h(t). 

For the same reasons, estimates of current HIV seroprevalence derived from 
back calculation are uncertain and highly dependent on the model chosen for 
h(t). For example. estimates of current U.S. HIV seroprevalence at the end of 
1987 based on logistic, log-logistic, and damped exponential models for h(t) are 
420,000, 853,000 and 1,649,000 individuals, respectively (CDC, 1987). The 
damped exponential model allows for very rapid growth of infections in the most 
recent time periods, whereas the logistic model forces h(t) to plateau in this 
region. Gail & Brookmeyer (1988) favour flexible models, such as the piecewise 
constant model for h(t), which do not force estimates of h(t) in the final intervals 
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to be strongly determined by data affecting earlier intervals. Nevertheless, 
estimates for the most recent intervals are highly uncertain. The longer-term 
projections of AIDS cases would be greatly strengthened if HIV seroprevalence 
data could be used to estimate the numbers infected in recent time intervals, to 
complement estimates based on back calculation of the numbers infected in 
earlier years. 

De Gruttola & Lagakos (1989) discuss the problems that arise from the 
uncertainty about the appropriate form for h(t) and they indicate the size of the 
ranges in estimates that can rise from the back projection method through the use 
of different h(t): experiments are considered with linear, quadratic, linear-cubic 
and epidemic transmission models. They conclude that without additional 
information, AIDS incidence data are of limited value in estimating and 
interpreting the extent of the HIV infection growth (in the back projection 
method, for example). Even if the incubation time distribution were known 
exactly, AIDS incidence data cannot accurately determine the number of persons 
recently or currently infected with HIV by working backwards. 

Further, they comment that the interpretation of h(r) (even if known precisely. 
rather than estimated) is severely limited by a lack of knowledge of the natural 
history of HIV and of behavioural practices. 

The shape of h(t) is influenced by a variety of factors-none well character- 
ised—including heterogeneity of the population at risk, efficiencies of transmis- 
sion by various routes, and variability over time in the infectiousness of an 
infected person. Population heterogeneity includes variability in behaviour 
among individuals and behavioural changes of individuals over time. Thus. h(t) 
can be thought of as being composed of contributions of many inter-relating 
subepidemics, defined by type of individual, region, route of infection, etc. Even 
if individual behaviour were constant over time, too much is still unknown about 
the sizes or behaviours of these subpopulations to identify their individual effects 
from h(t). When the possibility of time changes is also considered, the problem is 
even more complex. Thus, a decrease in the rate of growth of h(t) might be due to 
changes in behaviour (for example, greater use of condoms), but also might be a 
consequence of near saturation of the pools most at risk, or to a decrease in the 
number of new sexual partners by promiscuous individuals. Similarly, h(t) gives 
no information about the degree of spread to lower risk populations (homo- 
sexual men practising ‘safe sex’, promiscuous heterosexuals and so on) even 
though such groups may account for an increasingly large proportion of cases in 
the future. 

REFERENCES 

ANDERSON, R. M. (1988). The epidemiology of HIV infection; variable incubation plus infectious 
periods and heterogeneity in sexual activity. J.R.S.S. Series A. 151, 66-93. 

ANDERSON, R. M. & MAY, R. M. (1986). The invasion, persistence and spread of infectious diseases 
within animal and plant communities. Phil. Trans. Roy. Soc. B. 314, 533-570. 



Predicting the Spread of HIV Infection and AIDS 401 

ANDERSON, R. M. & MAY, R. M. (1987). Plotting the spread of AIDS. New Scientist, 26 March 1987, 
54–59. 

ANDERSON, R. M. & MAY, R. M. (1988). Epidemiological parameters of HIV transmission. Nature, 
333, 514–519. 

ANDERSON, R. M., MAY, R. M. & MCLEAN, A. R. (1988). Possible demographic consequences of 
AIDS in developing countries. Nature, 332, 228–234. 

ANDERSON, R. M., MAY, R. M., MEDLEY, G. F. & JOHNSON, A. E. (1986). A preliminary study of the 
transmission dynamics of the Human Immunodeficiency Virus (HIV). the causative agent of 
AIDS. I.M.A.J. Math. Appl. Med. & Biol. 3, 229–263. 

ANDERSON, R. M., MEDLEY, G. F., BLYTHE, S. P. & JOHNSON, A. E. (1987). Is it possible to predict the 
minimum size of the AIDS epidemic in the U.K.? Lancet, 1, 1073–1075. 

ANDERSON, R. M. & MEDLEY. G. F. (1988). Epidemiology, HIV infection and AIDS: the incubation 
and infectious periods, survival and vertical transmission. AIDS, 2, S57–S63. 

ARTZROUNI, M. & WYKOFF, R. (1988). ‘A two state infective age-structured model for the spread of 
AIDS in the U.S.A.’ Poster presentation at the IVth International Conference on AIDS, 
Stockholm. June 1988. Abstract 4695. 

BAILEY. N. T. J. (1975). The Mathematical Theory of Infectious Diseases. Griffin, London. 
BAILEY, N. T. J. (1988). Simplified modelling of the population dynamics of HIV/AIDS. J.R.S.S. 

Series A 151, 31–43. 
BAILEY, N. T. J. & ESTREICHER, J. (1987). ‘Epidemic prediction and public health control. with special 

reference to influenza and AIDS.’ Proc. 1st World Congress of Bernoulli Society (Tashkent, 
September 1986). 

BARRETT, J. C. (1988). Monte Carlo simulation of the heterosexual spread of the human 
immunodeficiency virus. Journal of Medical Virology, 26, 99–109. 

BARTON, D. E. (1987). Striking the balance on AIDS. Nature, 326, 734. 
BEALE, S. (1987). On the sombre view of AIDS. Nature, 328, 673. 
BIRKHEAD, B. G. (1987). ‘A mathematical model of the transmission of the HIV under diminishing 

recruitment—an exact solution. Department of Statistical Science, University College, London. 
Technical Note. 

BLYTHE, S. P. & ANDERSON, R. M. (1988). Distributed incubation and infectious periods in models of 
the transmission dynamics of the human immunodeficiency virus (HIV). I.M.A.J. Math. Appl. 
Med. & Biol. 5, 1 19. 

BLYTHE, S. P. & ANDERSON, R. M. (1988a). Variable infectiousness in HIV transmission models. 
I.M.A.J. Math. Appl. Med. & Biol. 5, 181–200. 

BLYTHE, S. P. & ANDERSON, R. M. (1988b). Heterogeneous sexual activity models of HIV 
transmission in male homosexual populations. I.M.A.J. Math. Appl. Med. & Biol. 5, 237–260. 

BOLDSEN, J. L., JENSEN, J. L., SOGAARD, J. & SORENSEN, M. (1988). On the incubation time 
distribution and the Danish AIDS data. J.R.S.S. Series A, 151, 42–43. 

BONGAARTS, J. (1989). A model of the spread of HIV infection and the demographic impact of AIDS. 
Statistics in Medicine, 8, 103–120. 

Box. G. E. P. & Cox, D. R. (1964). An analysis of transformations. J.R.S.S. Series B, 26, 21 211–252. 
BRODT, H. R., HELM, E. B., WERNER, A. et al, (1986). Spontanverlauf der LAV/HTLV-III Infektion. 

Deutsche Medizinische Wochenschrift, 111, 1175–1180. 
BROOKMEYER, R. & DAMIANO, A. (1989). Statistical methods for short-term projections of AIDS 

incidence. Statistics in Medicine, 8, 23–34. 
BROOKMEYER, R. & GAIL, M. H. (1986). Minimum size of the AIDS epidemic in the United States. 

Lancet, 2, 1320–1322. 
BROOKMEYER, R. & GAIL, M. H. (1987). Methods for projecting the AIDS epidemic. Lancet, 2, 99. 
BROOKMEYER, R. & GAIL, M. H. (1987a). Biases in prevalent cohorts. Biometrics, 43, 739 749. 
BROOKMEYER, R., GAIL, M. H. & POLK, B. F. (1987). The prevalent cohort study and the acquired 

immunodeficiency syndrome. American Journal of Epidemiology, 126, 14–24. 
BROOKMEYER, R. & GOEDERT, J. J. (1989). Censoring in an epidemic with an application to 

hemophilia-associated AIDS. Biometrics, 45, 325–335. 



402 Actuarial Review of Models for Describing and 

CANADIAN INSTITUTE OF ACTUARIES TASK FORCE ON AIDS (1988). First report of the Subcommittee 
on Modelling. November 1988. 

CANADIAN INSTITUTE OF ACTUARIES TASK FORCE ON AIDS (1988a). Second report of the Sub- 
committee on Modelling. An analysis of U.S.A. data. November 1988. 

CENTRES FOR DISEASE CONTROL (1986). Update: acquired immunodeficiency syndrome (AIDS)— 
United States. Morbidity and Mortality Weekly Reports, 32, 17–21. 

CENTRES FOR DISEASE CONTROL (1987). Human immunodeficiency virus infection in the United 
States: a review of current knowledge. Mortality and Morbidity Weekly Reports, 36, 1–48. 

CHIN, J. & MANN, J. (1989). Global surveillance and forecasting of AIDS. Bulletin of WHO, 67, 1–7. 
COLGATE, S. A., STANLEY, E. A., HYMAN, J. M. et al. (1989). A behaviour based model of the cubic 

growth of AIDS in the United States. Proc. Nat. Acad. Sci. U.S.A. 86, 4793–4797. 
COSTAGLIOLA, D. & DOWNS, A. M. (1987). Incubation time for AIDS. Nature, 328, 582. 
COSTAGLIOLA, D., MARY. J.-Y., BROUARD, N. et al. (1989). Incubation Time for AIDS from French 

transfusion-associated cases, Nature, 338, 768–769. 
COWELL, M. J. & HOSKINS, W. H. (1987). ‘AIDS, HIV mortality and life insurance.’ Society of 

Actuaries special report, August 1987 (also in report of the Society of Actuaries Task Force on 
AIDS). 

Cox, D. R. & MEDLEY, G. F. (1989). A process of events with notification delay and the forecasting of 
AIDS. Phil. Trans. Roy. Soc. B, 325, 135–145. 

Cox, D. R. & DAVISON, A. C. (1989). Prediction for small subgroups. Phil. Trans. Roy. Soc. B, 325, 
185–187. 

CURRAN, J. W., MORGAN, W. M., HARDY, A. M. et al. (1985). The epidemiology of AIDS: current 
status and future prospects. Science, 229, 1352–1357. 

DAHLMAN. G. E., BERGSTROM, R. L. & MATHES, R. W. (1987). ‘Projecting extra AIDS mortality for 
individual ordinary life insurance in force as of December 31 1986.’ Milliman & Robertson 
Research Report (revised version in Report of Society of Actuaries Task Force on AIDS). 

DANGERFIELD, B. & ROBERTS, C. (1990). A role for system dynamics in modelling the spread of AIDS. 
Trans. of Institute of Measurement and Control. (To appear.) 

DAY, N. E., GORE, S. M., MCGEE, M. A. & SOUTH, M. (1989). Predictions of the AIDS epidemic in the 
U.K.: The use of the back projection method. Phil. Trans. Roy. Soc. B, 325, 123–134. 

DAYKIN, C. D., CLARK, P. N. S., EVES, M. J., HABERMAN, S., LE GRYS, D. J., LOCKYER, J., 
MICHAELSON, R. W. & WILKIE, A. D. (1987). AIDS Bulletin No. 1. Institute of Actuaries AIDS 
Working Party. 

DAYKIN, C. D., CLARK, P. N. S., EVES, M. J., HABERMAN, S., LE GRYS, D. J., LOCKYER, J., 
MICHAELSON, R. W. & WILKIE, A. D. (1987a). AIDS Bulletin No. 2. Institute of Actuaries. 

DAYKIN, C. D., CLARK. P. N. S., EVES, M. J., HABERMAN, S., LE GRYS, D. J., LOCKYER, J., 
MICHAELSON, R. W. & WILKIE, A. D. (1987b). The implications of AIDS for life insurance 
companies (Supplement to AIDS Bulletin No. 2). Proceedings of a seminar on 1 February 1988. 
Institute of Actuaries. 

DAYKIN, C. D., CLARK. P. N. S., EVES, M. J., HABERMAN, S., LE GRYS, D. J., LOCKYER, J., 
MICHAELSON, R. W. & WILKIE, A. D. (1988). AIDS Bulletin No 3. Institute of Actuaries AIDS 
Working Party. 

DAYKIN, C. D., CLARK, P. N. S., EVES, M. J., HABERMAN, S., LE GRYS, D. J., LOCKYER, J., 
MICHAELSON, R. W. & WILKIE, A. D. (1988a). The Impact of HIV Infection and AIDS on 
Insurance in the United Kingdom. J.I.A. 115, 727–837. 

DAYKIN, C. D., CLARK, P. N. S., EVES, M. J., HABERMAN, S., LE GRYS, D. J., LOCKYER, J., 
MICHAELSON, R. W. & WILKIE, A. D. (1989). AIDS Bulletin No. 4. Institute of Actuaries. 

DAYKIN, C. D. (1990). Epidemiology of HIV Infection and AIDS. J.I.A. 117, 51–94. 
DE GRUTTOLA, V. & MAYER, K. H. (1988). Assessing and modelling heterosexual spread of the 

human immunodeficiency virus in the United States. Review of Infectious Diseases, 10, 138–150. 
DE GRUTTOLA, V. & LAGAKOS, S. W. (1989). The value of AIDS incidence data in assessing the spread 

of HIV infection. Statistics in Medicine, 8, 35–43. 
DE GRUTTOLA, V. & LAGAKOS, S. W. (1989a). Analysis of doubly-censored survival data, with 

application to AIDS. Biometrics, 45, 1–11. 



Predicting the Spread of HIV Infection and AIDS 403 

DEPARTMENT OF HEALTH/WELSH OFFICE (1988). ‘Short-term prediction of HIV infection and AIDS in 
England and Wales.’ Report of a Working Group. HMSO. London. 

DIETZ, K. (1987). ‘Epidemiological models for sexually transmitted infections.’ Proc. 1st World 
Congress of Bernoulli Society (Tashkent, 1986). 

DIETZ, K. (1988). On the transmission dynamics of HIV. Mathematical Biosciences, 90, 397–414. 
DIETZ, K. & HADELER, K. P. (1988). Epidemiological models for sexually transmitted diseases. 

Journal of Math. Biology, 26, 1–25. 
DIETZ, K. & SCHENZLE, D. (1985). Mathematical models for infectious disease statistics. In: A 

Celebration of Statistics, cds. A. C. Atkinson & S. E. Fienberg, pp. 167–204. Springer, New 
York. 

DOWNS, A. M., ANCELLE, R. & BRUNET, J. B. (1987). AIDS in Europe: Current trends and short-term 
predictions estimated from surveillance data, January 1981–June 1986. AIDS, 1, 53–57. 

EISENBERG, B. (1989). The number of partners and the probability of HIV infection. Statistics in 
Medicine, 8, 83–92. 

FARMER, R. D. T. & EMAMI, J. (1987). ‘The transmission of HIV and the evolution of the AIDS 
epidemic—sexual transmission model.’ (Unpublished.) 

FUHRER, C. (1988). ‘Projecting the number of AIDS Cases.’ Presented to the Society of Actuaries 
Symposium “Insurance and the AIDS Epidemic”. Chicago, Illinois. May, 1988. 

FUXMAN, Y. L. (1989). ‘Generating relations in the mathematical modelling of the AIDS epidemic.’ 
(Unpublished manuscript.) 

GAIL, M. H. & BROOKMEYFR, R. (1988). Methods for projecting course of acquired immunodefi- 
ciency syndrome epidemic. J. Nat. Cancer Inst. 80, 900–911. 

GAIL. M. H., PRESTON, D. & PIANTADOSI, S. (1989). Disease prevention models of voluntary 
confidential screening for human immunodeficiency syndrome. Statistics in Medicine, 8, 59–81. 

GANI, J. (1978). Some problems of epidemic theory. J.R.S.S. Series A, 140, 323 347. 
GENERAL ACCOUNTING OFFICE (1989). ‘AIDS forecasting: undercount of cases and lack of key data 

weaken existing estimates.‘ Report to Congress. GAO PEMD 89–13. Washington DC, U.S.A. 
GONZALEZ, J. J., KOCH. M. G., DORNER, D., L'AGE-STEHR, J., MYRTVEIT, M. & VAVIK, L. (1987). ‘The 

prognostic analysis of the AIDS epidemic: mathematical modelling and computer simulation.’ 
Proc. E.C. Workshop on Statistical Analysis and Mathematical Modelling of AIDS (Bilthoven, 
December 1986). Oxford University Press. 

GONZALEZ, J. J. & KOCH. M. G. (1987). On the role of transients for the prognostic analysis of the 
AIDS epidemic. American Journal of Epidemiology, 126, 985–1005. 

HARRIS, J. E. (1987). ‘Delay in reporting acquired immune deficiency syndrome.’ M.I.T. Technical 
report No. 452, M.I.T.. Mass.. U.S.A. 

HARRIS, J. E. (1988). ‘The incubation period for human immunodeficiency virus (HIV)‘, in 
Kulstad. R. (ed.) AIDS 1988: AAAS Symposia Papers. AAAS, Washington DC. 

HEALY, M. J. R. (1988). ‘Extrapolation forecasting. Appendix 6. Short term prediction of HIV 
infection and AIDS in England and Wales.’ Report of a Working Group. HMSO, London. 

HEALY, M. J. R. & TILLETT, H. E. (1988). Short-term extrapolation of the AIDS epidemic. J.R.S.S. 
Series A. 151, 50–65. 

HELLINGER, F. J. (1988). Forecasting the personal medical care costs of AIDS from 1988 through 
1991. Public Health Reports, 103, 309–319. 

HETHCOTE, H. W. & YORKE, J. A. (1984). Gonorrhoea: transmission dynamics and control. Lecture 
Notes in Biomathematics, 56, 1–105. Springer-Verlag, Berlin. 

HYMAN, J. M. & STANLEY, E. A. (1988). Using mathematical models to understand the AIDS 
epidemic. Mathematical Biosciences, 90, 415–473. 

ISHAM, V. (1988). Mathematical modelling of the transmission dynamics of HIV infection and AIDS: 
A Review. J.R.S.S. Series A, 151, 5–30. 

ISHAM, V. (1989). Estimation of the incidence of HIV infection. Phil. Trans. Roy. Soc. B, 325, 
113–121. 

IVERSEN, O.-J. & ENGEN, S. (1986). Epidemiology of AIDS—statistical analyses. J. Epidemiol, and 
Comm. Health, 41, 55–58. 



404 Actuarial Review of Models for Describing and 

JACOUEZ, J. A., SIMON, C. P., KOOPMU, J., SATTENSPIEL, L. & PERRY, T. (1988). Modelling and 
analysing transmission: the effect of contact patterns. Mathematical Biosciences, 92, 119–199. 

KANOUSE, D. E., CARDELL, N. S., GORMAN, E. M. et al. (1988). ‘Modelling the spread of HIV 
infection in the United States.’ (Unpublished working draft.) Presented to the XVth General 
Assembly of the Geneva Association. The Hague. June 1988. The Rand Corporation. 

KALBFLEISCH, J. D. & LAWLESS, J. F. (1988). Estimating the incubation period for AIDS patients. 
Nature, 333, 504–505. 

KERMACK, W. O. & MCKENDRICK, A. G. (1927). Contribution to the mathematical theory of 
epidemics. Proc. Roy. Soc. A, 115, 700–721. 

KIESSLING, D., STANNAT, S., SCHEDEL, I. & DEICHER, H. (1986). Überlegungen und Hochrechungen 
zur Epidemiologie des ‘Acquired Immunodeficiency Syndrome’ in der Bundesrepublik Deutsch- 
land. Infection, 14, 217–222. 

KNOX, E. G. (1986). A transmission model for AIDS. European Journal of Epidemiology, 2, 165–177. 
KOLBYE, J. (1987). ‘AIDS mortality and life insurance.’ Baltica-Nordisk Re. 
KREMER, E. (1982). IBNR claims and the two-way model of ANOVA. Scandinavian Actuarial Journal, 

47–55. 
LAGAKOS, S. W., BERRAJ, L. M. & DE GRUTTOLA, V. (1988). Nonparametric analysis of truncated 

survival data with application to AIDS. Biometrika, 75, 515–523. 
LEMP, G. F., PAYNE, S. F., RUTHERFORD, G. W. et al. (1988). ‘Projections of AIDS morbidity and 

mortality in San Francisco using epidemic models.’ Poster presentation at the IVth International 
Conference on AIDS. Stockholm. June 1988. Abstract 4682. 

LONGINI, I. M., SCOTT CLARK. W., BYERS, R. H. et al. (1989). Statistical analysis of the stages of HIV 
infection using a Mark model. Statistics in Mdicine, 8, 831–843. 

LORPER. J. (1988). ‘Actuarial studies of the AIDS problems.’ Publications of the Cologne Re. 14. 
LORPER, J. (1989). Projecting the spread of AIDS into the general population—application to life 

assurance. J.I.A., 116, 625–638. 
LUI, K. J., DARROW, W. W. & RUTHERFORD, III, G. W. (1988). A model-based estimate of the mean 

incubation period for AIDS in homosexual men. Science, 240, 1333–1335. 
LUI. K. J., LAWRENCE. D. N., MORGAN, W. M., PETERMAN, T. A., HAVERKOS, H. W. & BREGMAN, 

D. J. (1986). A model-based approach for estimating the mean incubation period of trans- 
fusion-associated acquired immunodeficiency syndrome. Proc. Nut. Acad. Sci. U.S.A. 83, 
3051–3055. 

LUI, K. J., PETERMAN, T. A. & LAWRENCE, D. N. (1987). Comments on the sombre view of AIDS. 
Nature. 329, 207. 

MAY, R. M. & ANDERSON, R. M. (1987). Transmission dynamics of HIV Infection. Nature, 326, 
137–142. 

MCEVOY, M. & TILLETT, H. E. (1985). Some problems in the prediction of the future numbers of 
cases of the acquired immunodeficiency syndrome in the U.K. Lancet, 2, 541–542. 

MEDLEY, G. F., ANDERSON, R. M., Cox. D. R. & BILLARD, L. (1987). Incubation period of AIDS 
in patients infected via blood transfusion. Nature, 328, 718–721. 

MEDLEY, G. F., BILLARD, L., Cox. D. R. & ANDERSON, R. M. (1988). The distribution of the 
incubation period for the acquired immunodeficiency syndrome (AIDS). Proc. Roy. Soc. B, 
233, 367–377. 

MEDLEY, G. F., ANDERSON, R. M., Cox. D. R. & BILLARD, L. (1988a). Estimating the incubation 
period for AIDS patients. Nature, 333, 505. 

MODE, C. J., GOLLWITZER, H. E. & HERRMANN, N. (1988). A methodological study of a stochastic 
model of an AIDS epidemic. Mathematical Biosciences, 92, 201 229. 

MORGAN, W. M. & CURRAN, J. W. (1986). Acquired immunodeficiency syndrome: current and 
future trends. Public Health Reports, 101, 459 465. 

MORTIMER, P. P. (1985). Estimating AIDS, U.K. Lancet, 2, 1065. 
PANJER, H. H. (1987). ‘Survival analysis of persons testing HIV positive.’ Working Paper Series in 

Actuarial Science ACTSC 87–14, Faculty of Mathematics, University of Waterloo, Canada. 
PANJER, H. H. (1988). ‘AIDS: some aspects of modelling the insurance risk.’ Research Report 

88 10, Institute of Insurance and Pension Research, University of Waterloo, Canada. 



Predicting the Spread of HIV Infection and AIDS 405 

PETERMAN, T. A., JAFE, H. W., FEORINO, P. M., GETCHELL, J. P., WARFIELD, D. T., HAVERKES, H. W., 
STONEBURNER. R. L. et al. (1985). Transfusion-associated acquired immunodeficiency syn- 
drome. J. Amer. Med. Assoc. 254, 2913–2917. 

PETO, J. (1986). AIDS promiscuity. Lancet, 2, 979. 
PLUMLEY. P. W. (1989). Modelling the AIDS Epidemic by Analysis of Sexual and Intravenous 

Drug Behaviour. Trans. Soc. Act, 41 (to appear). 
REES, M. (1987). The sombre view of AIDS. Nature, 326, 343–345. 
REES, M. (1987a). Describing the AIDS epidemic. Lancet, 2, 98–99. 
ROBERTS. C. A. & DANGERFIELD, B. C. (1988). ‘Simulation models of the epidemiological 

consequences of HIV infection and AIDS.’ Working Paper No 8901, Dept. of Business and 
Management Studies, University of Salford. 

SALZBERG, A. M., DOLINS, S. L. & SALZBERG, C. (1989). HIV incubation times. Lancet, 2, 166. 
SATTENSPIEL, L. (1987). Population structure and the spread of disease. Human Biol. 59, 411–438. 
SATTENSPIEL, L. & SIMON, C. (1988). The spread and persistence of infectious diseases in 

structured populations. Mathematical Biosciences, 90, 341–366. 
STANNAT, S., KIESSLING, D., SCHEDEL, I. & DEICHER, H. (1987). ‘Computer simulations of the 

AIDS-Epidemic in the Federal Republic of Germany.’ 
STIGUM, H., GROEENESBY, J. K., MAGNUS, P. et al. (1988). ‘The effect of selective partner choice on 

the spread of HIV.’ Poster presentation at The Global Impact of AIDS Conference, London, 
March 1988. 

STRONISKI, K. (1990). ‘Delays in reporting of Canadian AIDS cases.’ ARCH (to appear). 
TAYLOR, J. M. G. (1989). Models for the HIV infection and AIDS epidemic in the United States. 

Statistics in Medicine, 8, 45–58. 
TAN, W. Y. & HSU, H. (1989). Some stochastic models of AIDS spread. Statistics in Medicine, 8, 

121–136. 
THOMPSON, J. R. (1987). ‘AIDS: old disease. new society.’ Technical Report 87–1, Dept. of 

Statistics. Rice University. Texas. 
TILLETT, H. E. & MCEVOY, M. (1986). Reassessment of predicted numbers of AIDS cases in the 

U.K. Lancet, 2, 1104. 
VAN DRUTEN, J. A. M., DE Boo. TH., JAGER. J. C. et al. (1986). AIDS prediction and intervention. 

Lancet 1 852–853. 
VAN DRUTEN, J. A. M., DE BOO. TH., REINTJES, A. G. M., JAGER, J. C., HEISTERKAMP, S. H., 

COUTINHO, R. A., BOS. J. M. & RUITENBERG, E. J. (1987). Reconstruction and prediction 
of spread of HIV infection in populations of homosexual men. Proc. E.C. Workshop 
on Statistical Analysis and Mathematical Modelling of AIDS (Bilthoven, December 1986). 
Oxford University Press. 

VERRALL, R. J. (1988). 'Bayesian linear models and the claims run-off triangle.’ Actuarial 
Research Paper No. City Univercity, London. 

WHYTE. B. M., GOLD. J., DOBSON, A. J. & COOPER, D. A. (1987). Epidemiology of acquired 
immunodeficiency syndrome in Australia. Medical Journal of Australia, 146, 65–69. 

WILEY. J. A. & HERSCHOM, S. J. (1988). The perils of promiscuity. Journal Infectious Diseases, 
158, 500–501. 

WILEY. J. A., HERSCHKOM, S. J. & PADIAN, N. S. (1989). Heterogeneity in the probability of HIV 
transmission per sexual contact: The case of male-to-female transmission in penile-vaginal 
intercourse. Statistics in Medicine, 8, 93–102. 

WILKIE, A. D. (1988). An actuarial model for AIDS. J.R.S.S. Series A, 151, 35–39. 
WILKIE, A. D. (1988a). An actuarial model for AIDS. J.I.A. 115, 839–853. 
WILKIE, A. D. (1989). Population projections for AIDS using an actuarial model. Phil. Trans. 

Royal Soc. B, 325, 99–l12. 
WHO COLLABORATING CENTRE (1988). ‘Results from the latest half-yearly analysis of European 

AIDS surveillance data: assessment of temporal evolution and predictions to December 
1989.’ Paris. 

ZEGER, S. L., SEE, L.-C. & DIGGLE, P. J. (1989). Statistical methods for monitoring the AIDS 
epidemic. Statistics in Medicine, 8, 3–21. 




