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THE ANALYSIS OF HETEROGENEOUS MORTALITY DATA 

BY LEON SOLOMON, M.A., PH.D., F.F.A. 
of the Statistical Branch, Admiralty 

I. INTRODUCTION 

IN this paper, everyday actuarial data have been examined by means of standard 
statistical techniques. The data in question have been drawn from the publica- 
tions of the Continuous Mortality Investigation Committee, and the methods 
of statistical analysis have been applied to investigate the nature and extent of 
the heterogeneity which may exist in those data. 

It will be recalled that the returns of the Continuous Mortality Investigation 
Committee contain the exposures to risk and corresponding deaths subdivided 
into various groups. Twelve such groups have been distinguished in this paper, 
VIZ. : 

Class of assurance: Whole-life with profits (abbreviated to L.W. hereafter), 
Whole-life without profits (L.N.), 
Endowment assurance with profits (E.W.), 
Endowment assurance without profits (E.N.). 

Period of experience: 1924–28 inclusive, 
1929–33 inclusive, 
1934–38 inclusive. 

The following section of the total experience of these groups has been 
analysed : 

Ages: 46–55 years (nearest birthday) inclusive. 
Type of lives: Medically examined. 
Duration of policies: 5 years and over. 

Two types of heterogeneity in particular are of interest and, possibly, of 
practical importance. The first is concerned with the equality or non-equality 
of the mortality rates at a given age for the separate types of policy and quin- 
quennia. The investigation of such a problem is, of course, a standard actuarial 
task, and the common methods of analysis are based on the theory of the bi- 
nomial probability distribution. According to this theory, the probability that 

exactly lives will die in a year out of E lives exposed to risk is 

where q denotes the true rate of mortality. The particular result is easily 
deduced that the number of deaths in a year, considered as a random variable, 
has a variance (or square of the standard deviation) of E q( 1 – q); and on this 
result, essentially, is erected the series of tests of uniformity of mortality 
statistics. The vital point in the practical utility of the theory is, of course, that 
E should refer to a number of lives. The data now under examination are, on 
the contrary, based on policies; Because of the holding of multiple policies by 
some individuals, the break-down of the simple ‘binomial’ theory is possible 
(Cf.Seal[1940],Daw[1945]).* An exact treatment of the problem of ‘duplicate’ 
policies has been carried out by H. L. Seal [1947], but for the purpose of this 
paper a simpler approach has been adopted. We shall say that the variance of 

* A list of references appears at the end of this note. 
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the number of deaths (i.e., strictly, of the number of policies becoming claims 
by death) out of E policy years’ exposure to risk is k E q( 1 – q), where k is 
independent of the mortality rate q but depends, inter alia, on the proportions 
of persons who hold one, two, three, . . ., policies. k = 1 corresponds, of course, to 
the straightforward binomial distribution, and if on investigation we find that k is 
sensibly equal to unity, we shall describe the data as ‘binomially homogeneous’. 

It might be argued that, were k to differ appreciably from 1 in present-day 
life office data, it would be of some practical importance to realize the fact. 
The comparison of one mortality experience with another or with a standard 
table, the fluctuation loading which should be imposed upon a net premium, 
and any necessary calculations associated with the theory of risk—all might be 
affected. if the basic mortality data departed materially from binomial 
homogeneity. 

In the light of the foregoing, the objectives of the paper will now be more 
precisely defined. They are: 

(a) An investigation of heterogeneity of the above-described data. The term 
heterogeneity will be reserved to denote any departure of the variance of an 
estimated mortality rate from its theoretical binomial value. The aim is thus 
to test whether k is significantly different from unity; and, if it is, to estimate 
its value. 

(b) An investigation of uniformity. The term non-uniformity will be used 
to describe real differences in the mortality experiences of the several class 
and period sub-groups. This study must, of course, take account of the 
conclusions of investigation (a). 

In principle, both investigations are simple. With full access to the records 
of an office or offices, one would examine (b) by taking the individual life, rather 
than the individual policy, as the unit of enumeration, and the simple binomial 
theory would apply. With regard to (a), one could allow for the effect of 
duplicate policies—probably the major source of any heterogeneity which 
exists—by ascertaining the distribution of lives holding one, two, three, . . . , 
policies; or one could estimate k directly by splitting the data by some random 
process into groups which could be accepted as approximately uniform and 
equally heterogeneous. The published returns, however, permit no such direct 
approaches. The distribution of policies with respect to lives is not generally 
available, and the subdivisions according to class of policy and period are almost 
certainly non-uniform. Since this investigation is based purely on published 
statistics, the indirect and somewhat complex methods of analysis described 
in the sequel have had to be employed. The conclusions may possess at least 
the following point of interest: they indicate the type of intelligence concerning 
an aspect of British life office operations which could be evaluated by any 
sufficiently curious member of the public. 

11. THE NATURE OF THE STATISTICAL ARGUMENTS 

The two investigations carried through below employ standard statistical 
methods, the theory and field of application of which are fully discussed in the 
text-books. Recapitulation of the details would be out of place. However, 
since the processes may not yet be among the commonplace tools of the actuarial 
kit-bag, a brief summary of the nature of the underlying arguments may be 
helpful. Essentially, a hypothesis is postulated, and a test made to judge 
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whether the observed data are compatible therewith. The initial choice of 
hypothesis is often made on non-statistical grounds. It may, for instance, be 
dictated by some a priori theory, or by the form in which a problem is presented 
to the statistician. In the absence of such guidance, however, it is customary 
to adopt first the simplest reasonable hypothesis, and if the data necessitate its 
rejection, to replace it by another which retains as large a degree of simplicity 
as possible. For example, we shall postulate below that all the mortality data 
are binomially homogeneous, and when this hypothesis is found—as we shall 
find it—untenable, we shall test next whether the existence of a uniform degree 
of heterogeneity through out the data is compatible with the facts. 

Tests of compatibility are generally made on a probability basis. The principle 
is to accept as true the hypothesis under test, and to calculate the chance that 
the observed results, or results more unfavourable to the hypothesis, would 
have occurred merely through random effects. If this probability is less than 
some agreed figure, such as 5 % or 1 %, the hypothesis is rejected as untrue. If 
it equals or exceeds the chosen level, the hypothesis is accepted. Suppose, for 
instance, that 5 % were adopted as the ‘significance level’, that the data com- 
prised 20 deaths out of 1000 lives exposed to risk for a year, and that we wished 
to test whether q = .01 could be regarded as the true mortality rate. Since the 
expected number of deaths is 10, the procedure is to calculate the probability 
that 20 or more deaths would occur in a year out of 1000 lives who experienced 
a mortality rate of .01. It is found that the probability in question is less than 
5 %. Accordingly we reject the hypothesis. Clearly, if many such hypotheses 
were thus tested, and if it happened that all of them were true, 95 % (in the 
long run) would be accepted; but in the remaining 5 % of cases such true 
hypotheses would be rejected, and the decision of the test would be wrong. It 
is the consequences of an error of this nature which largely dictate the choice of 
significance level. If they are serious, a level of 1 %, say, might be preferred to 
5 %—at the expense, of course, of a loss in discriminating power, since in the 
former case more false hypotheses will perforce be accepted as true. Throughout 
this paper, 5 % has been adopted as the significance level. 

III. THE INVESTIGATION OF HETEROGENEITY 

Let denote the number of deaths arising from E years of life exposed to risk, 
and let q denote the mortality rate to which the lives are subject. The value of 
is not, of course, completely fixed by a knowledge of E and q, but involves also 
a random element. The latter, it is well known, can be described by the statement 
that the probability distribution of is approximately normal, provided the 
expected number of deaths E q is reasonably large; E q= 10 is an adequate lower 
limit. The mean of this normal distribution is, of course, E q, its variance 
E q (1 – q). To describe the suspected heterogeneity in the actual data, in which 
E is based on policies, we generalize by postulating that is normally distributed 
with mean E q and variance k E q( 1 –q ). (It may be remarked that Seal’s 
researches [1947] indicate that the assumption of a normal distribution is valid 
for large experiences, though the approach to normality is much slower when 
there is a high proportion of duplicates than when binomially homogeneous 
data are in question. Furthermore, by the operations described below, the 
random element – E q in the recorded numbers of deaths can be approximately 
estimated for various ages, and classes and periods of assurance; and the usual 
study of the higher moments of these random variates gives no cause to suspect 
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this postulate of normality.) The problem of estimating the value of k, and of 
testing whether it differs significantly from unity, is thus associated with the 
estimation of the variance of a normal distribution. 

The form of the available data does not permit a direct estimate of the 
required variance. For instance, the twelve class-period sub-groups at a given 
age are almost certainly non-uniform. Accordingly they do not provide a sample 
of observations from a common normal population. We are therefore led to 
consider separately each sub-group which comprises the data for ages 46–55 
inclusive. Since the mortality rate certainly varies with age over this range, 
a direct calculation of the sample variance in a sub-group would again be 
illegitimate. We proceed to describe a method of regression analysis which 
overcomes such difficulties. 

Consider, first, a series of observations 1, 2, . . ., n dependent on exactly 
known quantities x 1, x 2, . . . , xn respectively. Suppose it is known that, corre- 
sponding to a particular value x, the true value of y is of the form 

but that any observed value y’ of the latter quantity is subject to random 
fluctuations. More precisely we shall consider. y’ as normally distributed about 
its mean with variance , where is independent of x 
and where the values of are not known to the investigator. Under 
these conditions, the text-books prove that the best estimates of the ‘regression 
constants’ are given by the method of least squares, i.e. they are 
those values, say, which minimize 

Further, it is shown that if is unknown the best estimate thereof is given 
by 

say. 

S p+l denotes the sum of squares of the deviations of the observed ýi from the 
corresponding estimated means The denominator of 

represents the ‘degrees of freedom’ on which the estimate is based, and is 
equal to the number of observations n less the number of regression coefficients 
(p + 1) derived from the data. 

It may happen that the value of , say, is small, and that the question presents 
itself of assessing whether it is significantly different from zero. The accepted 
method of examination is as follows. Postulate that ap = o, i.e. that the true 
regression equation is By the foregoing procedure, 
calculate S p, the sum of squares of the deviations of the observed ýi from the 
corresponding estimated means (Note that S p is 
always greater than S p+ 1, and that the estimates 
general from the 

will differ in 
of the earlier regression formula.) If the hypothesis 

ap= o is true, S p /( n–P ) will serve as an estimate of , and it can be shown, 
moreover, that 

will be another valid estimate possessing 1 degree of freedom. The latter, 
indeed, is the more useful, since it can be shown to be statistically independent 

AJ 7 
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of the first estimate . Under the condition of statistical 
independence, the well-known ‘variance ratio test’ (cf., for example, Wishart 
[1947]) can be applied to show whether the estimates and are compatible 
in the probability sense of section II. In order to use the published tables 
(e.g. Fisher and Yates [1942]) of the distribution of the variance ratio, we form 

F= 
greater estimate o f 
lesser estimate of 

and associate with numerator and denominator the respective number of 
degrees of freedom. If F is found to be equal to or less than the 5 % value given 
in the tables for the appropriate pair of degrees of freedom, we accept the 
hypothesis that ap = o. If F exceeds the critical 5 % value, we reject it. In the 
former event, the subsequent problem might arise of testing whether a p– 1 
(or any other constant or group of constants) could be regarded as zero. The 
procedure would be identical. 

Application to mortality data 

The foregoing general theory will be applied now to each of the twelve 
class-period groups under investigation. We first form a function of the deaths 
and exposures, and postulate that, over the limited range of ages in question, 
the dependence of the mean (or ‘true value’) of this function on age can be 
represented by a polynomial of high degree. An estimate of the variance of the 
observed values about the calculated regression means, and hence an estimate of 
k, follow. Next, the coefficient of the highest power in the regression formula is 
hypothetically equated to zero, and the above-described test invoked. If the 
hypothesis is found acceptable, the effect of omitting the next highest term is 
similarly investigated. In this way, the simplest representation will be reached 
of the dependence of the chosen actuarial function on age, and this representation 
will lead to an estimate of k. The process is exemplified below. 

The particular actuarial function must satisfy the condition of the preceding 
paragraph, namely that the variance must be constant for all values of x, the 
age. The estimated mortality rate at age x, say 

has a variance 

where qx denotes the true value of the mortality rate. 
Now over the ages in question, qx varies from the order of .005 to the order 

of .01, i.e. by a factor of 2; and 1 – qx is sensibly equal to unity. Hence E x V ( x ) 
varies by about twofold between the youngest and the oldest ages, and the 
stipulated condition is not satisfied. A more satisfactory function is the square 
root of the estimated mortality rate 

for its variance is approximately 

since 1 – qx is practically unity. The variance is thus virtually independent of 
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the true rate of mortality, and ýx has a weight proportional to E x, i.e. .ý x 
(or ) can be taken as possessing a constant variance at all ages from 46 to 55. 
(It may be interpolated that the question of the dependence of k on age will be 
discussed later. At present, the problem does not arise, since our first objective 
will be to ascertain whether k can be universally equated to unity.) 

Each class–period group in turn has been analysed thus: a weight of E x/ E46 
has been associated with ýx, and a polynomial regression on age of degree three 
has been postulated of the form 

As the constants ai (i = 0, 1,2,3) are unknown, estimates âi (i = 0, 1, 2,3) of their 
respective values can be made by the ‘least squares’ criterion. The weighted 
sum of squares of the errors of estimate is given by 

This sum, when divided by 10 – 4 = 6, the number of degrees of freedom, gives 
an estimate of the common variance of . The quadratic and 
linear regressions of ýx on x have been similarly studied for each of the twelve 
class-period groups, and the corresponding estimates of k abstracted. The 

Source of estimate 
of variance 

Linear regression 
Quadratic regression 
Cubic regression 

Linear regression 
Quadratic regression 
Cubic regression 

Linear regression 
Quadratic regression 
Cubic regression 

Linear regression 
Quadratic regression 
Cubic regression 

Linear regression 
Quadratic regression 
Cubic regression 

21.05 8 2.63 
20.55 7 2.94 
13.23 6 2.21 

E.W. 1934–38 
10.77 8 1.35 
5.28 7 .75 
5.12 6 .85 

Linear regression 
Quadratic regression 
Cubic regression 

squares of 

Table 1 

Weighted 
sum of Degrees Mean 
errors of of square = 
estimate freedom estimate 

of k 
x 4E46 

L.W. 1924–28 
9.45 8 1.18 
9.29 7 1.33 
9.25 6 1.54 

L.W. 1929–33 
16.45 8 2.06 
15.94 7 2.28 
14.70 6 2.45 

L.W. 1934–38 
19.64 8 2.45 
15.82 7 2.26 
12.71 6 2.12 

E.W. 1924–28 
8.07 8 1.01 
7.72 7 1.10 
6.56 1.09 

E.W. 1929-33 

Weighted 
sum of Degrees Mean 

square = 
errors of freedom estimate 

of k 
x4E46 

L.N. 1924–28 
13.96 8 1.75 
9.70 7 
9.61 6 

1.39 
1.60 

L.N. 1929–33 
15.54 8 1.94 
11.62 7 1.66 
10.99 6 1.83 

L.N. 1934–38 
10.63 1.33 
7.57 7 1.08 
7.35 6 

8 

1.23 
E.N. 1924–28 

13.75 8 1.72 
13.37 
13.35 6 

7 1.91 
2.22 

E.N. 1929–33 
8.36 8 1.05 
7.22 7 1.03 
5.36 6 .89 

E.N. 1934–38 
4.42 8 

7 
.55 

3.24 .46 
2.96 6 .49 

7-2 
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results of the investigation are summarized in Table 1. The method of com- 
putation is set out in the Appendix. 

Before discussing the figures in Table 1, a few points may be made. First, 
it might reasonably be argued that higher polynomials than those of the third 
degree should have been considered. They have been, and it was rapidly 
obvious that they would in no case materially reduce the weighted sum of 
squares of errors of estimate. The detailed results are accordingly of little 
interest. Secondly, it might be urged that non-polynomial regression curves 
should also be envisaged. There is no evidence, however, that such functions 
would give a materially better representation of the variation of ýx with age, 
over the short range of ages in question, than would a polynomial regression. 
Thirdly, another interpretation of the analysis may be indicated. Regard the 
linear, quadratic, cubic, . . ., regressions as a series of graduations of increasing 
complexity. From each graduation in turn estimate the residual variance, and 
hence k. The process stops when a more complicated graduation fails to reduce 
significantly the estimate of k. It will be recalled that, in the discussion on 
Daw’s paper [ 1945], serious objections were levied against the assumption that 
one particular graduation of crude data, or one standard mortality table, could 
provide ‘true’ rates of mortality from which k could be estimated. The 
performance of the series of graduations overcomes such difficulties. 

Analysis of the variances 
Consider the group L.W. 1924–28. The weighted sum of squares, postulating 

a cubic regression, is 9.25 (Table 1) with 6 degrees of freedom. Assuming a 
quadratic regression, the sum is 9.29 with 7 degrees of freedom. The cubic term 
itself therefore contributes 9.29 – 9.25 = .04 to the sum of squares, and 1 degree 
of freedom attaches to this estimate. Hence the hypothetical non-reality of the 
cubic term may be tested by the ratio 

with 6 and 1 degrees of freedom for numerator and denominator respectively. 
For this pair of degrees of freedom, the published tables give F =234 as the 
critical 5 % value for the variance ratio test. Since this exceeds the observed 
ratio, we accept the hypothesis that the cubic term is zero. 

Similarly, it is found that the quadratic term is also non-significant. There- 
fore, in the L.W. 1924–28 experience, ýx can be accepted as varying linearly 
with x (x = 46,47, . . ., 55), and the corresponding estimate of k is 1.18 (Table 1), 
i.e. the variance of a mortality rate estimated from this sample of data is 1.18 
times greater than the homogeneous binomial value. (In this example of the 
L.W. 1924—28 group, it is immediately evident from Table 1 that the use of 
quadratic or cubic regressions is unnecessary, since the estimate of k is thereby 
increased. For the present purpose, therefore, the formal test could have been 
dispensed with. The L.W. 1934–38 group provides a more interesting example 
of the use of the test.) 

Testing in like manner the other eleven groups detailed in Table 1, it appears 
that a linear regression is in every case adequate. No significant reduction of 
the estimate of variance ensues by postulating a quadratic, cubic, or higher 
regression. It is, of course, possible that with the limited number of degrees of 
freedom in a single group, we may have failed to establish statistically an 
essential feature of the experience. Consider therefore the twelve groups as 
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a whole by adding the sums of squares in Table 1 from the individual linear, 
quadratic, and cubic regressions respectively. The degrees of freedom attaching 
to these grand totals are the sums of those of the separate components, and the 
pooling procedure is justified, according to a well-known theorem, by the 
statistical independence of the sums of squares in the several groups. The 
figures thus obtained permit us to test whether the cumulative evidence 
supports the assertion at the beginning of this paragraph. Tables 2A and 
2B give the necessary details. 

Weighted sum 

Table 2 A 

Degrees of 
Source of estimate of variance of squares Mean 

x 4E48 
freedom square 

Individual linear regressions 152 96 1.58 
Individual quadratic regressions 127 84 1.52 
Individual cubic regressions 111 72 

96 — 84 = 12 
1.54 

Quadratic terms in individual regressions 152 — 127 = 25 2.08 
Cubic terms in individual regressions 127—111=16 12 1.33 
Quadratic and cubic terms in individual 152—111=41 24 1.71 
regressions 

Table 2B 

Appropriate Degrees Critical 
Hypothesis tested variance of 

freedom 
5% value Conclusion 

ratio (F) of F 

Non-reality of cubic terms 1.54 = 1.2 72 and 12 2.38 Accept hypothesis 
in the individual regres- 
sions 1.33 

Non-reality of quadratic 2.08 12 and 84 1.87 Accept hypothesis 
terms in the individual 
regressions 

1.52 
1.4 

Non-reality of quadratic 1.71 24 and 72 1.68 Accept hypothesis 
and cubic terms in the —= 1.1 
individual regressions 1.54 

Our previous conclusion is thus sustained. For the data as a whole, the 
variation of y x with x is linear. We do not significantly alter the estimate of k 
by introducing quadratic or higher-order regression coefficients. 

Consistency of the individual estimates 

We now examine more closely the values of k (based on linear regressions) 
quoted in Table I for the class-period sub-groups. The lowest estimate is .55 
(EN. 1934—38), the highest 2.63 (E.W. 1929—33). Are the twelve numbers 
sensibly equal, differing only through random fluctuations; or are there 
significant differences between them ? To answer this question, postulate that 
there exists a single value of k appropriate to all the groups. Applying Bartlett’s 
test [1934], in the manner shown in the Appendix, to the twelve independent 
estimates of this common value, we find that the hypothesis is acceptable. 
Alternatively, we may combine the data for all three periods, and examine 
whether the resulting variances for each class separately are mutually consistent. 
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An affirmative answer is again found acceptable (see Appendix). A similar 
result is obtained if the data for all classes are pooled so that the differences 
between quinquenia may be examined. 

Heterogeneity of the data 

By virtue of the preceding paragraph, we may assert that k -whatever its 
true value may be—is the same for each group. It is accordingly legitimate to 
pool all the relevant information in order to make the best single estimate of k, 
and to consider whether it is sensibly equal to unity. With regard to the former 
task, Table 2A provides the value of k = 1.58, based on 96 degrees of freedom. 
If the data were binomially homogeneous, k =1 would be the corresponding 
true value. Test their compatibility by forming the variance ratio F= 1.58/1 
with 96 and co degrees of freedom for numerator and denominator respectively. 
The critical 5% value of F is 1.25. We therefore reject the postulate that k = 1. 
The data, we conclude, exhibit significant heterogeneity, and the variances of 
the estimated mortality rates are about 1.6 times greater than the homogeneous 
binomial values. 

Dependence of k on age 

The possible variation of heterogeneity with age has yet to be discussed. 
Over the whole range of ages of assured lives, one would hardly expect a uniform 
degree of heterogeneity. Whether marked variation occurs over the limited 
range of 46—55 years in the data with which we deal is, however, much less 
certain. Erratic alterations between consecutive ages are at any rate unlikely if 
the heterogeneity is mainly due to the presence of duplicate policies. The 
distribution of the latter with respect to lives probably varies regularly and 
slowly with age attained-a view supported by the only publicly available 
evidence, which comprises some small-scale data from an actual life office 
(Seal [19471]) 

Let us test, then, whether there is any significant difference between the value 
of k appropriate to the younger ages alone, and that pertaining to the older 
ages alone. Operating upon the twelve class-period groups, separate-and 
statistically independent-estimates of k have been derived ( a ) for ages 46- 
50 years, and (b) for ages 51-55. (The regressions in question are, of course, 
distinct from those discussed earlier. The former are each based on the data of 
only five ages, whereas the latter were calculated on the experience of ten ages.) 
The results are as shown in Tables 3 A and 3 B. 

Table 3 A 

Age- 
Weighted sum of squarwa Degrees of Mean square= 

group 
based on individual freedom linear regressions estimate of k 

46-50 46.0 36 1.28 
51-55 58.6 36 1.63 

Hypothesis tested: 
Variance ratio for test: 
Degrees of freedom: 
Critical 5% value of F: 
Conclusion : 

Table 3 B 
That a common value of k applies to both age-groups 
F= 1.63/1.28=1.27 
36 and 36 

Accept hypothesis 
1.75 
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There is thus no evidence to contradict the view that the degree of hetero- 
geneity is uniform between the younger and older ages in the range 46—55 years. 
A more detailed examination, dealing with all ten ages individually, might be 
desirable but would be difficult with the present data. Thus the contributions 
from the separate ages to the total sums of squares of Table 2 A can be evaluated, 
but—representing as they do squared deviations from a regression curve—they 
are not statistically independent, and tests such as Bartlett’s are inapplicable. 
(It may be mentioned that the actual figures, for what they are worth, do not 
suggest any need for modifying the foregoing conclusion.) Again, if the 
experience in the several class-period groups had been uniform, one could 
estimate directly a value of k for each age. Unfortunately for this purpose, the 
mortality was markedly non-uniform, as we shall establish in the next section. 
In the absence of contrary evidence, we adhere to the statement that there was 
no marked variation in the degree of heterogeneity at the different ages (46—55) 
of the experience. 

Fiducial limits for k 

The value of k= 1.58, applicable to all class-period groups and ages, has 
already been quoted (see Table 2 A). This is, of course, merely an estimate, and 
it is unlikely that the true ‘population’ value of k is precisely 1.58. It is 
accordingly desirable to quote limits within which we can reasonably assert the 
true value lies, and for this purpose the fiducial argument (see, for example, 
Wishart [1947]) provides an appropriate technique. It can be briefly described 
in terms of the variance-ratio test which we have already employed. 

Suppose k* is the lowest value which we could ‘reasonably’ accept, and 
consider the consequence of postulating that this is the true value. We would 
then have k = 1.58 as an estimate of k*, and the test ratio would be F = 1.58/ k* 
with 96 and degrees of freedom for numerator and denominator respectively. 
(A ‘true’ value is equivalent to an estimate based on an infinity of degrees of 
freedom.) The critical 5% value of F for 96 and degrees of freedom is 1.25. 
Writing 1.58/ k* = 1.25, we derive k* = 1.3 as the lowest acceptable value. 

Similarly, the highest acceptable value is found to be 1.58 1.29=2.0, the 
latter factor representing the critical 5% value for and 96 degrees of freedom 
respectively. We assert consequently that the true value of k lies between 1.3 
and 2.0 (these limits forming the so-called ‘90% fiducial limits’). The sense of 
this assertion is that, if any value within this range were postulated as true and 
were tested on the basis of the statistical evidence and of the 5% level of signi- 
ficance, it would be accepted; and that any proposed value outside these limits 
would be rejected. We note that the lower limit exceeds unity—as we would 
expect, since the hypothesis k = 1 has already been examined and discredited. 

IV. THE INVESTIGATION OF UNIFORMITY 

The problem whether the mortality experience at a given age in each of 
several sub-groups was sensibly equal forms one aspect of an investigation of 
uniformity. Another aspect, independent of the foregoing, and of relevance 
when the data of more than one age are in question, concerns the rate of change 
of qx (or yx) with the age x. We proceed to consider the uniformity of such rates 
of change among the different classes of assurance and periods of experience. 
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Uniformity with respect to age variation 

Let the suffices ( i,j ) indicate the i th class and j th period, thus: 
First suffix Class Second suffix Period 

i= 1 L.W. j= 1 1924—28 
i= 2 L.N. j= 2 1929—33 
i= 3 E.W. j= 3 1934—38 
i= 4 E.N. 

(The class abbreviations are explained on p. 94.) As an example, 
denote respectively the deaths and exposure in the i th class and j th period at 
age x nearest birthday. 

The individual linear regressions of section III could have been written as 

(1) 

where the constants ai j, bij differ for the various groups. A uniform rate of 
increase of ý ij ( x ) with respect to age implies that say. 
Let us therefore hypothesize that 

(2) 

By the usual procedure, we may calculate the weighted sum of squares of the 
120 deviations of the observed ýije ( x )from the corresponding means ýij ( x ) —the 
latter being obtained from the regression (2) and the ‘least squares’ estimates 
of the a ij and of b. This sum of squares must exceed the figure which arises 
when the regression (1) is adopted instead of (2), since the former set of equations 
contains 24 disposable constants, compared with the 13 of the latter. The actual 
excess provides a measure of the validity of (2) which may be tested in the 
customary manner. The details are summarized in Tables 4A and 4B. The 
weight of ýij ( x ) has been taken as 4E ij ( x ) for all i, j and x. 

Table 4A 

Basis of estimate 
Weighted sum of Degrees Mean 
squares of errors 

of estimate freedom square 

Uniform age variation and linear regres- 182 107 1.70 
sions (equations (2)) 

Individual linear regressions (equations 152 96 1.58 
(r)), see also Table 2A 

Difference 30 11 2.73 

Table 4B 
Hypothesis tested: That a common value of b applies to all class-period groups 
Variance ratio for test: 
Degrees of freedom: 
Critical 5% value of F: 1.89 
Conclusion: Accept hypothesis 

The variation of yij ( x ) with age may thus be accepted as uniform for all classes 
of assurance and periods. This implies that the straight-line graphs of ýij ( x ) 
against x are sensibly parallel for all values of i and j. They do not necessarily 
coincide, since the individual values of the aij may differ. This point we examine 
below. 

104
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Uniformity between groups 

In view of the preceding conclusion, uniformity between the groups need not 
be examined for each separate age, but merely for the ten ages as a whole. To 
this end, the quantity 

has been calculated as an ‘over-all’ measure of mortality between ages 46 and 

65. The variance of This measure is not, of course, 

unique. Other possible indices would be the group rate of mortality 

or its square root ; or such a quantity as However, if any non-uniformity 

were detected in the group rate (or the square root thereof), it would not be 
immediately clear whether it were due to differences in the mortality experience 
at all ages in the group, or in the average group age, or to differences in both 
respects. Non-uniformity in , when coupled with the knowledge of uniform 
age variation, can, on the other hand, be ascribed at once to essential morality 
differences at all ages. The reason for choosing the square roots of the mortality 
rates, rather than the x ’s, as components of ij, is, of course, the same as that 
developed in section III. Table 5 contains the values of ij and the respective 
weights (which are inversely proportional to the variances). 

Table 5 

L.W.i=1 L.N.i=2 E.W.i=3 E.N.i=4 All classes 

Y Wt Y Wt. Y Wt. Y Wt. Y Wt. 

1924—28 
j =1 .9277 1.26 .8847 .28 .8738 4.37 .8420 .58 3.5282 6.49 

1929—33 
j =2 .9311 1.09 .9737 .35 .8724 4.63 .8755 .78 3.6527. 6.85 

1934—38 
.8590 j =3 .90 .9038 .35 .8445 4.46 .8226 .61 3.4299 6.32 

All periods 2.7178 3.25 2.7622 .98 2.5907 13.46 2.5401 1.97 10.6108 19.66 

The statistical technique appropriate to testing differences in such a double– 
entry table is the ‘analysis of variance’. The usual methods are, however, 
inapplicable, because the variances of the individual i j are unequal. A modified 
procedure, due to Yates [1934], has therefore been adopted. It may be remarked 
that an alternative method of analysis of variance of contingency tables has been 
given by Vajda [1945], which, with necessary modifications to allow for the 
binomial heterogeneity, could be applied to the present data in respect of any 
one age. 

As in the usual procedure of the analysis of variance, Yates’s method is to 
postulate, in the first instance, that Yij (the mean value of ij) can be expressed 
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in the form 
(3) 

Here li denotes a quantity dependent on the class of assurance; nj a quantity 
dependent on the period of experience; and m a ‘universal’ constant or grand 

mean. The explicit introduction of m in this sense implies that 

It is important to recognize that the equations (3) do embody a postulate—viz. 
that Y ij is expressible linearly in terms of three components—the validity of 
which must be tested. If it is invalid, interaction is said to be present. Interaction 
may thus be described as a differential period variation among the different 
classes of assurance; for instance, if whole-life assurance mortality decreased 
with time, and endowment assurance mortality increased with time, equations 
(3) would be inapplicable. 

Yates’s test for the presence of interaction is similar to those already described. 
Assume the truth of (3). Estimate the values of the 6 independent constants 
contained therein by the criterion of least squares, and calculate the weighted 
sum of squares of all 12 deviations of actual from estimated values of Y. That 
sum is associated with 12 — 6 = 6 degrees of freedom, and leads, if the hypothesis 
is true, to an estimate of the variance factor k. Its compatibility with the estimate 
of k from section III, and hence the validity of our postulate, may be tested by 
means of the variance-ratio distribution. 

The existence of differential mortality between classes of assurance (or of 
a ‘ class effect’ in the usual terminology) can be similarly examined. Hypothesize 
that the mortality between classes is uniform, i.e. that l 1 = l 2 = l 3 = l 4 = o in ( 3 ), 
and on this basis repeat the least-squares calculation referred to in the last 
paragraph. The increase in the weighted sum of squares of errors of estimate 
over the sum there obtained gives, if the hypothesis is true, another estimate of 
k based on 3 degrees of freedom (corresponding to the three independent class 
constants l which have been set equal to zero). As before, this estimate may be 
tested against the statistically independent value of k = 1.58 previously derived. 
If the ratio of the two estimates surpasses the critical 5% value, we reject the 
hypothesis, admit the existence of different mortality rates in the different 
classes of assurance, and examine the figures more closely for the source of the 
differences. Such a conclusion, it may be emphasized, would refer to the 
mortality experience of the classes over all periods combined. The existence of 
a ‘period effect’, or variation in the experiences in the three quinquennia when 
all classes of policy are combined, can be tested similarly. 

The results of the relevant calculations and tests are summarized in Table 6. 
The mean square is in each case compared with the estimate k = 1.58 based on 
96 degrees of freedom. 

Table 6 

Hypothesis tested 
Appropriate Degrees Mean F=mean Critical 
weighted sum of 5% value 

of squares freedom square square 
÷1.58 of F 

Absence of class effect 81.3 3 27.1 17 2.7 
Absence of period effect 52.0 2 26.0 16 3.1 

Absence of class-period 
interaction 

28.4 6 4.73 3.0 2.2 
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On the 5% level of significance, therefore, all three hypotheses fail. We must 
admit the reality of a class effect, of a period effect, and of a class–period inter- 
action. Closer inspection of Table 5 (invoking ‘Student’s’ t -test where 
appropriate) reveals the following—the principal results of our investigation of 
uniformity: 

( a ) For all three periods combined, the two whole-life classes exhibited 
uniform mortality. So, too, did the two classes of endowment assurances. 
The mortality experience of the latter was, however, significantly lighter than 
that of the former groups. 

( b ) For all classes of assurance combined, there was a significant difference 
of mortality in each quinquennium. The heaviest rates were experienced in 
1929—33 and the lightest in 1934—38. 

( c ) The whole-life with profits and endowment assurance without profits 
mortality experience followed the ‘over-all’ secular trend described in ( b ). 
That of the other two classes of assured lives did not, however, conform to 
this pattern. These differences in secular variation explain the ‘interaction 
effect’ isolated above. 

These particular results could, of course, have been arrived at by standard 
elementary methods—if not by mere inspection of the original figures. A critic 
could fairly ask what advantage or additional knowledge accrued through the 
use of the more complicated techniques. First, they led us to recognize the 
uniformity of the rate of mortality variation with age. It was not perhahs 
immediately obvious that the Ý ij ( x ) could be represented as varying linearly with 
x, with sensibly equal gradients for all values of i and j. Secondly, the use of the 
measures Ý ij, coupled with the last conclusion, enabled us to investigate 
compactly the over-all mortality differences between groups, free of the 
complications—unequal average ages, and so on—associated with ‘group’ 
rates of mortality. Thirdly, the ‘analysis of variance’ procedure permitted 
several aspects of no n-unifority to be examined at onc. The conventional 
assuarial methods require any one rate to be tested against every other rate— 
a laborious procedure which in any event does not answer directly the natural 
question whether the data as a whole are uniform. Finally, the present methods 
have made explicit allowance for the heterogeneity of the material. The use of 
1.58 (with 96 degrees of freedom) as the measure of random variation in TabIe 6 
may be recalled—the justification for which rests on the whole investigation of 
section III. If, as not uncommonly happens, the heterogeneity had been 
ignored, the corresponding measure in the uniformity tests would have been 
taken as unity (with an infinity of degrees of freedom). It is easy to see the 
possible mistakes of judgment which could ensue. Suppose, as an example, 
that the sum of squares appropriate to testing class effects in Table 6 had been 
4.0. The variance ratio would be 4.0/1.58 =2.53 with 3 and 96 degrees of 
freedom. Noting that the critical 5% value is 2.7, we should accept the hypo- 
thesis that there was no difference between the mortality under the various 
classes of policy. But by ignoring the heterogeneity, we would take a variance 
ratio of 4.0/1, with 3 and degrees of freedom—the critical 5% value is 2.6— 
and would unjustifiably conclude that a real class distinction existed. 
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Fiducial limits for the mortality rates 

As in the discussion of heterogeneity, it may be useful to indicate how limits 
may be assigned within which a rate of mortality is almost sure to lie. The 
fiducial argument can be readily applied. If is the number of claims by death 
out of E policy years of exposure to risk, if q0 is the ‘ population’ mortality rate, 
and if E q0 is sufficiently large, is distribution 
approximately normally with a mean of zero and a variance of unity. Given an 
actual pair of values of and E, we would test any hypothesis concerning q0 
by means of the tables of the normal distribution function. On the 5% level of 
significance, we would accept any hypothetical mortality rate q0 if it led to 
a value of z within the range Accordingly, we can fix limits 
by solving for q0 the equations 

(4) 

The roots are the 95% fiducial limits’ of the rate of mortality corresponding to 
given and E, and it can be asserted—in the usual sense—that the true value 
of q 0 lies somewhere between these limits. 

Numerical results are quoted in Table 7 for the particular case of whole- 
life with-profit policies during 1934–38. A value of k = 1.5 has been used in 
equation (4). 

Table 7. Whole-life with profits experience, 1934–38, medically 
examined lives, duration 5 and over 

Age 
x 

46 
47 
48 
49 
50 

51 
52 
53 
54 
55 

E /E 
95% fiducial limits 

of qx 

15,638½ 85 .00544 .0042—.0070 
16,621 82 493 40 64 
17,714 110 621 49 78 
18,755 92 491 38 63 
19,910 140 703 57 86 

21,064½ 138 655 53 80 
22,249½ 209 939 80 111 
23,587 210 890 76 105 
25,054½ 270 1114 97 128 
26,682 292 1094 95 126 

The fiducial limits, it may be remarked, differ appreciably from those which 
would be quoted on the basis of elementary theory, viz. 

V. SUMMARY OF CONCLUSIONS 

(1) The investigation was concerned with the mortality experience of 
medically examined assured lives of ages 46–55 inclusive, over the period 
1924–38, at durations 5 years and over. Four types of policy, whole-life and 
endowment assurances, each with and without profits, have been distinguished. 
All data were abstracted from information made available to the public by the 
Continuous Mortality Investigation Committee—a fact which has partly 
dictated the scope and methods of the analysis. 

(2) For all twelve class-period groups which were examined, the square 
root of the crude mortality rate, varied linearly with age over the 
range 46–55 years. 
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(3) The data were not homogeneous in the binomial sense. The degree of 
heterogeneity was sensibly the same for all twelve class-period groups, and can 
be expressed by the statement that the variance of an estimated rate of mortality 
was about 1.6 times the homogeneous binomial value of q (1 - q )/E. 

(4) The true value of the measure of heterogeneity, of which 1.6 was the 
best single estimate, almost certainly lay between 1.3 and 2.0. 

(5) The degree of heterogeneity was sensibly the same for the younger and 
the older ages in the range 46–55 years. 

(6) The experience of the twelve groups was uniform with respect to the 
rate of variation of mortality with age. 

(7) Over the whole period 1924–38, the mortality experience of the two 
whole-life classes was uniform. So, too, was that of the two endowment 
assurance classes. However, the mortality of the latter pair was significantly 
lighter than that of the former. 

(8) The mortality of the four classes combined was lightest in the period 
1934–38, and heaviest in 1929–33, the experience in 1924–28 having been 
intermediate between these extremes. 

(9) The secular variations of mortality among the four individual classes of 
policyholder were materially different from one another. 

Finally, it should be stressed that the foregoing is no more than a summary 
of acceptable hypotheses. None of the conclusions has been rigorously estab- 
lished as true. The hypotheses which have been put forward are believed to be 
reasonable; they have aimed at describing the observed facts as simply as 
possible with the least number of statistical parameters; and it has been shown 
that they are not inconsistent with the recorded data. That is as much as one can 
assert. With additional a priori knowledge, one might be led to suggest other 
hypotheses, and they too might prove compatible with the facts. If that 
occurred, it would illustrate a weakness inherent in the methods of analysis; for 
the power accurately to distinguish a true from every false theory is beyond the 
scope of statistics. 
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APPENDIX 

1. CALCULATION OF THE WEIGHTED SUMS OF SQUARES OF ERRORS OF ESTIMATE 

In section III, it was postulated that the quantity yx could be expressed as 
a polynomial of degree 3 in x, and it was required to find those values â0, â1, â2, â3 
which would make 

a minimum. ( wx = E x /E46 denotes the weight of x.) 
The required values satisfy the equations 

or 
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Solving this set of linear equations for the âi and substituting in S4, the required 
minimum weighted sum of squares of errors of estimate is obtained. It can be 
shown that the sum is equal to 

This formula enables one to calculate S4 (min.) without solving the ‘least 
squares’ equations explicitly for the âi 's. The determinant in the denominator 
is, of course, derived by deleting the first row and first column from the 
determinant in the numerator. 

The 5 x 5 determinant ( , say) in the numerator of S4, (min.) was evaluated by 
the operation of pivotal condensation repeated four times in succession. In 
each case the element in the second row and second column was taken as the 
pivotal element (e.g. at the first operation the second row was divided through- 
out by , whereby an element of unity was produced in the position (2, 2), 
and the usual condensation formula was then applied). At the last stage a 2 x 2 
determinant is reduced to a single element, and this element is readily seen to be 
the quantity S4 (min.) which we seek. The process is essentially one of expressing 

in the form S4 (min.), where the 's are the factors arising in the 
condensation operations (e.g. ). Because of the particular choice of 
pivotal elements the product is equal to the determinant in the 
denominator of S4 (min.). 

It is also readily seen that the leading element (i.e. that in position (1, 1)) in 
the 4 x 4 determinant which results from the first condensation operation on 

is equal to S0(min.), the weighted sum of squares of errors of estimate if it 
is postulated that yx = a 0 The next step in the reduction of gives a 3 x 3 
determinant, the leading element of which equals S1 (min.), the weighted sum 
of squares of errors of estimate corresponding to a linear regression 
Similarly, after the next condensation the leading element in the 2 x 2 deter- 
minant is S2 (min.), corresponding to a quadratic regression of yx on x. Thus, 
by the calculation of only one determinant in the manner indicated, the weighted 
sums of squares of errors of estimate were derived for the cubic and all lower- 
order regressions. 

2 CONSISTENCY OF THE INDIVIDUAL ESTIMATES OF VARIANCE 

The estimated variances (or estimates of k ) for each of the twelve class-period 
groups, based on individual linear regressions, are contained in Table 1, and 
are quoted for convenience below. 
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Table 8. Estimates of k , based on 8 degrees of freedom in each case 

Period 

1924-28 

L.W. 

1.18 

Class of assurance 

L.N. E.W. E.N. Total 

1.75 1.01 1.72 .566 

1929-33 2.06 1.94 2.63 1.05 7.68 

1934–38 2.45 1.33 1.35 .55 5.68 

Total 5.69 5.02 4.99 3.32 19.02 

Bartlett’s test of the mutual consistency of the twelve estimates proceeds by 
the following steps: 

(i) 
geometric mean of the twelve estimate 
arithmetic mean of the twelve estimates 

=1.46/1.58 

(ii) x= —96 loge (1.46/1.58)=7.67. 
(96, or 12 x 8, represents the total number of degrees of freedom involved 
in all twelve estimates.) 

(iii) (degrees of freedom in each estimate)} 
- 1/(total number of degrees of freedom) 

=12/8-1/96=1.49. 

Let n = number of separate estimates = 12. 

Then the quantity 

is distributed as a x 2 variate with n - 1 = 11 degrees of freedom, and may be 
tested accordingly. The critical 5% value of x 2 for 11 degrees of freedom is 
19.7, Since the actual value of 7.6 does not exceed this figure, the hypothesis is 
acceptable that a single value of k applies to all classes and periods. This 
conclusion may be checked by the following tests. 

Consistency of the variances for the separate classes 

Consider merely the greatest and least estimates of k for the various classes of 
assurance, when the experience of all three periods is combined. If these two 
are found to be mutually consistent, Bartlett’s test when applied to all four 
estimates would yield the same conclusion. 

The relevant details are as follows. 

= 1.7, with 24 and 24 degrees of freedom. 

Critical 5% value of F = 2.0. 

It is concluded that a single value of k is applicable to all four classes of 
assurance (over the whole period 1924–38). 
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Consistency of the variances for the separate periods 

Comparing again merely the greatest and least values, 

F= 7.68 (for 1929 - 33, all classes combined) 
5.66 ( for 1924 - 28 , all classes combined) 

= 1.4 with 32 and 32 degrees of freedom. 

Critical 5% value of F= 1.8. 

It is concluded therefore that a single value of k is applicable to all three 
periods (for all classes combined). 

Comparison of variance for the E.N. class with that for all other classes 

Inspection of Table 8 might suggest that one value of k might apply to the 
L.W., L.N. and E.W. classes, but that a significantly smaller value might 
possibly be relevant to the E.N. class. Comparing these two groupings, on the 
hypothesis that there is no such difference in k , 

F= 15.70 = 1-6 with 72 and 24 degrees of freedom. 
3 x 3.32 

Critical 5% value of F = 1.8. 

The foregoing suggestion cannot therefore be sustained. 
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