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IT is a common experience in many fields of investigation to find that the 
standard methods which have been developed and used in a given field prove 
inadequate in a particular application. In these circumstances it is often found 
that no further progress can be made along lines hitherto considered con- 
ventional, because some fundamental question has not been explicitly posed 
and answered by the standard methods. In life assurance a feature of existing 
methods of approximate valuation, which has not received prominence, is their 
inability to measure satisfactorily the size of the possible error involved. 
A wide variety of approximate methods have been in use, and some have been 
found to give consistently ‘good’ results, but the question of what is meant by 
‘good’ has been left unanswered. The background of this paper is that the 
authors, faced with this situation when tackling an essentially practical problem, 
were virtually forced to break away from traditional methods and seek a new 
tool. 

1·2. It was considered desirable to reduce the valuation records of some of 
the tables in the Industrial Branch, in particular endowment assurances 
maturing at a fixed age, e.g. 65 n.b.d. For each maturity age current practice 
used a dual tabulation with a separate class book for each year of entry, and with- 
in the book a separate page for each age at entry. The data tabulated were number 
of policies, sum assured, and office premium, and the clerical work throughout 
the year which this involved was considerable having regard to the absolute 
amount of the net liability involved. The problem therefore was to select a 
method of grouping which, in conjunction with an approximate method of 
valuation, would give satisfactory estimates. 

Now the accuracy of an estimate depends upon 
(a) the method of grouping adopted, 
(b) the amount of basic data tabulated, 
(c) whether or not the chosen method of approximation gives the ‘best’ 

estimate in the given conditions. 

In the course of the paper these three components are briefly examined and 
by an elementary application of linear programming a criterion is indicated for 
judging them. M. G. Kendall, in his Alfred Watson Memorial lecture (J. I. A. ) 
82, 221), stated that linear programming ‘deals with the problem of allocating 
resources in some optimal way. . . ’. The less general and more formal definition 
given below may be found in The Theory of Games and Linear Programming, by 
S. Vajda, to which the reader is referred for more advanced study of the 
subject. 
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2 Linear Programming and Approximate Valuation 

1-3. The technique of linear programming is relatively modern and there is 
no reference to its potential application to life office valuations in J.I.A. The 
purpose of the first part of this paper is, therefore, two-fold: 

(1) It may serve as an elementary introduction to a subject which may well 
demand increasing attention with the advent of electronic computers. 

(2) Since no really satisfactory approximate method appears to have been 
published for the valuation of Industrial Branch endowment assurances 
maturing at a fixed age, e.g. 65 n.b.d., it develops the technique of linear 
programming using a block of such business as an example. 

2.1. The term Linear Programming (L.P.) describes the solution of the 
following type of problem: 

Let a set of k equations, or constraints, be given involving the it non-negative 
variables x1, x,, . . . , xn, where k < n, 

2(i) 

It is required to find values of the variables which satisfy the constraints and 
make the value of a given linear form (L.F.) 

2 (ii) 

as small (or large) as possible, i.e. we are required to minimize or maximize the 
L.F. In general, we speak of ‘optimizing’ whenever we mean minimizing or 
maximizing or both. It is assumed that the k constraints are not linearly depen- 
dent; otherwise one or more of them could be omitted. If the L.F. is linearly 
dependent on the left-hand sides of the constraints the maximum and minimum 
of the L.F. are equal and a unique value of M will be obtained. 

2.2. Applying this definition to life assurance valuations (Industrial Branch) 
consider the situation in which it is required to estimate the total reserve value 
from a grouped tabulation of the basic data. A, B, . . . , K represent the grouped 
valuation data (e.g. A may be total sums assured and B total premiums, etc.), 
x1, x2, . . . , xn the sums assured at each age and m1, m2, . . . , mn the reserve values 
per £1 sum assured, M being the total reserve value. Before proceeding further 
we need the following definitions. 

We define a ‘feasible distribution’ as any hypothetical full tabulation of data 
which, if grouped in the given manner, would lead to the same given informa- 
tion, i.e. any distribution x1, x2, . . . , xn which would satisfy all k constraints. 
Thus the original distribution is one of a set of feasible distributions. A ‘feasible 
value’ is defined as any (total reserve) value which would arise from a full 
valuation of a feasible distribution (whether or not it could also arise from a non- 
feasible distribution). Thus a feasible distribution x1, x2, . . . , xn substituted in 
the L.F. will produce a feasible value of M. 

In the definition of L.P. there were k constraints and n variables and we define 
a ‘basic feasible distribution’ as a feasible distribution which contains (n-k) 
zero elements and k non-zero elements. Where such distributions also optimize 
the L.F. they are called ‘optimum basic feasible distributions’. 
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3·1. Consider a block of endowment assurances issued out of the Industrial 
Branch at ages 17–49 n.b.d. and due to mature at age 65 n.b.d. Assume that the 
classification is by year of issue and that for a particular duration t at the date of 
valuation the only information given is the total sum assured in force , and let 

Sx= sum assured in force for age at entry x n.b.d., 

so that and let ∑ 
x 

Sx= 

Vx= net liability factor per £1 sum assured for age at entry x n.b.d., 

so that the total net liability. Formally we have one linear constraint, ∑ 
x 

SxVx 
viz. 

We require the maximum and minimum of the linear form (L.F.) 

i.e. we wish to ‘optimize’ for non-negative values of the variables S17. . .S49. 

3·2. Numerically, as at the valuation date, year of assurance 9, the sum 
assured in force was £204,866. The valuation factors 
were based on E.L.T. No. 10 (Males) 2¼% and by inspection the largest value 
of Vx was ·535 at age 49 and the lowest ·128 at age 17. The distribution and 
the solution were therefore: 

Maximum 

whence 
all other 

Minimum 

whence 
all other 

Since we shall wish to compare different ranges in different circumstances we 
need a standardizing measure of zero dimension. The range ( where α ; β ), 

α < β will be written as 

standardized, where 

Thus in the above example the range (26,223; 109,603) becomes ±61·4% 
standardized, which is too wide for practical use, and it is clear that insufficient 
information has been made available. 

4·1. Consider now the above example with the added information that the 
total office premiums in force corresponding to were . 

Let PX = office rate of premium per £1 sum assured for age at entry x n.b.d. 
Formally we have two linear constraints, viz. 

4 (i) 

4 (ii) 
We require the maximum and minimum of the L.F. 

4 (iii) 

1-2 



4 Linear Programming and Approximate Valuation 
for non-negative values of the variables S17. . .S49. Standard methods of 
solution, where more than two constraints are involved, normally require an 
onerous arithmetical routine, but fortunately where only two linear constraints 
are imposed the following simple graphical method is available. 

Construction I 

4·2. Divide 4 (i), 4 (ii) and 4 (iii) by the constant 

Putting we have 

4 (iv) 

4 (v) 

and it is required to find the maximum and minimum of the L.F. 

4 (vi) 

i.e. we are required to optimize the L.F. for non-negative values of the variables 

W17, W18, . . . , W49. 
Plot the 33 points (P17, V17) (P18, V18) . . . (P49, V49) in two-dimensional rect- 

angular Cartesian co-ordinates. (In this and subsequent constructions, we 
ignore, for simplicity, the case in which more than two points are collinear.) 

Fig. 1 

A useful physical analogy to this problem may now be used by thinking of the 

these weights are placed at the (P17,V17)…(P49,V49) points we may interpret 
W17…W49 as a set of variable positive weights which must add up to unity. If 

4 (v) and 4 (vi) as saying that the resulting centre of gravity is to be at the point 
Now is, of course, a constant and therefore the centre 

of gravity is restricted to a vertical line, the equation of which is. The 

problem is thus to find the two distributions of the weights which will give the 
‘highest’ and ‘lowest’ centre of gravity under these conditions. 

The required optimizing distributions of the weights are fairly evident, but 
an insight into more general problems of this nature may be obtained by 
proceeding indirectly. Consider the infinity of all possible distributions of the 
weights at the points (Px,Vx) without the operation of constraint 4 (v). Their 
resulting centres of gravity can take up any position within a certain region, and 
it is clear that the 33 distributions which place all the weight at each of the 
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points(Px,Vx) in turn are specific distributions and that their centres of gravity, 
i.e. the points (Px,Px), must themselves be inside the region or on its boundary. 
Next assume that the total weight is distributed between any two of the points. 
The centre of gravity of this distribution can lie anywhere between these two 
points on the line joining them. If now a third point be added it is clear that the 
centre of gravity of the three points can lie anywhere in the triangle formed by 
the three points. By continuing this process it follows that the region of all 
possible centres of gravity possesses the general property that if any two points 
(centres of gravity) belong to it then all points on the line joining them and lying 
between them will also belong to the region. This in fact defines what is known 
as a convex region. It is characteristic of an L.P. problem that its solution, 
which seeks to optimize a given L.F., is to be found on the boundary of an 
associated convex region, 

In the given case the boundary can easily be found. By inspection choose any 
pair of the original points (Px,Vx) such that if the line joining them were extended 
in both directions all the other points would lie entirely to one side of it. The 
association of any of these other points (with positive weights) with the two given 
points cannot produce a centre of gravity on the opposite side of the line, and 
therefore the segment lying between the two chosen points is a part of the 
boundary of the region. The original 33 points cannot produce more than 
33 such lines (there will usually be fewer) and it will be found that the segments 
form a closed convex polygon which is the required boundary. Thus all the 
vertices of the convex polygon are some (or all) of the points (Px,Vx) the 
remaining points (centres of gravity) lying inside the polygon or on an edge. 

Evidently the solution to the original problem is given by the two points 
where the vertical line cuts the edges of the convex polygon. 

For an accurate solution we make use of the fact that if the line 
cuts the polygon for, e.g., a maximum in the edge which joins the two 
vertices (Pi,Vi),(Pj,Vj)—which we find by inspection—then the ‘highest’ 
centre of gravity can be obtained only by distributing all of the weights at just 
those two vertices. Reverting to expressions 4 (i) to 4 (iii), we have 

Whence 

and 

Similarly for the minimum. 
(Alternatively, the appropriate values may be read off approximately from 

the graph and multiplied by 

4·3. Numerically, we have =£204,866 (as before) and =18,033s.per 
month. Using the graphical methods described above we arrived at the follow- 
ing optimum basic feasible distributions and their corresponding solutions. 

Maximum 

whence 

all other 

and 
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Minimum 

whence 

all other 

The above range (75,282; 77,070) becomes ±1.17% standardized. It is 
emphasized that subject to satisfying the two constraints 4 (i) and 4 (ii) and 
using the true valuation factors it is impossible to obtain an actual value outside 
these limits by any distribution whatsoever. 

5·1. If we make use of the new business figures the range may be still further 
reduced. Thus the variables Sx in equation 4 (i) resulted from new business 
sums assured S 0 which are assumed to be available at each age. 

Formally we have 35 constraints and a linear form 
x 

5 (i) 

5 (ii) 
5 (iii) 

5 (iv) 
. . . . . . . . . . . . 

we require to optimize 
5 (xxxv) 

5 (xxxvi) 
for non-negative values of the variables S17. . . S49. 

Construction II, which is described in the Appendix, was devised to provide a 
graphical solution to problems of this type. 

It will be seen that the physical interpretation by distributions of (positive) 
weights at the 33 points (Px,Vx) is still valid, but that the convex region of 
feasible solutions, i.e. possible centres of gravity, is less tangible. All we can say 
definitely about its position is that it lies within the convex polygon of Con- 
struction I. As before, however, the optimum values lie on the boundary, and 
Construction II determines the optimizing points on the appropriate edges. 

The optimum distributions are shown to be obtained by placing as much 
‘weight’ as the new business constraints allow at certain of the points, a lesser 
weight at exactly two of the points (i.e. part-filled points) and none at the rest. 

Numerically, the effectiveness of the additional constraints was apparent 
although the total new business sum assured was £352,665 compared with only 

£204,866 still in force at the valuation date. 
The resulting optimum basic feasible distributions and their corresponding 

solutions were 

Maximum: =76,465 (derived from ages 17–20, 34–43, 49; 44 and 48 
part-filled). 

Minimum: =75,685 (derived from ages 21–33, 40–41, 44–48; 39 and 49 
part-filled). 

The range (75,685; 76,465) becomes ±·513% standardized. 

5·2. Reverting for a moment to the situation envisaged in § 5·1, the longer 
the duration, the wider, relatively, will be the feasible range, i.e. the larger the 
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standardized feasible range since the restrictions imposed by the new business 
figures become less effective. Ultimately the range coincides with the two-point 
limits in §4 and a position has been reached in which the inner convex region of 
§5·1 has expanded to the convex polygon of §4. The value of the new business 
restrictions may, however, be partially retained if one is prepared to make some 
assumption as to the likely maximum and minimum decrement rates 
experienced. 

Numerically, the over-all persistence rate in our illustration was 

and it might reasonably be assumed that ·2 < rx< ·8 for all x where the 

persistence rate at age x. The practical application of these rates consists of 
calculating in full and applying the procedure used in Construction II 
after suitably modifying the right-hand side of equations 5 (i) and 5 (ii) to 

and respectively, and multiplying the right-hand 
side of equations 5 (iii) to 5 (xxxv) by ·6. Under these conditions the optimum 
basic feasible distributions gave the following results: 

Maximum: 

Minimum: 

The range (75,844; 76,306) becomes ±·304% standardized. 

6·1. In §4·3 it was found that the tabulation of only the total sums assured 
and office premiums for each year of entry led to a narrow feasible range which 
was reduced in §5 by knowledge of the new business distribution. In fact a 
narrow range will obtain for all years of assurance if Vx is approximately linear 
in Px at all durations i.e. if where kt, α t are constants for fixed year 
of assurance t. 

(In passing if kt, α t are found by the method of least squares an approximate 
valuation may be made taking the net liability as 

This procedure is closely analogous to the methods and reasons underlying the 
fitting of a line of regression although the results will not necessarily be 
feasible.) 

For all durations we may therefore write and for a par- 
ticular and therefore 

6 (i) 

6 (ii) 

It is probable that for most offices will be small for all values of x and t, in 
which case the last term will be small, and it is clear that in so far as Vx can be 
expressed as will be constant (and the range zero) for all feasible 
solutions to equations 4 (i) and 4 (ii). Subject to these two constraints it follows 
from equations 6 (i) and 6 (ii) that, if for the purpose of evaluating only 
we make a reasonable (feasible) assumption as to the general shape of Sx, we can 
proceed without loss of accuracy direct to the left-hand side of equation 6 (i) by 

=76,306,

=75,844.
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applying these same Sx to their respective no Vx; no approximation is made to the 
valuation factors. 

Consider again the numerical example; the new business figures are known at 
all ages and 

Since all S0 and S0Px are known, xS0 and xS0Px are also known. It is reasonable x x x x 
to suppose that over the ensuing 9 years the persistence rates rx have varied with 
entry age, and if we assume that rx=a+bx, then 

and since 

Similarly 

Solving for a and b 

6·2. In our numerical example the values of a and b were ·22753 and ·008698 
respectively, i.e. the assumed persistence rates varied from about ·375 at age 17 
to ·654 at age 49. Applying these rates to S0 we obtained our hypothetical x 
(feasible) distribution which was valued in full and gave an estimated value of 
76,073 compared with the true value of 76,096. 

The above satisfactory result is influenced by two independent factors: 
(a)Vx is nearly linear in Px, 
(b) is nearly linear in x. 

If either one of these conditions is exactly fulfilled it does not matter how wide 
of reality the other condition is, the answer will be exact. As regards (a) the 
general argument of this paragraph and the numerical results in §5 led us to 
expect a narrow range in any event, and as regards (b), provided 
for all relevant x, reasonable decrement rates are employed to produce a 
reasonable and feasible distribution from which we obtained a close estimate 
within the range of feasible values. In practice the coefficient of correlation 
between Sx and S0(a+bx) was found to be ·997 at duration 9 and a similar x 
block of business gave a coefficient of ·994 at duration 21. 

7·1. To summarize the numerical results so far: 

Feasible distribution Minimum Maximum 
Standardized 

range 
(£) (£) (%) 

One point (§ 3·2) 
Two point (§ 4·3) 
Restricted by new business 
(§ 5·1) 

Restricted by k% new business 
(§ 5·2) 

26,223 109,603 ±61·4 (A) 
75,282 77,070 ± 1·17 (B) 
75,685 76,465 ± ·513 (C) 

75,844 76,306 ± ·304 (D) 

Estimated by (a+bx) (§ 6·2) £76,073 
Actual net liability £76,096 
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Provided 0≤ a+bx ≤ 1 for all relevant x the (a + bx) procedure cannot give a 
value outside the limits of (C) and is unlikely to go outside the limits of (D). It 
may be thought that if advanced attained ages are involved a linear form for rx is 
unlikely to fit owing to the mortality decrement, but in practice other sources of 
decrement are likely to preponderate, e.g. in §6·2 the value found for b was 
positive. 

The successive reductions in the standardized range resulting from additional 
information are marked and the advantages of tabulating a function which 
follows the general shape of the valuation factors are evident. In the example 
quoted the office premium satisfied this requirement since both Vx and Ax (the 
single premium) were found to be approximately linear in Px at all durations. 
Since π x (the net premium required for the fourth schedule of the 1909 Act) 
was also nearly linear in Px no further tabulation appears to be necessary. 

7·2. Since Industrial Assurance bonus cannot be surrendered apart from the 
policy the advantages of a year of issue classification for valuing bonus are 
obvious and the original numerical example was again employed, this time in 
order to estimate P.V.S.A., with the following results: 

Feasible distribution Minimum Maximum Standardized 
(£) (£) 

range 
(%) 

One point 
Two point 
Restricted by new business 
Restricted by k% new business 

Estimated by (a + bx) £156,665 
Actual P.V.S.A. 

97,925 179,257 ± 29·3 
147,517 160,652 ± 4·26 
153,722 159,313 ± 1·79 
154,979 158,119 ± 1·00 

£156,728 

Similarly close results were obtained for both the Net Liability and P.V.S.A. 
at other durations. 

8·1. The following miscellaneous points arise in practice. 
(a) The (a+bx) method involves tabulating once and for all the new 

business sums assured S0 and xS0 at each age x together with the totals x x 
∑ x0Px and ∑ xS0 x xPx In practice ∑ S0xVx and ∑ xS0xVx may be calculated 

during the year; a and b will be determined as soon as the valuation data 
and are available and the valuation reserve is at once 
Similarly for 

(b) In view of the relatively high decrement in the early years of assurance, 
it might be worth while retaining a full tabulation of data for the first two or 
three years, using the ultimate in force figures as data for the (a + bx) technique. 

(c) In the unlikely event of a+bx<o or >1 at some ages (and we have 
found the risk of this happening to be more apparent than real) there are a 
number of modifications which the resourceful actuary can employ according 
to circumstances. 

(d) Classification by year of issue avoids problems associated with change 
of rates. It also facilitates an exact calculation of the amount of bonus in force, 
and used in conjunction with the (a+bx) method provides the bonus totals 
required for the fifth schedule of the 1909 Act. 

and
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(e) A further tabulation of totals (not a full tabulation) by year of maturity 

is required for fifth schedule purposes. This enables exact figures to be 
obtained in total for P.V.O.P. and, if a check on the (a + bx) method is required, 
for P.V.S.A. 

(f) If Vx(or Ax) is closely linear in Px at the relevant ages some difficulty 
may be found in applying the technique indicated in Constructions I and II. 
In practice a more suitable diagram may be obtained by plotting the points 
(1/Vx, Px/Vx) rather than the points (Px,Vx) and this is dealt with in Construc- 
tion III in the Appendix. 

8·2. Where it is intended to use an approximate method of valuation the infor- 
mation tabulated should be such that the resulting feasible range of values is as 
small as possible subject to the practical difficulty of tabulating more than a 
certain amount of information. This in itself is a minimizing problem, which 
may well become important with the advent of electronic computers. In the 
numerical example cited it was found that a tabulation of ∑ Sx and ∑ SxPx used 
in conjunction with a knowledge of the new business figures, was sufficient, but 
in other cases a further tabulation may be required to reduce the feasible range 
to practical proportions. The advantages of tabulating a function (such as xSX 
as suggested by Perks in J.I.A. 72,396) which is independent of the valuation 
basis are obvious and it may be that the time has come for Ordinary offices to 
consider in what circumstances an alternative to the tabulation of valuation net 
premiums is possible. 

APPLICATION TO ESTABLISHED METHODS 

9. In the second part of this paper the techniques developed in the first part 
are applied to reinterpret some of the established methods of approximate 
valuation. In some instances these methods may have produced a ‘good’ result 
because no definition is given of a ‘bad’ result. It is suggested that these be 
interpreted as ‘feasible value ’ and ‘non-feasible value ’ since the actual value we 
are estimating 

(a) can never lie outside the feasible range; 
(b) could in fact be any of the values inside the feasible range. 

Thus, in the situation of §4·3, given only =204,866 , =18,033, the 
actual value of the net liability cannot lie outside the range (75,282; 77,070). 
Provided we draw upon no other information, any value within these limits is as 
‘ good’ as any other since the public could have taken out its sums assured in such 
a way as to give an actual net liability of any value within the range. Provided 
all the available information is used in establishing the limits of the range of 
feasible values there will remain no criterion for judging any one value between 
the limits as ‘better’ than any other. A principle of indeterminacy applies and 
the size of the range will vary inversely with the amount of information available. 

Given data which are fully tabulated and the factors for valuing them an 
exact total can be calculated. Once the data are grouped there is a loss of 
information and no exact value can be assigned. Instead, there exists a range of 
possible (feasible) values; this range is bounded, and with the aid of L.P. its 
maximum and minimum can be found with more or less work. It will be 
appreciated that with a large number of constraints and variables a computer 
would be necessary. 

In general, it will be found that, apart from the maximum and minimum, to 
any particular value within the feasible range there corresponds an infinite 
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number of feasible distributions. Some of these will be of the ‘smooth’ types that 
arise in practice whilst others will resemble a basic feasible distribution (i.e. 
Sx = 0 for many x); hence a basic feasible distribution cannot be rejected merely 
because it is unlikely-looking. Nevertheless, it is intuitively clear that if we can, 
in some way, find a ‘smooth’ distribution which approximates ‘closely’ to the 
actual distribution, we can expect it to give a value ‘close’ to the actual value 
within and in comparison with the size of the feasible range. In the (a+bx) 
method we have in effect assumed that there is a probability distribution of actual 
values with in the feasible range which can be built up on the lines of §5·2. In 
passing, this suggests that an assumption of the form where 
is a persistence rate derived from recent past experience of other tables, would 
be theoretically better. 

It will be shown that some well-known approximate methods do in fact use 
unlikely-looking feasible distributions, and that in other cases it may be quite 
easy to find a basic feasible distribution and apply the true factors to it. Even in 
cases where the feasible range has not been found, if the use of a (basic) feasible 
distribution leads to a value which differs from another such value or the actual 
value by an unacceptably large amount, we may be sure that the range is large and 
more information will be needed to make any approximate method acceptable. 

With these principles in mind we have selected the following four well- 
known methods for illustration : 

(i) Average age (Austin’s) method. 
(ii) ‘n-ages’ method. 
(iii) Perks’s n-point method. 
(iv) Z-method. 

Austin’s method 

10. It may be asked why the average age at entry (Austin’s method) which is 
frequently employed in the Industrial Branch for the valuation of endowment 
assurances, could not be used in the numerical example. The method was 
originally recommended and has given very satisfactory results for endowment 
assurances in which the grouping was primarily by original term and then by 
year of entry, each original term being treated virtually as a separate table. In 
the Industrial Branch this fitted in well with the practice of issuing policies for 
only a limited number of original terms, e.g. 15,20 and 25 years. For an original 
term such as 15 years the reserve values at any duration t, will not vary 
greatly with so that if there exist kt and a t such that 

10 (i) 

and is small for all x and t, then kt, will also be small. The advantage of this 
is that the curve of (Px, Vx) will be roughly parallel to the abscissa, whereas the 
range is measured across the convex polygon parallel to the ordinate. Thus the 
result corresponding to (B) in § 7·1 for a block of 15-year endowment assurance 
business issued in the same year gave a standardized range of ±·389% com- 
pared with the very much larger ±1·17%. 

The essence of the method is to ascertain a mean age y, where by 
re-entering the prospectus and to value the whole business by In 
practice it is extremely unlikely that an exact age y will be obtained, but kt and 

in 10 (i) may be so small that it will be sufficiently accurate to value the 
whole business by the nearest integral age toy. The resulting value may not be 
feasible, but this will be unimportant if the possible error is very small. Where, 
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however, the feasible range is such that it is undesirable to risk going outside it 
two courses are open: 

(A) Using the two integral ages w and (w + 1) on either side of y we have 

10 (ii) 

10 (iii) 

These are solved for SW and SW+1 giving 

and 

and we take as our estimated reserve value 

10 (iv) 

Putting all other Sx=o the distribution used is a basic feasible one and a 
feasible value will be produced. 

Asume that and find Vy by linear interpolation between VW 
and Vw+1. This is the practical approach, and if 

10 (v) 

If y was found originally by interpolating between Pw and Pw+1 it is clear that 

and 

Substituting in 10 (V) we get the same result as in 10 (iv). The closeness of 
the resulting to the actual value depends on 

(a) the feasible range (i.e. the ‘extent’ to which Vx is linear in Px), 
(b) the distance measured parallel to the ordinate between the true centre 

of gravity of the points (Px, Vx) weighted with Sx and the join of the two points 

(Pw,Vw) and (Pw+1,V Vw+l). 
Two points emerge. Given only and 

(i) the method places a fortuitous emphasis on ages w and w + 1 ; 
(ii) any two ages, one on either side of y, could be used to provide a 

feasible value, which would be just as ‘good’ 

‘n-ages’ method 

11. Assume that the total sum assured in force under a whole-life table 
is given, the total value of sums assured being valued by single-premium 
factors A(1)x for attained age x. It is required to find the total value on a different 
basis with factors A(2)x 

Choose say four ages x1, x2, x3, x4 such that 

Formally, we have 

required the value of 

11 (i) 

11 (ii) 

11 (iii) 

(B)
y = w +ε
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The required value is taken as 

13 

The distribution used was 

all other 

We note that the distribution satisfies equations 11 (i) and 11 (ii) and is thus 
feasible; hence a feasible value is produced and satisfactory results depend on 
A(2)x being approximately linear in A(1)x 

Perks’s n-point method 

12. Assume that the following information is given concerning a particular 
distribution of sums assured : 

12 (i) 

12 (ii) 

required the value of 

12 (iii) 

12 (iv) 

Define by 

The required value is taken as 

12 (v) 

Again as in § 10 it is extremely unlikely that exact integral ages will be 
obtained. Suppose an integer. It can be demonstrated 
that a linear interpolation to obtain will satisfy 12 (i) and 12 (ii), 
but not 12 (iii), and thus the resulting underlying distribution is not feasible. 
A second-degree interpolation will satisfy all three constraints; thus if Lagrange 
is used 

and similarly for However, the implied distribution is still not feasible 
because one of the coefficients must be negative, although by obtaining 
from say Va, V b, V c, and from choosing 
four coefficients, each positive in total, may be obtained. 
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As suggested in §9, the simplest general line of attack is to find a basic 
feasible distribution, i.e. to solve the given n constraints in terms of n unknowns 
only (treating the rest as zero). The difficulty is to choose a set of n unknowns 
such that the solutions to the n equations will be positive. In § 10 (the ‘average 
age’ method with two constraints) this difficulty was overcome by choosing the 
two ages one on either side of the average. In Perks’s method (and in the 
Z-method) with three constraints, a basic feasible distribution may not be 
obvious and Construction IV in the Appendix indicates a method for finding 
such distributions. The conclusions are similar to those deduced for the 
average age method. In the latter, L.P. methods were used to determine the 
range, but with three constraints (or more), unless a computer is available, the 
sophisticated trial and error methods of L.P. become onerous. A series of basic 
feasible distributions can, however, be obtained and if the range derived from 
these is acceptably small, a mean value between the highest and lowest values so 
obtained will probably be acceptably close to the actual reserve. 

Whilst it is accepted that Perks’s method has given satisfactory results 
in practice, theoretically 

(i) there seems to be no special virtue in placing emphasis on the ages 
any basic feasible distribution using only three ages will give a ‘good’ 

answer. 
(ii) a three-dimensional model in which the points (x, x², Vx) are plotted 

shows that ab initio the feasible range will be small if these points are approxi- 
mately coplanar since the range is measured parallel to the third axis across the 
convex region. Algebraically this may be stated that there exist α β γ such that 

(iii) if a basic feasible distribution is valued the closeness of the result 
depends on the distance measured parallel to the third axis between the true 
centre of gravity of the points (x, x, Vx) weighted with Sx and the plane ², 
containing the three points chosen. 

(iv) if Vx is not approximately quadratic in x then xSx and x2Sx are not 
good functions to tabulate, and in any event Perks’s method would be unsuitable. 
This conclusion corresponds to the principle underlying the first part of this 
paper that if Vx is not approximately linear in Px then the total sum assured and 
office premium alone are insufficient. 

Z-method 
13. In the ‘Z-method’, endowment assurances are grouped by unexpired 

term. For a particular unexpired term t, let Sm = sum assured in force which 
will mature at age M. 

Given 

required to optimize for non-negative Sm. Formally this is the 

same as the example in § 4 as regards the optimizing solution. Current practice 
uses an average age, vide §10. This average age is also used to find the present 
value of the net premiums the amount of which is known. But since the amount 
of the net premiums is a further constraint the method fails to make use of all the 
information available; once the total net premiums in force is given the feasible 
range of is affected. 
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If for a given unexpired term, t, Sx:m= sum assured in force, age at entry x, 
age at maturity M, then formally 

13 (i) 

13 (ii) 

13 (iii) 

required to optimize 13 (iv) 

and 13 (v) 

for non-negative Sx:m' where net premium per £1 sum assured.* 
A further constraint may be provided by the office premium, 

13 (iii) (a) 

Using only constraints 13 (i) to 13 (iii) a basic feasible distribution may be found 
as in Construction IV and substituted in the expressions 13 (iv) and 13 (v). 

In practice the Z-method normally gives satisfactory results since is 
approximately linear in Zm (t constant) and the range is thus very small. In 
these circumstances it is not suggested that the additional work (although light) 
is worth while, but the fact remains that a basic feasible distribution obtained by 
the method outlined above will produce a feasible value which may well be 
closer to the actual value, since the inclusion of a third constraint cannot increase 
the range and may reduce it considerably. 

SUMMARY AND CONCLUSIONS 

14·1. Underlying the whole paper is a situation in which the valuation data 
were deemed to be permanently grouped. It was found that there exists a range 
of possible values each one of which could be the actual one; in a very real sense 
there is no ‘true’ value to which we can approximate. It is emphasized that this 
indeterminacy is inherent in the situation and is not due, for example, to small 
order errors in an approximating formula. However, no value outside this 
range is possible, and hence if the range is small enough the indeterminacy is 
not of practical importance. For this reason the techniques outlined above do 
not supersede existing methods, but rather run parallel to them and in the 
process not only shed new light on their action, but provide a means of judging 
the situation in which they are being applied. 

Within the feasible range we may think of a probability distribution of values, 
but the situation is quite complex because there is not a one-to-one correspon- 
dence between the feasible distributions and the feasible values. Although a 
non-feasible distribution may produce a feasible value, only a feasible distribu- 
tion will be certain of doing so, and then only if it is applied to the true valuation 
factors; once an approximation is made to these we lose sight of the feasible 
range. Thus it would appear that the following principles are of general 
application. 

(1) The method of grouping and the amount of information tabulated should 
be judged by the size of the standardized feasible range to which they lead. 

* But see remarks of N. Williams (p. 23) and C. W. Bennett (p. 35)—Eds. J.I.A. 
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(2) In order to ensure that a feasible value is obtained 

distribution 
(a) any approximate method should use or imply the use of a feasible 

(b) no approximation should be made to the factors themselves. 

The only justification for ignoring these points can be that the work involved 
is too great for the purpose in hand, e.g. when a rough approximate figure is 
required quickly, or when the absolute amount of the error involved is small. 
The above principles would appear to be of greatest importance in cases where 
it is not possible from time to time to check the working of the approximate 
method against the actual value. 

14·2 In applying L.P. to valuation problems the coefficients of the variables 
in the L.F. may be considered as a set of ‘valuation’ factors, and the correspond- 
ing coefficients in the constraints as sets of ‘information’ factors. Many 
approximate methods of valuation depend for their success on a linear relation- 
ship between these two sets of factors. Thus Austin’s method hinges on the 
relationship 

and the Z-method on 

In many cases of two constraints it has been found that the graph of the valua- 
tion factor treated as a function of the information factor is concave (or convex) 
throughout its age range. Where this is so, it follows that if the valuation data 
are in fact clustered around the mean age (as opposed to being evenly spread or 
concentrated at the ends of the age range), the standard approximate method of 
using an average age will give satisfactory results even when the functions are 
far from linearly related. If, as in § 13, a third constraint is introduced similar 
considerations apply in three dimensions. 

14·3. The theory and techniques underlying L.P. are new and complex; this 
paper only touches the fringe of the subject and does not presume to be more 
than an introduction. The effect of the introduction of computers into life office 
work is difficult to forecast; a knowledge of L.P. may, in time, be required at 
clerical level; on the other hand, the subject may be by-passed as a result of the 
operation of the machines themselves. One point is clear, that even a computer 
will be unable economically to cope with either a vast array of constraints and 
variables or an excessive demand for storage-capacity, and the minimizing 
problem referred to in § 8·2 becomes paramount. 

Generalizing, the problem reduces to the mathematical design of the 
information function or functions ƒ(x), g(x), . . . , to be tabulated, such that all the 
valuation functions may be approximately expressed as α + ßƒ(x) + yg(x) + . . . , 
both now and after any reasonable change in the valuation basis. 
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APPENDIX 

Construction II 

Given 5 (i) 

5 (ii) 
5 (iii) 

5 (iv) 

we require to optimize 
5(xxxv) 

5 (xxxvi) 

for non-negative values of the variables S17 . . . S49. 
Plot the points (Px, Vx), x = 17, . . . ,49. 
We place weights Sx at the points (Px Vx) in a specified order and call the 

point (Px, Vx) 
‘filled’ if 

‘part-filled’ if 

‘empty’ if 

Take a line l such that all the points (Px, Vx) lie to one side of it. Move l parallel 
to itself towards the points and ‘fill’ each point as it is crossed by l. 

Fig. 2 

Continue this process until the total is exhausted, i.e. 

In general the result will give some points filled, one part-filled and the rest 
empty. 

(If l happens to be parallel to a join of two points we may consider a small 
reorientation of l.) 

2 AJ 
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Equations 5 (i) and 5 (iii) to 5 (xxxv) have been satisfied and the substitution 
of this distribution into the left-hand side of 5 (ii) and 5 (xxxvi) gives a pair of 
values which may be represented in the above figure by the point 

this point being the centroid of the distribution of weights. The 
set of all distributions which satisfy equations 5 (i) and 5 (iii) to 5 (xxxv) forms a 
convex region of centroids and every distribution which is 
obtained by the ‘l-construction’ yields a vertex of this convex region, since the 
first point of any convex region to be reached by a line moving from a given 
direction must be a vertex. Two adjacent vertices may be recognized by the 
fact that a linear combination of the two corresponding distributions by 

where will have only two part-filled points. For if there 
were more than two part-filled points it would be possible to redistribute the 
weights amongst the part-filled points used, so as to move the centroid of the 
system in any direction; this is not possible when the join of adjacent vertices, 
which is an edge of the bounding convex polygon, is involved, e.g. the distribu- 
tions corresponding to two adjacent vertices might be 

and 

and a linear combination (i.e. a point on the edge joining them) will be 

where F stands for ‘filled’ 

and PF stands for ‘part-filled’. 

To complete the construction we need to find the two adjacent vertices which 
lie one on either side of the line and hence find the point of intersec- 
tion of the line with the edge joining these two vertices. The steps of 
the construction may be set out as follows; for definiteness we find the maximum 
value of 

(I) Take a line l1 roughly parallel to the curve (Px,Vx) such that all the points 
(Px,Vx) lie below it. 

(2) Move l1 parallel to itself and fill each point as it is crossed until is 
exhausted. Note the resulting distribution D1 of the SX 

(3)Form and compare with 

(4) If take a new line l2 obtained by swinging I1 slightly anti- 

clockwise; if swing slightly clockwise. 

(5) Repeat the above steps until two distributions DiDi are obtained such 
that 

(a) Di contains two ‘part-filled’ points, where (by 
inspection) ; 

(b) (by evaluation). 

(6) Find such that 
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(7) Using the value of found in (6) form the distribution 

19 

then is an optimum basic feasible distribution. 

(8) Evaluate which is the required maximum value of 

For a minimum the small modifications are obvious. 
It can be demonstrated algebraically that the optimum basic feasible distribu- 

tions will contain some filled points, precisely two part-filled points and the rest 
empty. As a check on the work, equations 5 (i) to 5 (xxxv) (with an additional 
variable in each of the constraints 5 (iii) to 5 (xxxv) to replace the inequality 
signs) were solved taking the non-zero variables in the maximum given by the 
graphical method as the basic variables (as in the Simplex Method of solving a 
problem in L.P. vide S. Vajda, ch. VI). Substitution in the expression for gave 
negative coefficients to all the non-basic variables and a constant term equal to 
76,465. 

In passing, it will be noted that if we substitute in 5 (i) to 
5 (xxxvi) the l-line method with minor adjustments can be applied Tx to with a 
considerable saving of work at short durations. The diagram remains unaltered 
but the line 

takes the place of 

Construction III 

Consider the problem in § 4 in which 

and we wished to optimize 

4 (i) 

4 (ii) 

4 (iii) 

Put and dividing both the above constraints by the 
constant on the right-hand side we have 

4 (i) (a) 

4 (ii) (a) 

required to optimize 4 (iii) (a) 

Plot the points x=17, . .., 49, 

and draw in the surrounding convex polygon. If were unity the Y17…Y49 
would be a set of weights at the points giving a centroid at the 
point (I, I) by equations 4 (i) (a) and 4 (ii) (a). With we may consider the 
whole figure expanded (or contracted) about the origin by a factor such that 
the point (I, I) still lies inside the convex region. The maximum and minimum 
factors of expansion are obtained when the point (I, I) lies on an edge of the 
polygon. 

2-2 

and 

so that
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Alternatively, we may go direct to the optimum basic feasible distributions 
by drawing in the line which passes through the origin and the point (1, 1) and 
finding its two points of intersection with the edges of the bounding convex 
polygon. The algebra is the same as before. 

A simple alteration of the scale of the abscissa and ordinate enables us to plot 
points and use the line (I/V) (cf. S. Vajda, ch. x). 
It can be shown algebraically that apart from certain exceptional points which 
need not concern us in practice the geometrical transformation from Construc- 
tion I to Construction III 

can also be applied to Construction II. 
Thus (i) 

(ii) 

if 

Hence implies i.e. all the ‘linearity’ and 
‘convex’ properties required are satisfied in practice. 

Construction IV 

If it is required to find a basic feasible distribution when three constraints 
have to be satisfied, the following graphical device is suggested. 

Given 

we require to optimize 

for non-negative values of the variables 

and 

then we may rewrite the problem as follows: 
Given 

and we require to optimize 

uniquely

If ai>0, all i, put
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for non-negative values of the variables S1…Sn. Plot the points (ßi, i) in 
two-dimensional rectangular Cartesian co-ordinates. We are required to choose 
three of the points (ßi, i) such that weights placed at them give a centre of 
gravity at the point i.e. any three points such that the triangle 
joining them contains the point will give a basic feasible 
distribution. 

As an example consider the problem stated in §13, i.e. given 

13 (i) 

13 (ii) 

13 (iii) 

for unexpired term t, we required to optimize 

13(iv) 

Select three points 

such that the centre of gravity falls inside the triangle formed 
by the three points. 

Solve the three equations 

for the three unknowns 

and put all other 

Then 

is a feasible value. 
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ABSTRACT OF THE DISCUSSION 

Mr S. Benjamin, in introducing the paper, said that as parents of the paper the 
authors claimed the right to name their own children; the hieroglyphics on the 
right-hand side of the equations were known as curly S, curly P and curly V. 
They apologized for the fact that Fig. 1 did not marry up with the text. They 
had stated in § 4·3 that they obtained a maximum from S36 and S49; that was not 
apparent from the diagram. They had had the rather more general picture in 
mind when drawing it and there had been some confusion. 

The general problem stated at the end of the paper was that of designing the 
best functions to be tabulated. The simplest case of all seemed to be that of an 
endowment policy issued for a single fixed term. They had considered a group- 
ing by duration t, with only the sum assured and one constant tabulated accord- 
ing to the age x at entry. Using the method of least squares the constant per 
unit sum assured was obtained as a solution to the problem 

minimize 

where gx was the required constant, α t, β t constants depending on t only and 
Vxt was the net liability factor. 

The problem with which they had been faced was a practical one. They did 
not envisage replacing the normal valuation calculations by an army of linear 
clerks stolidly moving parallel lines across invisible convex regions and shouting 
‘Eureka’ whenever they hit a vertex. 

Mr N. Williams, in opening the discussion, said that the paper dealt with a new 
application of linear programming which differed in its purpose from other 
applications of which he had heard. Most applications were made to find either 
the most profitable allocation of resources or the least costly way of achieving 
some given set of requirements. The purpose of the authors’ application was to 
set limits within which the valuation liability had to lie, and thus to measure the 
effectiveness of an approximate method where that could not be measured 
otherwise because the true value could not be found exactly. 

By using the original new business figures to set upper limits to the individual 
variables Sx, the authors had reduced the range of possible values to a fairly 
small percentage of the true, but unknown, value. The upper and lower values 
were based on two distributions of policies which, although theoretically pos- 
sible, were inherently unlikely for two reasons: first, it was assumed that all 
policyholders entering at some ages were all living, and that, apart from two 
groups, those entering at other ages were all dead; and, secondly, the groups 
chosen would depend on the valuation basis, which was an estimate of expected 
future, not of past, experience. 

To narrow the range further the authors had first applied a persistence rate to 
reduce the upper and lower bounds of the individual Sx, and then, by a more 
refined application of persistence rates, they arrived at a single value for the 
valuation of the group. 

Up to and including §5·1, the results depended on facts, but thereafter they 
depended on a combination of fact and more or less reasonable assumptions. 
Once assumptions were introduced the result could be made pretty well 
whatever was wanted, and it seemed to him that the assumption that Sx lay 
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between ·2S 
0 
x and ·8S 

0 
x for all x was too crude. He would prefer to work out the 

expected Sx based on and past experience and then use limits of, say, ex- 
pected Sx plus or minus three or four standard deviations. 

He thought that the use of linear programming to test an approximate 
method could be useful provided that the range between the higher and lower 
feasible values was not too great. Although that range would undoubtedly 
include the true value, there was no reason to suppose that it would be mid-way; 
it might be worth comparing the most probable value with the upper and lower 
values in a number of cases to see whether it tended to be nearer the upper or the 
lower limit. 

He agreed that it was desirable to use a computer if one was available. He 
had recently been using a fairly large computer for such problems, and matrices 
of the size under consideration would take about ten minutes each, or less, to 
solve. The main advantages were speed and, particularly, the accuracy of the 
answer. In working those problems out by hand it was very easy to go wrong. 
Moreover, it was very difficult to see that the calculation had gone wrong unless 
fairly elaborate checks were made, such as column sum or row sum, and then the 
calculations took longer. 

He asked the authors to expand their explanation of the check on the Z 
method. He had always understood that it was not possible to optimize more 
than one thing at a time. How, therefore, did they arrive at the upper and lower 
values of the difference between the value of the sums assured and the value of 
the premiums? 

The definition of a basic feasible distribution as a feasible distribution which 
contained (n — k) zero elements and k non-zero elements occurred in §2·2, but 
there were also references in §5·1 to a lesser weight at exactly two of the points 
and on page 19 to precisely two part-filled points. In practice those were often 
true, but there was the possibility of degeneracy and it was better to define a 
basic feasible distribution as a feasible distribution which contained at least 
(n — k) zero elements. In the same way there could be less than two part-filled 
points. 

Another point concerned Construction II on page 17. When, as in that case, 
the matrix had a particular form, it was desirable to make use of that fact if the 
full set of calculations were to be reduced, and the authors had done that very 
neatly. He would, however, suggest an alternative method which might, per- 
haps, be simpler in application. It was as follows: 

To find, for example, the maximum: join the two points which straddle 
and which would be chosen if there were no individual limits, and give one of 
them its upper limit. Mark that point as filled, and recalculate , which 
would move to the left or right. Proceed as before until two points were less 
than or equal to their upper limits. Join those points and extend the line in both 
directions, then check that all points previously filled were above that line. 

Mr S. S. Townsend pointed out that it was virtually impossible for a large 
industrial assurance office with millions of policies in force which was introducing 
an approximate method of valuation and thereby discarding its full valuation 
groupings to reconstitute its original groupings, without sorting millions of 
cards. The office therefore had to have a greater degree of confidence in its 
approximate method of valuation than, for example, a medium-sized ordinary 
office which could recreate its original data far more easily. 

Although the industrial branch policy record card was usually referred to as a 
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valuation card, that was a misnomer, since its purpose fundamentally was for 
movement and accounting. 

No satisfactory method of approximate valuation for industrial policies 
maturing at age 65 had as yet been published and any of the orthodox approaches 
invariably broke down in one or more important particulars. Austin’s method, 
which worked very well for policies for a fixed term of years, was unsatisfactory 
when applied to policies for a wide range of terms. Although the office would 
be faced with having 2000 individual valuation groupings eventually, the volume 
of business in force was likely to remain a fairly small proportion of the total 
business in force. The greater the need, therefore, to devise some method 
of reducing that vast array of groupings. 

The authors, with the aid of linear programming, appeared largely to have 
solved the problem but they were careful to say, with regard to other classes of 
business, that the techniques which they suggested should not be regarded as 
superseding existing methods but could run parallel to them. 

He had two comments to make on points of detail. In §14.3 the authors con- 
cluded, ‘both now and after any reasonable change in the valuation basis’. He 
felt that that was a possible over-simplification. If they considered an office which 
over the past generation had changed its valuation basis on six separate occasions 
and had in the process moved from OM4% to C.M.I. 1947–48 2%, he won- 
dered whether the authors’ assertion would apply so confidently not merely to 
each change of basis but to the series as a whole. 

The second point was essentially practical and concerned Fifth Schedule 
requirements. The suggested grouping for the approximate method of valuation 
was by year of issue, which, of course, did not help in any way towards supplying 
the data by year of maturity for the Fifth Schedule. The authors dealt with that 
by saying that they would have a year-of-maturity classification of totals, which 
incidentally provided a check on the present values of sums assured. It did not, 
however, give the bonus additions by year of maturity. The authors anticipated 
that by saying that since the total bonus for each year of issue was known, it 
could be spread by applying the (a + bx) method, so obtaining an assumed bonus 
at each age of entry which could be collated by year of maturity. The snag was 
whether those figures would be acceptable for Board of Trade purposes. If 
they were, it would be tempting to go a stage further and apply the same method 
for the sums assured and the office premiums and in that way dispense completely 
with a year-of-maturity classification. But since the sum assured and the office 
premium were the basic elements of the contract, he thought it was asking too 
much to expect assumed figures of that nature to be accepted. Bonus additions 
fell into a slightly different category and, moreover, the figures upon which 
assumptions had been made formed only a small proportion of the total bonuses, 
so that basis might perhaps be acceptable. 
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form of selected sample which would give a better result, although the extent 
of the improvement could not be measured? Perhaps that suspicion was ground- 
less. 

The authors said in §9 that ‘Provided all the available information is used in 
establishing the limits of the range of feasible values there will remain no criterion 
for judging any one value between the limits as “better” than any other. A prin- 
ciple of indeterminacy applies.’ In other words, they were treating any feasible 
value which arose as equally likely with any other feasible value. The possible 
range was between the minimum and the maximum value, and the best estimate 
would be halfway between those two, with a maximum error of half the range. 

But was that the most reasonable solution of that indeterminacy problem? 
Surely it would be nearer the mark to say that any feasible distribution was 
equally likely and that, while the maximum or the minimum value would usually 
be given by one feasible distribution only, there would be a considerable number 
of such distributions which gave (or approximated closely to) any particular 
value in the middle of the range. That led to a frequency curve—he imagined in 
most cases a normal curve of error—and the best value would then be the mean 
of that curve (not necessarily the mean of the maximum and minimum) and the 
range for practical purposes would be two or three times the standard deviation, 
which he thought might well be less, in many cases, than the total possible 
range. 

If the tabulated information was completely restricted to the total sum assured 
and total office premium, was it not a fact that their general knowledge of the 
business would tell them immediately that the business was not all concentrated 
at one or two particular ages but was spread, either reasonably uniformly or 
perhaps in a frequency distribution? If so, surely they could bring that general 
knowledge into their method of approximate valuation or use it for the purposes 
of assessing the value of such a method. In §9 the authors refer to a ‘smooth’ 
distribution which approximates ‘closely’ to the actual distribution, but it was 
not clear whether what they had had in mind was precisely the same point. 

In §5.1, the procedure described appeared to involve a substantial tabulation 
and a considerable amount of calculation; when it had all been done he could not 
feel sure that a better result was obtained than could be got merely from a 
general knowledge of the run of the distribution. 

In §12 there was a reference to the n-point method, but the authors’ treat- 
ment of that would, he thought, be better headed ‘2-point method’. The n-point 
method included several other applications which would go beyond the 2-point 
form. Even assuming that the given data were limited to the three equations 
given, 12 (i), 12 (ii) and 12 (iii), a better value would usually be obtained by 
using three points rather than two, bringing in the principle of general know- 
ledge of such distributions. Thus, if the third moment of the distribution were 
taken as zero and the fourth moment were assumed to be equal to 2.5 times the 
square of the second moment, the required value became 

where 
That would usually give better results in practice than the 2-term formula. 
He concluded with a query on the authors’ criticism of the Z method. He 

could not see that the fact that the distribution was not feasible as regards the 
entry age would necessarily have any effect whatever on the feasibility of the 
value of the sum assured, which depended only on maturity age (or attained age 
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derived from the maturity age by deducting a fixed term outstanding). The dis- 
tribution by entry age might affect the value of the net premiums but not, surely, 
the value of the sum assured. 

Dr S. Vajda (a visitor) said that whether by accident, by trial and error, or by 
systematic searching, the authors had found a new technique which, apparently, 
was useful for a purpose which they had in mind. They used their programming for 
their actuarial purposes, but another aspect of what they were doing might usefully 
be mentioned. Linear programming in its traditional application dealt with eco- 
nomic problems, where there were scarce commodities and where there was 
competition for them. The question was how to use those commodities in a way 
which raised something to a maximum or—and that was a separate problem- 
reduced something, such as cost, to a minimum. 

The paper, however, did not deal with scarce commodities and, in fact, the 
authors had used a mathematical technique for a different aim; in order to get 
where they wanted they applied a rather interesting twist which he had never 
seen before in the literature of linear programming. That was the fact that they 
were not looking for a maximum only or a minimum only but for both at the 
same time. 

When they had done that, the authors had also mentioned certain geometric 
representations. If he had understood the opener’s remarks on how Construc- 
tion II could be slightly altered, he hoped it would be agreed that even then it 
was worth mentioning what the authors said on page 19, ‘It can be demon- 
strated algebraically that the optimum basic feasible distributions will contain 
some filled points, precisely two part-filled points and the rest empty.’ That was 
useful, because it told them how many points and what type of points they 
ought to look for, whatever method of geometrical approach was used. 

The authors had used linear programming for approximation. As they had 
said, many other methods of approximation were possible, more, indeed, than 
they had mentioned. But it seemed to him that they had added a new idea by 
saying in effect, ‘We like this method because it leads us to an approximate value 
which is “possible” ’. That was what they meant by ‘feasible’. No doubt he 
would be contradicted about that; indeed, he had already been contradicted by 
Mr Jones, who was quite right to say that such an interpretation could not be 
made when there remained, eventually, only two points to be considered. 
However, the authors could be trusted to sort that matter out in their answer. 

Now that linear programming had found its way into actuarial literature, he 
hoped that it might be used for other purposes, too. Two examples came to 
mind. One was the question of investment; after all, money was a scarce com- 
modity. The second was a possible application of linear programming when a 
large office considered the locations for its mechanization department, for its 
records branch and for other places where it kept documents, taking into account 
the necessary transportation costs from various sources to various destinations. 
It would be very pleasant if further applications of the new technique were 
published soon. 

Mr A. W. Joseph complimented the authors on a delightful paper. By consider- 
ing a particular valuation problem, the authors were able to give the reader a 
good introduction to the methods of linear programming, including a simple 
solution of the linear programming problem with two constraints. Furthermore, 
Construction II of the Appendix was an ingenious solution of the problem 
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where, in addition to two general constraints, there were other constraints of a 
very simple kind. 

The valuation problem on which the paper was based was not important. In 
modern conditions, the class-book method of keeping records was replaced by a 
file of summary punched cards, each card containing the valuation data for each 
combination of year of entry and age at entry; punched cards with the valuation 
data for all ‘ons’ and ‘offs’ were machine sorted, merged with the summary 
cards and passed through tabulators to produce new summary cards. Thus, the 
clerical work which the authors sought to avoid was not material. But, of 
course, the value of the paper did not lie in its application to one particular 
problem, but in its salutary challenge to existing modes of thought on approxi- 
mate methods of valuation. 

Of the two items, data and valuation factors, which were multiplied together 
and summed in a valuation, the one which had always seemed the more amenable 
to treatment had been the valuation factor, because of its comparative regularity. 
Thus, the formulae associated with the names of Henry, Kenchington, King and 
Perks had been obtained by assuming that the valuation factor might be repre- 
sented by a polynomial. Trachtenberg had differed a little from other authors by 
paying some attention to the valuation data. Until he (the speaker) had seen the 
authors’ paper he had always thought that Trachtenberg was wrong in making 
approximations to irregular valuation data, but perhaps he had had the right 
idea after all. Certainly had he left the valuation factors severely alone, which in 
fact he had not done, he would have been a true precursor of the authors. 

The paper was admirable in the attention which it paid to basic data. Dif- 
ferent methods of approximate valuation were sometimes compared in such a 
way as to mask the fact that the basic data going into the formulae were not the 
same. For example, on pages 12 and 13 of the textbook Approximate Valuation, 
by Bizley and Lacey, an approximate valuation by Henry’s method was given, 
producing a total value of sums assured of £543,590, which compared with a 
true value of £543,296. The data on which the approximate valuation was based 
consisted of sums assured in eight quinquennial groups. On page 29 the method 
of A. E. King was used to make an approximate valuation of what seemed to be 
the same data, and it produced the better approximation of £543,347. But for 
King’s method the weighted mean age in decennial age groups was also given. 
In effect, the textbook had used a second summation in each decennial group. 
Thus the example of the textbook had not compared the accuracy of the two 
methods but only the amount of basic data used. 

The only criticism he had to make of the structure of the paper was that at 
times it was difficult to disentangle linear programming from what was not 
linear programming. The method of §6 produced a spectacularly successful 
result, and because it produced a feasible value it might be regarded as an 
application of linear programming, but there were other ways of producing 
feasible values. For example, the averages of the minimum and maximum 
feasible values shown in the table in §7·1 were very good values indeed, being 
76,176 for (B) and 76,075 for (C) and (D). 

It was worth while paying some attention to the method of §6. That was a 
particular case of something much more general which had interesting implica- 
tions and which had nothing to do with linear programming. 

The problem was to evaluate Σ SxVx over a range of values of X, where SX was 
the sum assured and VX the valuation factor at age x. He assumed that SX might 
be represented approximately by the expression aƒ1(x) + bƒ2(x) + cƒ3(x). (Three 
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functions had been used, but, in fact, the method was quite general and would 
apply to n functions. In §6 the authors used two functions, S 0 

x and xSX, to 
approximate to the persistence rate rX.) 

He also assumed that the constants a, b and c were obtained by means of 
three more functions, Ø1(x), Ø2(x) and Ø3(x). An equation in a, b and c was 
obtained by multiplying SX and its representation in terms of ƒ1(x), ƒ2(x) and 

ƒ3(x) by Ø1(x) and summing over the range. The same process was applied using 
Ø2(x) and Ø3(x) in place of Ø1(x). When all that had been done and the values of 
a, b and c as obtained from the three simultaneous equations were substituted in 

the result was the following quotient 
of two determinants: 

The approximation given by the expression was obviously exact if, in fact, SX was 
equal to and not just approximately equal to aƒ1(x) + bƒ2(x) + cƒ3(x). But it so 
happened that each of the two determinants was symmetrical with respect to the 
ƒ functions and the Ø functions. It therefore followed that the method also pro- 
duced an exact result if the valuation factor Vx was exactly equal to 

α , β , γ being constants which were determined by reference to functions ƒ1(x), 
ƒ2(x) and ƒ3(x). 

The application to the paper was that the functions ƒ1(x), ƒ2(x) and ƒ3(x) were 
respectively S 0 x , xS 0 

x and zero and the functions Ø1(x), Ø2(x), Ø3(x) were respec- 
tively unity, and Px zero. The authors’ observation in §6.2 that their method 
yielded exact results if Vx were linear in Px or if S x /S 0 

x were linear in x was an 
example of the symmetrical property which he had mentioned. 

Another example of the symmetrical property was given by the version of 
Henry’s method outlined in J.I.A. 54, 313–7. In that case functions ƒ1(x), ƒ2(x) 
and ƒ3(x) were respectively 1, x and x2 and the same expressions were taken by 
functions Ø1(x), Ø2(x), Ø3(x). Thus, an approximate method of valuation was 
obtained on the assumptions that the valuation factor Vx was approximately of 
the form a + bx + cx2. When that approximation was exact the method gave exact 
results. But the method also gave exact results if the sum assured tabulated at 
age x was represented by a + bx + cx2, no assumption whatever being made about 
valuation factors. 

That gave him the opportunity to voice a small disagreement with § 14.1. The 
authors said, ‘In order to ensure that a feasible value is obtained (a) any approxi- 
mate method should use or imply the use of a feasible distribution, (b) no 
approximation should be made to the factors themselves.’ His quarrel was with 
(b). The Henry method, to which he had alluded, was developed by making an 
approximation to the valuation factors. Hence, the authors would imply that 
the Henry method could not be depended upon to produce feasible values. But 
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that was not so, because the Henry method produced exactly the same result as if 
no graduation of the valuation factors had been made, but the sums assured had 
been graduated by the formula a + bx + cx2; and such a graduation of sum 
assured would almost always lead to a feasible distribution. 

Linear programming as applied to actuarial work was new, and time was 
needed to see whether the method would prove in the long run to be of real use. 
He had a distaste for graphical methods even though, as in the paper, the graphs 
were used only to find the place where a solution might be expected. He hoped 
that the authors and other members of the Institute would be encouraged to 
develop the technique of linear programming. Their work might prove valuable 
outside the profession. 

Mr F. M. Redington said that the paper left him with the impression of, and 
was as attractive as, a landscape dappled with alternating sunlight and shadow. 

He had seen with growing interest and rising hopes the light which was 
thrown on the subject by the rigorous analysis, in the first four sections, into 
feasible distributions. That phase of the paper culminated with the final words of 
§4·3, ‘it is impossible to obtain an actual value outside these limits by any dis- 
tribution whatsoever’. The authors might have added there the equally dramatic 
point that ‘given the information in our possession it is possible to obtain any 
value within these limits’. 

At that stage, however, while the method was admirable, the range of the 
results was too wide to be of practical value. A standardized range of over 1% 
was too much. It was worth pausing at that point to note that the smallness of 
even that range was attributable largely to the special valuation problem which the 
authors were considering. Had they taken whole-life policies they might have 
had a range of error of 20%–30%. 

It was possible that a practical trick to give good results would be to inter- 
polate between the maximum and minimum values in the same proportion as 
the true value for the preceding year lay between the then maximum and mini- 
mum. He would not pursue that because the authors had a better device, but 
not before the shadow of §5 had fallen over the scene. 

In §5 the authors pursued their linear programming by adding the partial 
constraints that the sum assured at each age could not exceed the sum assured 
originally issued. That was an interesting examination, particularly the visual 
insight into what was happening given by Construction II. But the problem 
was beginning to slip through the fingers of the linear programming method. 
He had thought that the labour was outside the area of practical possibility; but 
the authors had told him that an intelligent girl could do it in an hour, and they 
had made the point that although Construction II was a little difficult it could 
largely be done in advance immediately the policies had been issued. Neverthe- 
less, the feasible range was still not narrow enough. 

The sunlight came back very brightly in §6. The assumption that the rates of 
decrement were linear in age led to extremely accurate and eminently practicable 
results. The one fault he had to find with the paper was that it failed to make the 
point explicitly that that powerful assumption was hardly ‘linear programming’. 
The authors made two successful approximations via linear programming and 
threaded their way towards the centre of the maze; but then they became 
impatient and jumped over the hedge into the middle. He did not know whether 
they would agree with that comment. The solution the authors reached was not 
necessarily a ‘feasible distribution’. They seemed to be worried if (a + bx) 
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should fall outside the range of 0–1, but he would not be unduly concerned; the 
method would be equally good, although it would not be a feasible distribution. 

The authors had been exceedingly modest in presenting the results of their 
(a + bx) method and could have tied their parcel a little tighter. In §8·1 they said 
that as soon as the totals and were available, a and b could be found and 
hence the reserve. It was simpler than that, and more effective, for there was no 
need to calculate a and b. Given the (a + bx) assumption, the reserve at time t 
was equal to where α t and β 

 

t had been calculated in advance, and, in 
fact, could be calculated on the first day of January of the year after issue. 

The following was the formula: If S0, P0 and tV0 were the totals of the sums 
assured, office premiums and reserves at time t under the business originally 
issued, and and were the first moments of those items with regard to 
age, then 

More work was, of course, involved but it was all done in advance. The amount 
left to the actual valuation was trivial and the error, it should be noted, was com- 
parable with an error of 2 in the last place in the annuity tables. It was a very 
powerful method indeed. 

The authors’ examination of other established methods was interesting, but 
there was just a hint that they were judging them too closely from the special 
angle of linear programming. Their own highly successful (a + bx) method, which 
must surely find a place in actuaries’ established techniques, was not strictly 
linear programming, and he felt that the authors might, with a grateful wave to 
linear programming for bringing them so far, say ‘au revoir’ to it, but not 
‘adieu’, and pursue their (a + bx) method into wider fields. 

An important point about the method was that it gave a distribution of the 
data which satisfied two extremely powerful conditions—that the sum assured 
was right and that the premiums were also right. That was more powerful than 
having the first or second moments, because the premiums were intimately 
connected with the problem being solved. While the use of the method of tracing 
policies back to issue was good, even more powerful results would be obtained 
by springing from the previous year as base. The method might have wider 
application than the rather simple case of industrial policies all tabulated by 
year of issue. He had not had an opportunity to test it, but he would like to test 
it on a block of ordinary endowment assurances tabulated according to year of 
maturity. The method would still give good results and the formula which he 
had suggested could basically be used. 

Computers might alter the picture. A great deal of work in advance and at 
leisure might be no handicap when computers were available, and could be readily 
exchanged for a saving of work at the time of valuation. 

Mr B. Benjamin welcomed the paper, first, because it was elegantly written and 
was a thoroughly competent piece of work making use of a technique normally 
considered outside the sphere of actuaries. He did not think that it mattered 
very much that the authors departed from the strict rules of the game of linear 
programming because the result was effective, and in a sense it was perhaps a very 
good thing that they were prepared to improvise what seemed to them to be the 
best techniques for the solution of their problems. They had marked out an area 
of precision in approximate methods which hitherto had been entirely pragmatic. 
They had also thrown valuable light on the more efficient organization of data. 
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The second reason for welcoming the paper was perhaps more important—at 
least, more important to him. When the formal treatment of statistics was given 
greater emphasis in the syllabus of the Institute examinations, it had been an 
act of faith because it had been thought, he believed rightly, that a new type of 
actuary would emerge with a wider horizon and a greater knowledge of the 
tremendous advances which had been made in statistics in recent years—an 
actuary who would be able to bring that knowledge advantageously to his ordi- 
nary work. He thought they were beginning to see results, and certainly the 
paper was a very good example. He felt sure that it was only one example and 
that many more actuaries would pick up the new techniques which were avail- 
able. He believed that out of that transfusion of ideas the actuarial profession 
would begin to move forward more rapidly, that there would be more experi- 
ment and that their knowledge would be correspondingly richer. 

Mr R. H. Daw was interested to experiment on the situation described in §4 in 
order to see whether the average rate of premium, or the duration since entry of a 
block of industrial branch business, affected the degree of indeterminacy in the 
net liability. For that purpose he had used a set of industrial office premiums 
for endowment assurances maturing at the age of 65 and the A 1924–29, 3% 
reserves. (He had used that basis simply because the figures were readily avail- 
able to him.) He did not think that the results of that investigation were of 
much interest in themselves, but he felt that they might be of some use because 
of the light they threw on the graphical methods described by the authors. 

The first thing he found when using Construction I was that the points result- 
ing from plotting V x against P x were rather close to a straight line. That should 
have been expected from the remarks in §6.1 that V x might be nearly a linear 
function of P x . The effect, however, was that the convex region was not nearly 
as easy to draw as he had expected from Fig. 1. That figure was, of course, for 
illustrative purposes and he was not criticizing it. It was, however, not easy to 
decide from his graph which were the appropriate ages to use in the equations 
for S i and S j in §4·2. While the choice of ages had some effect on the final result, 
it was not very large. He thought, however, that the fact that the points plotted 
were not very far from a straight line might be found more troublesome in 
Construction II, where it was necessary to decide when each point was crossed 
by a moving line. The moral of all that was that a large and very carefully 
drawn graph was required if reasonably accurate results were to be obtained. 
He had used a graph of foolscap size and that had certainly been much too 
small. 

He had then tried Construction III on the same problem, using a graph of the 
same size. That method involved more work in determining the points to be 
plotted, but, at any rate in his example, it gave a wider convex region and one 
rather easier to draw. In fact, it was the better method. 

A point to remember about the two constructions was that the graph of 
Construction I could be used for blocks of business having various average rates 
of premium whereas Construction III required a separate graph for 
each average rate of premium. 

Mr J. Stringer (a visitor) said that the Central Electricity Authority had a problem 
of deciding how to share out the coal which the National Coal Board supplied 
between the various power stations in such a way as to give minimum transport 
costs. That was one of the ‘allocation of scarce resources’ problems to which 
Dr Vajda had referred. 

(i.e. )
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In one case they had found that the method of coal allocation already in use 

was giving an answer within 4% of the optimum found by calculation. They 
had thought 4% not too bad. But in that case, although 4% away from the 
minimum, they had been only 2% from the maximum. It was of value to 
explore the possibilities in the data at their command by the technique of linear 
programming. 

It was natural to assume that an electronic computer would solve a fairly 
complicated problem more or less straight away, but they had been able to deal 
with problems of transportation by hand, using a few dodges similar in principle 
to the methods of the paper, although not graphical, in a time which made it 
doubtful whether it was worth paying to have them done by a computer. Those 
were fairly large problems, involving more equations than in the paper, and they 
were of a particular class which made solution by hand in that way possible, but 
in the general case also they had to think carefully before using a computer. 

He had another method for solving a particular group of problems, and it 
might have an application where the same type of problem occurred frequently 
but with different numbers substituted. That was to use some sort of mechanical 
analogue. The construction which he had had in mind made use of a property 
that if a system of pulleys and weights and levers or some such mechanical 
system were connected up and knocked and tapped, then it would settle at a 
position of equilibrium with minimum potential energy. He could explain that 
only with a three-dimensional blackboard, but the property could be used to 
solve linear programming problems. If they could find the minimum for any- 
thing, they could postulate a related problem to which that gave the maximum. 

A point which seemed to be peculiar to linear programming was that the more 
complicated a problem was made and the more restrictions added, the more 
quickly it could be solved. That seemed to be unique in mathematics. 

Mr K. A. C. Wheeler said that the paper provided a powerful method of 
making an approximate valuation. A valuation in itself was an attempt to set up 
a figure which in certain economic circumstances was the reserve required by 
the office. The assets which matched that reserve consisted of investments of 
various types, some with known interest rates and some with unknown rates. 
But the whole integral of the valuation related to the valuation of the assets and 
the valuation of the liabilities. The answer produced was in terms of surplus. 

There had been papers on matching, and it had occurred to him that the 
techniques of the paper might be applicable not only to valuation problems, but 
also to asset problems and surplus problems as an equally powerful method of 
arriving at approximate results. 

Mr H. W. Haycocks, in closing the discussion, said that, as he had expected, 
the discussion had been directed to linear programming on the one hand and 
approximate valuation on the other hand, rather than to the application of linear 
programming to approximate valuation. The authors were perhaps themselves to 
blame somewhat for that. Before criticizing them in any way, he wished to say 
that he thought the authors had written a very interesting paper and had solved a 
practical problem in an ingenious and novel way. 

He did not think that the authors had presented their results in the way in 
which they had arrived at them, a conclusion which Mr Townsend had con- 
firmed. That was quite usual; normally results were arrived at first and then 
organized in a tidy manner. The authors, however, might have given the impres- 
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sion that they were setting up linear programming as a general and possibly best 
method of tackling approximate valuation. On the first page they commenced 
with some general principles about grouping and accuracy and showed that in 
certain cases linear programming gave satisfactory results. They then tried to 
judge traditional methods according to linear programming criteria. They had 
gone a long way in the right direction but he did not find their case completely 
convincing. 

In practice, of course, the authors had not approached the problem in that 
general manner. They had taken a classification in use in their office and had 
wanted to cut out one of the variables—age at entry. They had asked themselves 
whether it was possible to use an approximate valuation method with only the 
resulting data. Presumably they had tried traditional methods and had found 
them wanting; indeed, there was a hint at that in the paragraph relating to 
Austin’s method. But it would have been better had they started that way and 
shown to what extent traditional methods were wanting and why, for their 
problem, they had found it necessary to use a new method. The technique was 
new to them and as Dr Vajda had said, they were clever to notice so quickly that 
the mathematical form of the linear programming problem was the same as that 
underlying their problem. 

As Mr Townsend had pointed out, the problem was not just a matter of 
approximate valuation. The grouping chosen must satisfy certain requirements, 
not only those of the Board of Trade returns but also the provision of informa- 
tion for internal purposes other than valuation, and it might also be undesirable 
to change existing methods too much. Traditional methods had been well tested 
for the purposes they served. 

In the usual linear programming problem it was the actual distribution which 
would, for example, minimize cost or maximize profits that was required. If the 
authors had set themselves out to find a distribution of sums assured which in 
practice would maximize or minimize their liability, their problem would have 
been of the usual type, and the obtaining of a feasible distribution would have 
been a necessity. However, that was not so in the problem which the authors 
were trying to solve. 

In dealing with the Z method they required a feasible distribution of sums 
assured which optimized the net liability, and the same distribution, he thought, 
would be taken for valuing the sums assured and valuing the net premiums. 
They would not optimize two things. 

The great advantage of the authors’ method was that it gave the range within 
which the actual value lay, and provided that was very narrow, the method was 
successful; if that were not so, however, the problem was more difficult to handle. 
In such cases they would have to rely on traditional methods, applying the kind 
of empirical tests that had been used with those methods. 

Good results depended on the approximate linear relationship between V x and 
P x . In his 1933 paper (J.I.A. 64, 264), Perks had noted that those functions 
were approximately of the same form, which implied a linear relation between 
them. Perks had adopted the form an + b + c/n and had used it in order to find 
two terms at which to distribute the total sum assured. It was, therefore, likely 
that the use of the constraints Σ nS and Σ S/n might give a narrower range than 
the use of Σ xS and Σ x2S. 

In the discussion on Perks’s 1946 paper (J.I.A. 72, 377), both he and Redington 
had suggested that a generalization of Perks’s method was to choose suitable pro- 
perties of the actual distribution of S x or S n and find a simple distribution which 

3 AJ 
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possessed those properties. The simple distribution and the true factors were 
then used to make the valuation. The authors ended the paper with the state- 
ment that the problem was reduced to that of finding better information 
functions than the office premiums. The ideal was a function which was related 
linearly to t V x . In a way, the authors put the suggested generalization in a much 
more definite form. 

The authors had pointed out that in practice they would have to be content 
with approximate linearity. He would have thought that net premiums would 
give better results than office premiums. He had tried a few experiments with 
net premiums and he had found the linear relation to be very nearly exact. In so 
far as the office tabulated net rather than office premiums, it should obtain even 
better results than those obtained by the authors. 

He had thoroughly enjoyed trying to understand the paper; it had required 
much more than mere reading. Any actuary who did not find the idea fascinating 
and the neat method of solving an equation exciting must have lost some of the 
characteristics which first made him take up actuarial work. He thanked the 
authors for an extremely interesting paper, and for the same reasons as Mr B. 
Benjamin he was glad that it had been presented to the Institute. He hoped that 
some of the younger members would take up the ideas to see whether they could 
not apply them to organizational methods in life offices. 

The Chairman (Mr M. E. Ogborn) said that the joint authors made an unusual 
team in that much of the paper was undoubtedly written while Mr Benjamin, 
who had just gained his Fellowship, was studying for the examinations and while 
Mr Bennett, who had since been appointed an examiner, was still a tutor. The 
authors deserved warm commendation for having produced a paper in such 
conditions. 

Of necessity a sessional meeting could be devoted to the discussion of a com- 
pletely new technique on comparatively few occasions; that evening was one of 
them. Any new method tended to attract its own critics. He almost blushed to 
mention the avuncular advice that it was better to travel hopefully than to arrive, 
but the paper was one of the occasions of which that was literally true. He 
thought that the authors did not set out to find any particular method of 
approximate valuation; they set out to explore the possibilities of linear pro- 
gramming. In that sense, the journey was the end itself; it was more important 
than the end reached. 

It was appropriate that the Institute should discuss new methods, even if in the 
end they did not bear the fruit expected. 

In the Board of Trade returns, actuaries had been accustomed to producing a 
great mass of figures which in the end came to one figure which was put in as the 
valuation liability. The activities of linear programming would be directed to 
defining an area within which the liability lay. That might be startling to the 
Board of Trade, but it was not necessarily wrong; it was a problem to be con- 
sidered. In certain circumstances it would be more appropriate to put in the 
maximum value obtained by the methods of linear programming, particularly if 
dealing with a relatively minor class. Apart from that, it must be remembered 
that, in addition to the valuation liability all sorts of other reserves were made, 
and the way in which the valuation liability had been calculated was considered 
when the additional reserves were made. 

Were they to produce one value or an area? They were grateful to the authors 
for giving them the opportunity to discuss linear programming and hoped that 
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their ideas would bear fruit in the years to come. In proposing a vote of 
thanks he especially added the thanks of the Research Committee, of which he 
was Chairman. Operational research was one of the subjects on the Com- 
mittee’s agenda; in stimulating interest in the subject the paper had done a good 
job, and the Committee were grateful to the authors. 

Mr Bennett, in reply, thanked the meeting for the reception they had given to 
the paper. It was difficult to formulate verbal criticisms of a paper which was 
largely algebraic, and therefore the authors were grateful to those who had 
spoken, but by the same token it was equally difficult to reply verbally to such 
criticisms. 

The opener had objected to the authors’ two-point maximum and minimum 
and had given two reasons for his objection. The first was that the underlying 
distributions were inherently unlikely and the second was that the points chosen 
depended upon the valuation basis. The answer to the first objection lay in 

§14·2; in considering the Z method, they had found in practice that a plot of Z 
against the single premium was in most cases convex to the abscissa throughout 
its length, and more often than not the valuation data were clustered around the 
mean age. In such circumstances the true distribution might give a value in- 
herently likely and very close to the two-point minimum. So would a large 
number of inherently likely distributions. The actuary usually liked to be pre- 
pared for the worst, and the two-point upper and lower limit prepared him. In 
case the size of the range was sometimes frightening, it was worth mentioning 
that it was axiomatic that inherently likely distributions could not simultaneously 
yield values close to the maximum and close to the minimum. They might be 
close to one or the other, but he did not think they could be close to both. 

As for the second objection, while he agreed that the valuation basis might be 
an estimate of the future, it was, nevertheless, a decision of the past, and it seemed 
to him that the objection was largely irrelevant. In the event of the valuation 
basis being changed, all they did was to recalculate the two-point maximum or 
minimum. 

The opener’s criticism of their check on the Z method, however, had been 
valid. He had pointed out that in §13 they had sought to optimize two expres- 
sions, present value of sums assured and present value of net premiums, but if 
the net liability was under consideration it would be necessary to optimize the 
difference between those two expressions. 

The methods outlined in the first part of the paper had come in for consider- 
able bombardment, but some of the criticisms, although legitimate, had over- 
looked the fact that Part I was largely an illustration to show what could be done. 
Had it been a different block of business of a different class, they might have 
adopted different methods. The fact that the (a + bx) procedure was used was 
neither here nor there. Had they had a block of whole life policies they might 
have finished with something quite different. 

Furthermore, it was stated in § 14 that the techniques, at least in the first part 
of the paper, were not to supersede existing methods but to run parallel to them. 
If the paper had any merit it lay there. They had introduced a new tool, and 
although at the moment it might have only a limited application on its own—he 
personally felt that it might soon have very wide applications in conjunction with 
computers—nevertheless, it could be used in conjunction with existing methods 
and was a valuable addendum to them. 

It had been objected that the r x method was not linear programming. That was 
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true, but if they had introduced their (a + bx) method in the second paragraph 
of the paper and produced a good result, would there not have been criticism and 
scepticism? Without the rather tedious introduction and building up of the data, 
it was unlikely that anybody would have accepted the (a + bx) method. It was 
not until the use of linear programming had shown that the range was exceedingly 
small that anybody could be moved to place any reliability in it. 

Mr Joseph had criticized the remarks in §14.1, where the authors had said 
that no approximation should be made to the factors themselves. The text, 
however, was merely a statement of fact that in order to be sure of a feasible 
value they had to have a feasible distribution and use the true factors. 

He thanked the authors’ office colleagues for their helpful criticisms and 
encouragement during the long period of gestation of their first-born. He also 
expressed gratitude to their departmental colleagues, who had helped, quite 
undismayed by the many abortive experiments and calculations inevitably 
associated with such a paper. 




