1989 General Insurance Convention

The application of additive and multiplicative Generale Linear Interactive Models (GLIM) in Health Insurance.

Paper for the XXI ASTIN Colloquium New York, 1989

subject: Empirical Investigations.

Bob J.J. Alting von Geusau June 1989.

1. Introduction and Summary.

For the private health insurance industry in the Netherlands a model is developped which can describe accurately the interaction between the various influencing factors which determine the size of health claims.

- Most of these factors such as
 - sex of the insured,
 - age of the insured, or
 - type of coverage,

can be considered as working multiplicatively on the base claim size.

For other factors this seems less true: it might be that for them an additive model will be more appropriate.

This paper provides a description of an example of a model which originally uses the multiplicative specifications but which is generalised easily to the use of additive factors. Only the basic technique is given, which means that some major points are still open: for instance when to use the purely multiplicative model and when the mixed one.

The paper is concluded with some examples from real life.

2. The General Linear Interactive Model (GLIM): the multiplicative Gamma-case.

If the claimcost per insured k are symbolized by the variable ${}^{z}_{k}$ and the claimcost are supposed to be Gamma distributed, we can define as the density of ${}^{z}_{k}$:

(1)
$$\frac{z_{k}e^{\Phi_{k}-1}}{z_{k}e^{\Phi_{k}}\mu_{k}}}{\Gamma(\Phi_{k})}$$

The parameters μ_k , and ϕ_k , in (1) are also visible of course in

(2) the expectation
$$\mu_k$$

the variance $\frac{\mu_k^2}{\Phi_k}$

In principle both sets of parameters can be of a very complicated structure, but in multiplicative GLIM we restrict ourself to the μ_k according to

(3)
$$\mu_k = e^{\frac{1}{x_k} \beta}$$

In formula (3) \dot{x}_k is a vector with zeros and ones in such a way that the correct linear combination of elements from the rating vector \dot{g} is obtained.

The second restriction affects ϕ_k :

(4)
$$\phi_k = \phi$$
 for all k,

. . .

where Φ is the scale factor in the Gamma distribution: since at the moment we are only interested in the average value (3) we donot have to estimate the value of this parameter ϕ .

In order to estimate the values of the elements of $\vec{\beta}$ we use the sample $z_1, \ldots, z_k, \ldots, z_n$ and the log-likelihood function

(5)
$$\log \Lambda = \operatorname{constant} + \sum_{k=1}^{n} \{ \phi_k \log z_k - \log \Gamma(\phi_k) \} + \sum_{k=1}^{n} \phi_k \log \phi_k + \sum_{k=1}^{n} \{ -\frac{\phi_k z_k}{\mu_k} - \phi_k \log \mu_k \} =$$
since (3) and (4) holds

= constant + function(
$$\phi, z_k$$
) + $\phi\{\sum_{k=1}^{n} z_k e^{-x_k} - \sum_{k=1}^{n} x_k^{\dagger} \overline{\beta}\}$

As a function of $\vec{\beta}$ (5) has its maximum when

(6)
$$\frac{\partial \log \pi}{\partial \beta_{m}} = \phi \left\{-\sum_{k=1}^{n} x_{km} + \sum_{k=1}^{n} x_{km}^{-x_{k}} z_{k}^{-x_{k}}\right\} = 0$$

for m=1,...,M, where x_{km} is element number m in the vector \dot{x}_{k} .

The consequence of this definition is that for each claim we cannot have more than M rating factors.

Formula (6) is a system of M equations with M unknowns $\beta_1, \beta_2, \dots, \beta_M$ but since this system is not linear we need a little bit more than some basic knowledge of matrix algebra.

Van Eeghen, Greup and Nijssen in "Ratemaking" (1983) describe the elegant method of scoring as a way to solve (6) as follows:

Define the information matrix $I(\vec{\beta})$ by:

(7)
$$I(\vec{\beta}) = - \text{Expectation}\{\frac{\partial^2 \log \pi}{\partial \vec{\beta} \partial \vec{\beta}^{t}}\}$$

This matrix is negative definite for the values

(8) $\vec{\beta} = \vec{\beta}_n$ where $\vec{\beta}_n$ is the nth approximation of the solution $\vec{\beta}$ of (6).

The method of scoring finally solves (6) by the iterative procedure

(9)
$$\dot{\vec{\beta}}_{n+1} = \dot{\vec{\beta}}_n + I(\dot{\vec{\beta}})^{-1} (\frac{\partial \log n}{\partial \vec{\beta}})$$

 $\dot{\vec{\beta}} = \dot{\vec{\beta}}_n \partial \vec{\beta} = \dot{\vec{\beta}}_n$

Formula (9) converges quite easily when the chosen initial value

(10)

) [‡]0

is not too unreasonable.

4

It makes the situation easier that in this specific case (7) boils down to

(11)
$$I(\vec{B}) = \sum_{k=1}^{n} \vec{x}_{k} \vec{x}_{k}^{\dagger}$$

for each $\beta = \beta_n$ which means that it is necessary to compute the inverse matrix of (11) only once.

3. GLIM generalised to the mixed additive-multiplicative case.

In health insurance it may be necessary to generalise (3) to

(12)
$$\mu_{\mathbf{k}} = \overline{y}_{\mathbf{k}}^{\mathsf{t}} \overline{a}^{\mathsf{t}} + \mathbf{e}^{\mathsf{t}} = N_{\mathbf{k}} \quad (say)$$

for the observations zk with k=1,..,n where:

- $\dot{\vec{y}}_k$ the specific vector for observation k with zeros and ones for the additive factors, and
- $\dot{\alpha}$ the vector with the A additive factors.

As an example of such an additive factor the deductible per insured can be considered.

For the log-likelihood function this means:

(13)
$$\log \pi = \text{constant} + \sum_{k=1}^{n} \text{function}(\phi, z_k) + k = 1$$

+
$$\phi\left(\sum_{k=1}^{n} -z_{k}N_{k}^{-1} - \sum_{k=1}^{n} \log N_{k}\right)$$

Therefore (6) becomes a system of (M+A) equations with (M+A) unknowns:

(14)
$$\frac{\partial \log \Pi}{\partial \alpha_{\mathbf{a}}} = \phi\{\sum_{k=1}^{n} z_{k} y_{ka} N_{k}^{-2} - \sum_{k=1}^{n} y_{ka} N_{k}^{-1}\} \qquad \text{for } \mathbf{a} = 1, \dots, A$$

and
$$\frac{\partial \log \Pi}{\partial \beta_{m}} = \phi \{ \sum_{k=1}^{n} z_{k} x_{km}^{+t} \in \mathbb{N}_{k}^{-2} - \sum_{k=1}^{n} x_{km}^{+t} \in \mathbb{N}_{k}^{-1} \}$$
 for m=1,...,M.

which again cannot be solved directly.

With scoring it takes some tedious calculations but finally we find for the information matrix the composition of the submatrices:

for a=1,...,A and b=1,...,A and for m=1,...,M and p=1,...,M of the matrices given by:

(15)^{*} - Expectation
$$\left\{\frac{\partial^2 \log \Pi}{\partial \alpha_a \partial \alpha_b}\right\} = \sum_{k=1}^{n} y_{ka} y_{kb} N_k^{-2}$$

(15)** - Expectation
$$\{\frac{\partial^2 \log \pi}{\partial \alpha_a \partial \beta_m}\} = \sum_{k=1}^n x_{km} y_{ka} e^{N_k} N_k^{-2}$$

(15)*** - Expectation
$$\{\frac{\partial^2 \log \Pi}{\partial \beta_m \partial \beta_p}\} = \sum_{k=1}^n x_{km} x_{kp} e^{N_k^2}$$

which totalises into the information matrix by the recipe:

(16)
$$I(\vec{\alpha}, \vec{\beta}) = \left(\begin{array}{c} (15)^{***} & (15)^{**} \\ \hline (15)^{**} & (15)^{**} \\ \hline (15)^{**} & (15)^{*} \end{array}\right)$$

and leads finally to the scoring formula:

(17)
$$\begin{pmatrix} \frac{1}{\beta} \\ \frac{1}{\alpha} \\ \frac{1}{\alpha$$

The convergence of (17) is much less convincing but in the cases I have analysed the solution came up after some time: the number of necessary iterations appeared to be about three times as high as in the purely multiplicative case.

This is the price we have to pay for the fact that (16) is not strictly negative definite in all cases.

4. Some results on real data.

The methods mentioned in the previous paragraphs have been applied to the 1987 and the 1988 data from private health insurance companies in the Netherlands.

This data has been collected by the Foundation KISG from 3.5 million insureds with regards to the following activities:

- the cost of hospitalisation
- the cost of a specialist in a clinic
- the cost of a specialist without hospitalisation
- the cost of paramedical aid
- the cost of other medical care, such as medical transportation, artificial legs and arms, dentures, obstetrical aid, home care, etcetera.

Of these activities the gross and the net amounts per insured per year have been collected plus the information related to the the individual situation of the insured with regards to:

- hospitalisation 3rd class or better
- sex of the insured
- area where the insured is living: the highly populated Western part of the Netherlands is much more expensive than the North and the South
- the age of the insured
- the level of the deductible
- the type of health insurance contract: in the Netherlands one can buy private health insurance through an individual contract or in some cases collectively via the employer in a group contract
- the fact whether the cost of the family doctor is insured yes or no: it seems that this factor indicates a totally different type of risk.

On this information I have applied the general GLIM-models in a score of variants of which I give three examples.

The first one is a purely multiplicative one with compound age factors:

		Y ear 1987	Year 1988			
Base Claim per yea	ir net	Dfls 667	664			
Multiplicative fac	Multiplicative factors in %:					
Hospitalisation Cl	.aas: 3	100	100			
	1 & 2	114	112			
Sex	male	100	100			
	female	99	100			
Area:	average	100	100			
	cheap	91	96			
	expensive	105	109			
Age:	0-4	109	112			
	5- 9	51	51			
	10-14	66	70			
	15-19	64	65			
	20-24 male		53			
	idem femal		82			
	25-29 male		50			
	idem femal		156			
	30-34 male		59			
	idem femal		161			
	35-39 male		69			
	idem femal		123			
	40-44	100	100			
	45-49	120	120			
	50-54	147	147			
	55-59	179	185			
	60-64	231	238			
	65-69	326	333			
	70-74	412	434			
	75+	548	578			
Deductible:	low	100	100			
	average	95	88			
	high	58	57			
Contract:	individual	100	100			
	collective		103			
Family Doctor:	included	100	100			
	not includ		83			
		01				

Table 1. Estimation of the base claim per year and the multiplicative factors in % on the KISG 1987 and 1988 deck, with the introduction of separate multiplicative factors to sex for some ages.

An example of how table 1 works:

let us take a gentleman of over 75:	
base claim	fl. 667
multiplicative factors:	
* 2nd classe	1,14
* male	1
* expensive area	1,05
* age 75+	5,48
* low deductible	1
* individually insured	1
* family doctor included	1
-	
total nett claim per year	fl. 4375

In a high deductible scenario the table let this amount shrink to $0,58 \times 4375 = 2538$, which is around two thousand guilders less.

This difference seems to be too large. So in table 2 we use the mixed GLIM where the deductibles compounded with some age factors are tagged as additive factors.

Deductible	Age for	male and	female:	
	0-19	20-39	40-59	60+
low: under fl. 250 per	year			
1987:	180	173	205	836
1988:	189	22	249	729
average: fl. 250 - 750	per year			
1987:	178	81	178	1068
1988:	150	73-	155	547
high: over fl. 750 per	year			
1987:	0	22-	116-	324
1988:	0	178-	91-	10

Table 2a. Additive constants in the mixed GLIM-model for the claimfactor 'Deductible' on KISG 1987 and 1988: these constants can only be used in connection with table 2b.

		Year	1987	Year 1988
Base claim per year		Dfls.	477	445
Multiplicative fact	tors in X:			
Hospitalisation Cla	ass: 3 1 & 2		100 118	100 115
Sex:	mele female		100 101	100 101
Area:	average cheap expensive		100 89 106	100 95 108
Age:	0- 4 5- 9 10-14		102 37 51	112 39 59
	15-19 20-24 mal idem fema	le	50 46 84	54 83 118
	25-29 mal idem fema 30-34 mal	le e	39 169 50	77 211 88
	idem fema 35-39 mal idem fema	- e	167 64 120	214 100 164
	40-44 45-49 50-54 55-59		100 121 154 195	100 121 157 208
	60-64 65-69 70-74		131 254 369	195 323 464
	75+		560	674
Contract:	individua. collectiv		100 106	100 104
Family Doctor:	included not inclu	ded	100 79	100 80

Table 2b. Estimation of the base claim in guilders per year and the multiplicative factors in % on KISG 1987 and 1988: this table can only be used in connection with table 2a. Back to our example to demonstrate how both tables are used together:

base claim 1987	fl. 477
multiplicative factors:	
* 2e class	1,18
* male	1
* expensive area	1,06
* age 75+	5,60
* individual cover	1
* family doctor included	1
·	***
sub result	fl. 3341
additive factor:	
+ low deductible, age 75+	836
total net claim in 1987	fl. 4177

With a high deductible the amount would have been fl. 3665 - that is 512 guilders lower - and that seems more plausible. This better fit is also indicated by the lower mean squared error: in table 2a/2b this reads 685, while in table 1 it is 734.

Finally I have listed table 3, where the multiplicative GLIM is demonstrated on a separate insurance activity: the cost of hospitalisation in 1987.

The introduction of separate age/sex factors leads to interesting results:

Base claim in	1987			283	
Multiplicative	factors i	.n %:			
Hospitalisatio	n class:	3 1 & 2		100 113	
Sex:		male female		100 90	
Area:		average cheap expensive		100 91 103	
			male		female
Age:	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		61 66 81 100 131 184 253 358 570 739 1007	189 60 56 82 91	184 191 153 164 196 221 257 347 488 668 1024
Deductible:		low average high		100 98 65	
Contract:		individual group		100 102	
Family doctor:		included not includ		100 82	
Standaarddeviat	ion MSE:			605	

Table 3. Estimation of the base claim per year in guilders and the multiplicative factors in X for the cost of hospitalisation in 1987 with the introduction of separate multiplicative factors to sex for some ages. 5. Resume.

Pour la description d'un portefeuille Couts Medicaux la methode GLIM (General Linear Interactive Model) peut donner des instruments utilisables. Il parait possible de generaliser cette méthode avec des variantes mixtes du genre additif-multiplicatif.

Finallement le papier donne quelques exemples.

Bob J.J. Alting von Geusau, Juin 1989 - June 1989.