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ON THE APPLICATION OF QUANTUM MECHANICS
TO MORTALITY TABLES

BY R. D. ANDERSON, F.I.A.
Assistant Actuary of the Commercial Union Assurance Co., Ltd.

If you have had your attention directed to the novelties in thought in
your own lifetime, you will have observed that almost all really new
ideas have a certain aspect of foolishness when they are first produced.
Prof. A. N. WHITEHEAD, Science and the Modern World.

PART 1. INTRODUCTION

1. Quantum Mechanics is a portentous name ; the alternative—
Wave Mechanics—is almost as bad. The mathematics are formid-
able, the literature large and growing rapidly, and the subject-
matter dealt with is the behaviour of physical things, such as
electrons, protons, atoms, and so on. Why, then, should actuaries
as such take any interest in the subject?

Because it is an application of the statistical theory of prob-
ability, and one of the objects of the Institute, for which it
obtained its charter, is 'the extension and improvement of the data
and methods of the science which has its origin in the application
of the doctrine of probabilities to the affairs of life. ...'

We, as well as physicists (or ought I to say scientists?), deal
with probabilities because we also are concerned with the un-
predictable behaviour of individuals. The formulae of Quantum
Mechanics may not be of any use to us, but the ideas and the methods
of their application are, because they may help us in our problems.

2. 'When a physicist predicts the result of an atomic experi-
ment', says Mr Gurney,* 'his prediction is often embodied in a
distribution curve. His recording instruments are not usually
sensitive to individual atoms, and in any case, the conditions of
experiment cannot be made sufficiently precise to enable him to
predict a single definite value for the quantity being measured.
Often the best he can do then is to express the expected result by

* Elementary Quantum Mechanics, R. W. Gurney, M.A., Ph.D.
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means of a curve showing the number of particles for which the
measured value will be, say, between q and q + dq. To such a
curve it will be convenient to give a name ; we will call it the pattern
of the predicted results, characteristic of the particular conditions
and apparatus used.'

We are acquainted with such curves and call them 'frequency
curves'. But the curves of the physicist are not the 'Pearson
group'; generally they are wave curves, such as, for example,

A cos A, B and λ are constants. This ex-

pression is the measure of the probability that a particle is at a
point x in a potential box within a certain critical boundary.
Outside this boundary the formula becomes Ce-kx + Dekx, where
C, D and k are constants. At the critical boundary the curves have
to fit on to each other. The latter curve is just two Gompertz
mortality curves (when x is positive, D is zero ; when χ is negative,
C is zero) back to back with the above curve in the middle. The
curves are 'wave' curves. Hence the name 'Wave Mechanics'.
But the waves are not waves of anything material. They are waves
of probability.

In order to make use of familiar terms, I have called the curves
Gompertz curves, but of course the physicists did not borrow
these curves from actuarial science. Neither do they base their
use of them entirely on experience. 'Of course', Mr Gurney says,
' we intend to predict the patterns from pure theory, not to obtain
them from measurements.' The method, therefore, is not empirical.
The pure deductive approach is, I think, best found in Sir A.
Eddington's Relativity Theory of Protons and Electrons. What the
physicists have done for physical statistics we ought to be able
to do for vital statistics.

3. The quantum physicist does not deal with absolute frequencies
but with the relative frequencies obtained by dividing by the
total number of observations. Thus the area of any strip between
the curve and the base becomes the probability that the result of
any particular observation has a value between certain limits. The
curve is then said to be 'normalized'.*

Suppose the thing observed is a function of several variables,

* Nothing to do with the ' normal ' curve of error.

where
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say three, x, y, z, the measure of the probability that it is at the
point x, y, z is  where
a1, a2, a3, a4 etc., are the probabilities that the observable is in a
certain state and the φ's are the states or frequency distributions.
Thus the probability required is an analysed composite like a
Fourier Analysis.

Eddington expresses it as follows:* 'The method of wave
mechanics is to analyse the whole probability of the system, which
must be unity, into the probabilities pa, pb, pc, ... of a set of
elementary states a, b, c, .... Then if qa (χμ, t) is the probability
of the configuration χμ at time t in the state a, the whole probability
of the configuration xμ at time t is

Stated in this way the method may be thought to be, one might
say, may be accused of being, inverse probability. In a sense, all
probabilities obtained by induction from observed facts are inverse
probabilities. † In this sense, which it shares with all other methods
of obtaining relative frequencies from statistics, it is inverse
probability. But it does not pretend to discover causes. It sets out
to describe what is observed and to analyse it, and claims no more
knowledge than what is obtained by observation and thought.
The probabilities Pa,Pb,Pc,..., are fixed but can vary according
to our state of knowledge. They are described as a 'probability
fluid'. When all the probability flows into one term, so that that
term becomes 1 and the rest 0, the observation relates to a thing
that has been observed in the state whose probability has become 1.
When the observation is over, the thing may pass into another
state, and there are new values of the P's (or a's) representing the
probabilities that the observable is in one of the different possible
states. This avoids the assumption, which did so much to bring
inverse probability into disrepute, that the probabilities of the
different states are all equal.

4. At this point it is necessary to mention a curious feature of
the theory, because it is a prominent feature, yet one which I have
felt compelled to discard in applying the ideas to our own statistics.

* Relativity Theory of Protons and Electrons, p. 115.
†Cf. The relation between probability and statistics, Dr W. F. Sheppard,

T.F.A. Vol. xII, p. 38.
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The probability functions of the different values of the thing
observed (the y'S) and the probability functions that the observa-
tion relates to the respective states (the a's) are not the probabilities
themselves but their square roots or moduli.

This is because physicists deal with motion in space, so that the
conception of distance enters into their observations, while they
use vectors for expressing their formulae.

Vectors do not involve any assumption as to how a distance is
measured. The metric is introduced later as a separate step.
Using them may be compared in some ways to working in decimals
instead of in £ s. d. or in rupees, annas, pies.

It is impossible to follow the mathematics of quantum mechanics
without having at least an elementary knowledge of vector analysis.
I have therefore devoted the next part to an excursus on this
subject, which can be omitted by those already familiar with the
theory of vectors. I am not, of course, professing to supply a
text-book on vector analysis, and I must refer those who require
formal proofs of the theorems and a complete account of the
subject to the standard works on it.

PART 2. VECTOR ANALYSIS

5. A vector, geometrically, is a directed line. It may be regarded
as an instruction to perform an operation, viz. the vector OP is

an instruction to go from Ο to P. (The name is derived from the
Latin—veho, I carry.)

A vector has length, but that only represents a comparative
measure of quantity and does not imply a measure of distance. One
could, for example, represent a number of balls of different colours
by a vector.* Choose three unit vectors at right angles, and call

* Cf. Space, Time, Matter, Hermann Weyl, p. 23.
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them R, B, Y, and let them represent the three colours red, blue,
yellow. Then 3 R + 5 B + 2 Y will represent 3 red, 5 blue and
2 yellow balls. All different combinations of balls of those colours
would be then represented by lines radiating from the origin.
A rotation of the vector to all possible positions, keeping its length
constant, would run through all reallotments of the same number
of balls, 10, to the different colours. Only those positions would
be possible that gave an integral number of balls of each colour.

The principal characteristic of vectors, as will become plain
when one considers their multiplication, is their direction. A
vector is independent of position, the vector not being localized
in any definite line. Like vectors are vectors with the same direction.

Vectors are accordingly compounded or added by the parallelo-
gram rule. If the vectors OR and OQ are added their sum is OP.

For if one is told to go from Ο to R and then go in the direction of
OQ as far as is equal to OQ one reaches P. It is plain from this
that OP, OQ and OR are not measures of length in the ordinary
sense which is based on the assumption that distances are com-
pounded by the rule given by the Theorem of Pythagoras (better
known to old-stagers as Euclid, Bk. 1, Prop. 47).

6. Let i, j be unit vectors along OQ and OR respectively.
(A unit vector is a vector whose square is 1, or — 1, as may be
defined.)

Then OQ can be expressed as xi and OR as yj, where the co-
efficients χ and y are the lengths of OQ and OR measured in those
directions and are called the co-ordinates.

Then OP=xi+yj.

This expression retains the same form whatever the directions
of OQ and OR, which we may now regard as axes along which the
vector OP is resolved, and whether the angle between OQ and OR
is a right angle or not, i.e. whether the axes are orthogonal or not,
and it can obviously be extended to any number of dimensions.
Thus the expression of a vector in terms of co-ordinates is ex-
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tremely simple, being just a linear equation of as many terms as
there are dimensions.

The most important case of resolutions of vectors is that in
which the axes are orthogonal.

If α and are the angles OP makes with OQ and OR respectively,
and r is the length of OP, called the scalar part of the vector, and
α + β = ½π,

and

7. Hamilton's idea in introducing vectors was
to find a method of multiplication that was not
continued addition. His quaternions were based
on orthogonal unit vectors i, j, k defined so that

 (i)

Thus

These vectors, therefore, anti-commute, that is, the sign is changed
if the order of multiplication is reversed.

In the elementary vector theory now in use, which departed
from Hamilton's quaternions, much to Tait's indignation (vide
introduction to Elementary Vector Analysis, by Weatherburn), the
unit vectors are defined by the relations

 (i)

 (ii)

 (iii)

the product i.j being called the scalar or dot product and ixj the
vector or cross product. (This notation for products is not uni-
versal; on the contrary, there are almost as many notations as
writers.)

Eddington when writing on quantum mechanics began ap-
parently by adopting the relations (for four dimensions)

corresponding to the iz=j2 = k2 = 1, but later changed to

(Relativity Theory of Protons and Electrons, Introduction and p. 21).

and

and

) (ii
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He thus appears to have returned to Hamilton's original defini-
tions, which seem better suited to the representation of physical
phenomena from a theoretical point of view.

I adopt Hamilton's definitions.
8. Let us consider the result of multiplying the vector

OP = r cos α.i + r sin a.j

by eky, where k is another square root of — 1 and eky as in De Moivre's
theorem is defined by the exponential series, so that

Thu

Thus the vector OP has been rotated through an angle y.
It will be observed that in order to rotate a vector in the plane

i,j we have to call in the aid of a vector orthogonal to both of them.
This can be understood by transferring our ideas to one of the

familiar 'balls in a bag' problems of probability.
Suppose we have 10 white and 5 black balls in a bag. On the

usual assumptions the probability of drawing a white ball is
Now we can represent the constitution of the bag as

where W and Β stand for orthogonal co-ordinates, whiteness and
blackness, two things which have each of them no element of the
other, which is the fundamental idea of orthogonality, in space or
elsewhere.

We can, provided we do not disturb the probability of for the
whole bag, regard the balls as divided into two lots and the prob-
ability of drawing a white ball from each lot as compounded of a
probability of selecting that lot and then drawing a white ball
from it, e.g. such an arrangement might be 6W 1B in one lot, and
4W 4B in the other. Then, provided the probabilities of selecting
the lots were and respectively, the probability of drawing
a white ball would still be being

(8.1)

(8.2)
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All such arrangements are permissible, and correspond to
choosing co-ordinates that are not orthogonal and do not represent
pure states. Changes from one to another are relativistic changes.
The one arrangement that has two pure states is the arrangement
1 0 W + 5B, or, when normalized, An arrangement having
one pure state would be, say, where
M stands for mixed, giving a probability of

Now how can this probability of 2/3 be altered? Not by any
conceivable rearrangement of the mental division into two groups
within the bag, i.e. not by any relativistic change, which is only an
alteration of description, but only by changing the colour of some
of the balls.

If we divide the balls mentally into the pure states, i.e. resolve
them orthogonally, the probability that, after one or other of these
states has been picked at random, a white ball will be drawn will
be 1 or 0.

Let us regard the probability, then, as made up of the prob-
abilities of performing the operations of selecting a state from the
pure states, drawing a ball from it and replacing the ball. On two-
thirds of the occasions we draw from the white state. If now we draw
a ball, find it to be white and instead of replacing it, substitute a
black ball, we perform an operation of the same kind and re-
presentable by a co-ordinate but orthogonal to the others, and
we bring about a change in the direction of the vector, i.e. we
rotate it.

9. Let us continue consideration of the process of keeping the
vector fixed and changing the co-ordinates, i.e. leaving the prob-
ability of unaltered and rearranging the distribution of balls
into two lots.

If we actually divide the balls into pure white and pure black,
putting them in separate bags, we have

If now we draw a ball from the 'white' bag and put it in with the
black we do not alter the original probability of nor do we alter
the co-ordinate W, but we alter the proportions and and we
alter the co-ordinate B. Thus we rotate one co-ordinate. As we
continue the process we gradually rotate the co-ordinate Β until
it coincides with the vector and the co-efficient of W disappears
and we are left with the balls all mixed together again. In rotating
from the position Β to the vector, the co-ordinate rotated passes
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through in reverse order all the positions that the vector would
occupy if it were rotated from its original position to B.

Transference of balls then may be regarded as causing a rotation
in a vector co-ordinate representing either a mixed state of different
coloured balls, or a probability of drawing a ball of a certain colour.
Such a representation is imaginary, the angles are imaginary, and
the rotational force is a real transference operating in time and
producing the real function (for a uniform rate) instead of the
imaginary function ekr. Correspondingly, in real space, time enters
as an imaginary co-ordinate, it, in the theory of relativity.

10. Returning to real vectors, with imaginary functions, sup-
pose we rotate the vector through an angle π. We get

(10.1)

For the vector we get

(10.2)

The vector is reversed in direction. If now we require the distance
to the end of the vector to be the same in both directions we must
square the vector, obtaining

(10.3)
in both cases.

That is, the measure of distance, to be the same in both directions
and make space isotropic, is the square of the vector.* Hence the
Theorem of Pythagoras. Our ordinary convention as to distance,
which takes the positive square root of the square of the modulus
of the vector, was no doubt adopted as the result of assuming that
lengths in the same straight line would be added. It is now so
ingrained in us that it is difficult to realize that it is a convention.†

* Cf. the fact that the index in the normal curve of error is implying
the assumption that positive and negative errors are equally likely.

† 'No deduction of a really geometrical kind can be legitimately based on
statements of which any particular conception of distance forms a part; such
statements are equivalent only to statements in regard to the behaviour of
particular measuring instruments, which must rest on physical hypotheses'
(H.F. Baker, Principles of Geometry, Vol. 11, p. 186).

eky.



to Mortality Tables 237

It is therefore understandable that the probabilities of the
location of an object in space must be compounded with the
squares of the vectors and when the vectors themselves are used the
square roots of the probabilities are the coefficients of the vectors.

When we deal, however, with probabilities which are vectors,
the coefficients representing the probabilities of the existence of
different states are themselves the actual probabilities and not
their square roots.

11. Since j = k. i, the vectors

 and

may be written  i and  i.
In view of what has been said above as to rotation it will be seen

that this form for the vector expresses it as a rotation of the funda-
mental vector i.

The i must be written after the exponential because i, j, k do
not commute. It is, therefore, necessary to have a convention as
to the meaning of 'multiplying one vector by another'. Since we
are thinking of operations, the convention is that the multiplier
comes first and the multiplicand second. Thus in the above we
multiply i by  and by  The symbol r is not a vector but
a scalar, or constant, and commutes with all other symbols.

Let us now multiply the two vectors together, multiplying
 i by  i. We have

Now

Multiply i by this,

So that the product, in the above order, is

 (11.1)

If, therefore, α = β, or the difference between them is a multiple
of 77, the square root of the square of the modulus is unaltered and

AJ 16
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the distance measured in any direction is the same. For a difference
of we get The first part of
this is ο and is the dot product of the ordinary theory. The second
part is the cross product and is equal to rzk. The condition for
orthogonality of the vectors is that the dot product = 0. When
α = β or the difference is a multiple of 77, the cross product is o.
This is the condition for parallelism.

Ordinary vector theory takes the two parts of the product
separately and changes the sign of the square of the vector.

This explains the signs in the formula for an interval in a
Euclidean continuum in Einstein's theory,

 (11.2)

12. Let us deal a little more formally with the process of
changing the co-ordinate system.

An n-dimensional manifold requires η independent vectors to
represent it ; n+r vectors would be linearly dependent. Thus, in
the case of a surface we require two fundamental vectors, say er,
and e2, and choosing any point Ο as origin a vector OP in the surface
will be expressed by the equation

 (12.1)

The double suffixes in the coefficients a11 a12 are not necessary
but they are convenient as will appear later.

The same vector OP can be represented by a linear equation
of two other fundamental vectors, thus

(12.2)

These fundamental vectors e'1 and e'2 being themselves vectors
in the continuum are linear functions of the old fundamental
vectors e1, e2 :

(12.3)

Substituting these values for 1 and 2 in (12.2) we have

(12.4)

Hence, equating coefficients of e1 and e2,

(12.5)
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These relations are independent of the fundamental vectors. They
are written in the form

The expression between the lines is called a matrix. It is written
in the form of a determinant but it has no 'value', though one may
have the 'determinant of the matrix', when the value is obtained
in the usual way.

13. Matrices, when the elements bnm are given numerical
values, form a higher order of numbers. The matrix corresponding
to the number 1 is the matrix that has

(13.1)

There is an indefinite number of matrices corresponding to the
number o. Such a matrix is described as 'singular'. A singular
matrix has no reciprocal. The test for singularity is that the deter-
minant of the matrix is o.

It will be seen from the way in which a matrix was obtained above
that the rule for multiplication of a vector by a matrix is ' row by
column'. The same rule applies when two matrices are multiplied
together. Thus if crs are the elements of the product matrix and
ars brs the elements of the matrices that are being multiplied
together, the rule is that

crs=ar1bis+ar2b2S + ar3b3S +.... (13-2)

The order of multiplication of matrices is important because
matrices are not necessarily commutative. In other respects they
obey the laws of ordinary algebra, viz. association and distribution.
To add matrices together one adds the elements in corresponding
positions :

14. Suppose we have the vector 10W + 5B representing 10

white and 5 black balls. Apply the matrix

change the co-ordinate system.

which will

16-2

(13.3)

(12.6)

when
when
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For the first co-ordinate we get For the second

ability instead or an absolute measurement,
This matrix could be expressed as the sum of the two matrices

which may be written with the numerical multipliers outside, thus :

Applying each of these separately, we get for the co-ordinates
4 and 2, and ο and 9, which by addition of vectors gives 4 and 11
for the co-ordinates of the compounded vector. It will be noticed
that the former of these two matrices is of the 'unit' matrix or
matrix corresponding to the number 1 and that it produces the
same probability for drawing a white ball, viz. as the original
10 white and 5 black collection, while the latter matrix is a sin-
gular matrix (determinant = 0), and it produces a 'pure' black
selection of balls, namely 9 black.

Since the effect of applying a matrix to the vector is to change
the co-ordinate system, it is clear that applying another matrix to
the result changes the co-ordinate system again and that, corre-
spondingly, the matrix that is the product of two or more matrices
changes the co-ordinate system to the system that would be
obtained by applying the latter matrices successively in the same
order. The order is material because matrices do not necessarily
commute.

15. The matrix obtained above 'followed' the vector and would
be called a post-factor. In a similar manner one can obtain a
matrix for multiplying a following vector in order to change the
co-ordinate system, and the matrix would then be a pre-factor.
Thus:

Let the vector OP be e1 α11 + e2a2I in one co-ordinate system and
é1a'11 + e'a'2I in another.

Let (15.1)

and

dan

dan

we get This alters the arrangement to 4 white
ball and 11 mixed, or when normalized so as to give a prob-
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Then, substituting for é 1 and é 2 and equating coefficients of é 1

and e'2,

written in the form

The vector is now written downwards instead of across because
of the rule of multiplication, row by column, and the vector now
constitutes a single-column matrix instead of a single-row matrix.
The suffixes indicate this. This is one of the reasons why I have
used double suffixes for the vector.

Vectors have been described, as above, as single-row or single-
column matrices. It would be equally correct to say that an n-fold
matrix is a set of η vectors. This is easy to see if one works in
polar co-ordinates.

Omitting the scalar part of a vector, which is irrelevant, the
vector is, say, cos θ.e1 + sin θ.e2. Similarly, the new co-ordinate
system expressed in terms of the old is

The cos θ and sin Θ, then, are the a's of the vector and the
cos φ, sin φ, cos ψ, sin φ, the b's of the matrix," showing that the
a's and b's are essentially of the same kind. Double suffixes are
essential for the elements of a matrix, which is a kind of double
entry table, and hence it is desirable to use double suffixes for the
co-ordinates of a vector when dealing with changes of co-ordinate
systems.

PART 3. QUANTUM MECHANICS

16. We are rather inclined, I think, to talk of selection as if it
applied only to lives entering into assurance or buying annuities.
It was only tentatively, and, as it were, apologetically, that the
idea of class-selection was put forward a few years ago.

But statistics are one form of selection after another. We select
when we decide to form one mortality table for men and another

(15.2)
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for women. We select when we make restrictions of the data with
regard to race, with regard to climate, with regard to occupation,
with regard to kind of policy. When we classify the lives by age
we select.

The physicist does the same ; he selects his thing to be observed,
and he selects the conditions under which he observes it.

What is the object of all this selection? It is to obtain homo-
geneity, or purity, because by reaching purity one reaches con-
stancy. A mixture would produce differences in results, when the
observation was repeated, that arose merely from variations in
the proportions of the pure ingredients.

The idea of Quantum Analysis then is to express the observa-
tions in terms of pure or select states. Such states will be repre-
sented by orthogonal co-ordinates, because it is only lines that are
at right angles that contain no element of each other's direction.
Intermediate states or mixtures, if they exist, will be represented
by lines not at right angles, that is, by rotation of one of the vectors.

The method therefore proceeds to study changes in co-ordinate
systems with the aim of finding ways of selecting orthogonal
co-ordinates that will represent select states and rotated vectors
that will represent non-select states.

The operation of changing the co-ordinate system has been
explained in Part 2. It leads to a double entry table, like a corre-
lation table, called a matrix.

The matrix is at the same time a 'Probability Operator' and
an 'Observable', because by changing the co-ordinate system it
alters the probabilities that the thing observed is in different states,
and in doing so it represents the thing one is observing, which
produces different observational results of an experiment according
to the state it is in.

Real matrices are time-like : imaginary matrices space-like.*
The sum total of the probabilities of the different states must be

unity, because the thing observed must be in some one of the
possible states. That is, the formulae must satisfy the principle of
the 'Conservation of Probability'.

In order to find pure states, the matrix must be split up. There
is no sealed pattern for doing this ; it depends on the nature of the
problem. But there are certain conditions that the parts, or

* Relativity Theory of Protons and Electrons, Eddington, p. 96.
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selective operators, must satisfy if they are to produce pure
states.

(1) They must satisfy the principle of the conservation of prob-
ability. Thus they are 'exhaustive'.

(2) They must when repeated give the same result, representing
the fact that when you select twice according to the same rule, you
ought to have the same result, and that if you apply parts of a
matrix to make your co-ordinates orthogonal, you cannot make
them more orthogonal by performing the operation again on your
already orthogonal co-ordinates. This characteristic is called
'idempotency', and the selective operators are 'idempotent'.

(3) The product of any two of them must be o, representing the
fact that if you select for a certain characteristic and then apply
selection again for an inconsistent characteristic you get nothing,
and the fact that you can find no direction that goes simultaneously
entirely in two orthogonal directions. Thus the operators are
'orthogonal'.

A set of operators which satisfy these conditions is called a
spectral set.

The pure states that are studied under any one system of these
functions are mutually exclusive. States which can exist simul-
taneously would be represented by mutually commuting observ-
ables or matrices.

A general state will then be represented by a matrix that gives
a rotation between the pure states. This state will be composed of
proportions of the pure states between which it lies. Thus any
mixed state is regarded as obtained by the superposition of pure
states. Conversely it is possible to regard a pure state as obtainable
by superposition of mixed states. The essence of it is that there is
a number, n, of distinct directions, and any direction can be regarded
as composed of proportions of η arbitrarily chosen co-ordinate
axes. This is called the Principle of Superposition.

17. When the result of a particular observation made on a
system in a particular state is with certainty one particular number,
a say (instead of being one of two or more numbers according to a
probability law), the operator or matrix representing the observable,
say µ, and the vector representing the state, say øx, are connected
by the equation øµµ = øµµ. In this equation a is called an eigen-
value or expectation value and ø an eigen-ø.
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The literature of quantum mechanics is so spattered with eigen-
values and eigen-f's that the most elementary description of the
theory can hardly avoid mentioning them. I have, however, in the
comparatively simple application of the ideas of the theory to the
mortality table, avoided the use of these expressions as unnecessary.
It may be mentioned, though, that each of the elements of a matrix
is an eigen-value. A life under observation will be represented by
the matrix, and if we examine him and find that he is a first-class
life, the probability that he is a first-class life becomes 1 and the
force of mortality that relates to him becomes μ[ x ] .

18. In giving this brief account of quantum mechanics, I have
not dealt with the principle of indeterminacy, nor differential
operators and many other aspects of the theory, because I could
not in the space of a paper give any more than a description of
such parts as I at present want to use for the application of the
method to the mortality table.

I must also make it clear that I have described what the theory
means to me and that I stand to be corrected by those who have
produced it. The authors sometimes do not condescend low
enough to explain to this obtuse person the meaning of what they
are doing. In fact, they make such remarks as ' the main object of
physical science is not the provision of pictures, but is the formula-
tion of laws governing phenomena and the application of those laws
to the discovery of new phenomena. If a picture exists, so much the
better; but whether a picture exists or not is a matter of only
secondary importance.'*

As a picture of the philosophical outlook of the theory I think
that a parable by Eddington is unequalled.† It is rather long to
quote in full ; briefly it is as follows :

'An ichthyologist is exploring the ocean. He casts a net into
the water and brings up a fishy assortment. Surveying his catch,
he proceeds to systematize what it reveals. He arrives at two
generalizations :

'(1) No sea-creature is less than two inches long.
'(2) All sea-creatures have gills.
' They are both true of his catch and he assumes tentatively that

they will remain true however often he repeats it.

* Quantum Mechanics, P.A.M. Dirac, p. 6.
† The Philosophy of Physical Science, Eddington, p. 26.
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' An onlooker objects that the first generalization is wrong.
There are plenty of sea-creatures under two inches long, only your
net is not adapted to catch them.

"Anything uncatchable by my net", says the ichthyologist, "is
ipso facto outside the scope of ichthyological knowledge, and is not
part of the kingdom of fishes which has been defined as the theme
of ichthyological knowledge. In short, what my net can't catch
isn't fish."'

Another onlooker makes a different suggestion:
' I realize that you are right in refusing our friend's hypothesis

of uncatchable fish, which cannot be verified by any tests you and
I would consider valid. By keeping to your own method of study,
you have reached a generalization of the highest importance—to
fishmongers, who will not be interested in generalizations about
uncatchable fish. Since these generalizations are so important,
I would like to help you. You arrived at your generalization in the
traditional way by examining the fish. May I point out that you
could have arrived more easily at the same generalization by
examining the net and the method of using it?'

Our methods of collecting the data for mortality tables and
tabulating them are an actuarial net. The general shape of a
mortality table is due to the nature of those methods and the way
we use them.

PART 4. APPLICATION TO THE MORTALITY TABLE

19. Science proceeds by three stages:
(1) Selection for the purpose of observation.
(2) Comparison for the purpose of classification.
(3) Measurement or comparison in respect of the extent of the

possession of homogeneous characteristics.
The first requires 'an' object.
The second requires 'two' objects.
The third requires 'four' objects, two to give a standard of

measurement, and two to give something to be measured.
We may therefore expect the 'law of mortality' to require four

values of μ to express it.
20. In the case of mortality statistics most of the variables for

which we 'select' data are discontinuous. Sex, for example, and
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class of policy and to a large extent, race. Unless there is con-
tinuous variation which can be linked with a variation of time or
place, it is necessary to form separate mortality tables. If it were
possible to find data in sufficient quantity to form tables showing
all stages of mixture of black and white so as to vary continuously
for colour we could form a three-dimensional mortality table show-
ing mortality according to age, colour, and time since selection. In
practice we are restricted to two continuous variables. Hence the
mortality table, in so far as it is homogeneous, must be represent-
able in two dimensions and by two pure states, and in so far as
such a representation departs from the facts, there is evidence of
lack of homogeneity. The legendary professor who, when told that
his theory did not agree with the facts, replied ' So much the worse
for the facts ' was quite right !

21. As shown in my paper on 'Select mortality tables' we can
split lx+t  lives into two parts and express μ in the form

We can associate one of these forces, say μ(1), with time since
selection, and the other with age, but since both are measured by
time we can divide through by dx or dt and write

(The μ2 in this formula is what I called μ(3) in the previous paper.
I have altered its symbol in order to conform to the notation of
quantum mechanics and for the sake of symmetry.)

We can divide the lx+t lives in some other way, l'(l) and l'(2).
It is evident that the l(l) and l'(2) are then related to the l(1)and l(2)

by a linear relationship of the form

Hence the μ"s are similarly related to the undashed μ's.
The new values of μ1 and μ2 are related then to the old values in

the same way as vectors, and since μ obeys the other laws of algebra,
association and distribution, as do vectors, μ is a vector. Such
differences in treatment as arise between the application of quan-
tum mechanics to the force of mortality and to physical phenomena
such as atoms, electrons and so on, are due to the fact that we are

(21·3)

(2Ι·2)

(21.1)
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dealing with a continuum that is two-dimensional in time, with no 
spatial dimension, whereas the continuum dealt with in physics 
is four-dimensional, 3 + I, three spatial and one temporal. Our 
problem is like that of the balls of two colours in Part 3. Those of 
physics relate principally to distances, and related measurements 
such as velocities. 
22. Consider the following matrices : 

(22.1) 

These matrices satisfy the following conditions : 

A+B=I, C+D=I, (a) 
A2=A; B2=B, C2=C; D2=D, (b) 
AB=o; BA=o, CD=o; DC=o. (c) 

I is the unit matrix. 
Thus the matrices A, B, and C, D, satisfy respectively the 

conditions necessary for a spectral set, viz. : they are exhaustive 
by (a), idempotent by (b) and orthogonal by (c). They therefore 
form two spectral sets. 
Applying A as a pre-factor to the vector a11 µI + a12µ2 in which, 

by the conservation of probability, a11 + a12 = I, so that a12 = I - a12, 
we have 

(22.2) 

Thus the vector becomes µl. 
Applying B to the vector as a pre-factor, we have 

(22.3 ) 

Thus the vector becomes 

In the formula µ= aI1µl + (I -a11) µ2, I -a,, is identically 

(µ-µ1) (µ2-µ1), so that the result is to produce µ-µl, which is 
what I called µ(2) in my paper on Select Tables. Thus the operator 
B has an effect corresponding to the ‘force of transfer’ conceived 
as operating as an independent force on the select lives. 
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Let us obtain a mixed state by taking a part only of B with A, 
say A + k1 B, where k1 is less than I. We then have 

(22.4) 

Applying this to the vector, we have: 

(22.5) 

This gives [I -k1 (I -a11)] µ1 + k1 (I -a11) µ2. A repetition of the 
operations, taking k2 of B, will give 

which by virtue of the rules above mentioned is equal to A + k2 k1 B, 
and generally by performing the operations n times we get 

(22.6) 

where kn kn-1 kn-2 . . . k is a continued product of terms each less 
than I. In the limit we get the pure state A. Thus we have worked 
backwards from the mixed state A + B which produces µ to the 
pure state A which produces µ[x]. 
If the k’s were all equal we should have A + knB giving 

(22.7) 

In this formula n is not continuous, it is a discrete number of 
operations. The function kn only has values for integral values of 
n; in between n and n+ I it remains kn. Thus it applies to such 
a process as selecting balls of one colour out of a mixture. 
By assuming that the operations, though separate and complete, 

are performed at’ regular intervals of time, we bridge over the gap 
between the idea of discrete operations and the idea of a rate over 
a period of time. 
Suppose the operation is performed n times a year. In t years 

it will be performed nt times and give the result A + kntB. Both k and 
n are unknown ; all that is known is kn or an empirical constant v. 
We may therefore make A -I- kntB = A + vtB and, if we are using 
fairly large numbers, assume that vt is continuous. 
We then get 

(22.8) 
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For t = 0 this reduces to the original vector μ, where I

Identically,

249

Equating coefficients of μ2

whence

which is formula (3) of my paper on Select Tables, allowing for
the renaming of μ(3).

23. The following is a diagrammatic representation of the
process. In the diagram μχ is represented by the vector OP, which

is resolved along the orthogonal vectors μr, μ2. The resolved parts
are α11μι and α12μ2.

If we reduce the part resolved along μ2 by multiplying it a
number of times by a factor less than 1, Ν moves back gradually
to a new position, say N', such that ON' = υt. ON.

Then in order to complete the parallelogram, OP being fixed,
OM must rotate forwards to OM', μ1 becoming the

(22.9)

(22.10)
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angle of rotation forwards corresponding to the extent of the
movement backwards of N.

The substitution of υt for the continued product kn ... ki is
equivalent to the assumption that the rotation of μ1 is uniform in
time. Actually, as the paper on Select Tables showed, the rate of
rotation should increase slightly with time.

24. Applying D to the vector as a post-factor we have

Thus the vector becomes μ2, the maximum force of mortality
reached at age ω.

Applying C as a post-factor we have

Thus the vector becomes

Forming a superimposed state by adding to D a part of C, say
Φ (y) C, where y is measured from ω, so that the origin of the
ultimate table is placed at the extremity of life and not at birth,
we have

Just as the matrix applied previously changed the co-ordinate
system by rotating μ1, and keeping μ2 fixed, so this matrix rotates
μ2 and keeps μχ fixed.

Applying it we have

so that, if μα is an arbitrary μ,

Identically,

(24·3)

(24.1)

(2402)

(24.3)

(24.4)

(24.5)

(24.6)
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Equating coefficients of μ[α]

whence

If the rotation were uniform in time, φ (y) would be of the form
vy where ν was constant. An assumption that was satisfactory for
the comparatively short range of the select period would probably
not be satisfactory for the range of the ultimate table and it is
necessary to investigate φ (y).

It may be remarked, however, that if we put φ (y) = vy, change
the origin to birth, and consolidate the constants we obtain as an
approximation

or still further approximating

The fact that the true origin is at the age where the maximum
rate of mortality is reached explains, I think, why it has been found
that Makeham's formula fits mortality tables better at old ages
than at younger ages.

25. In investigating φ (y) there are the following unknowns :
(1) The value of the maximum force μ2, or μω.
(2) The age at which μω is attained.
(3) The value of the (minimum) ultimate force, μα, which

theoretically is never reached.
(4) The value of the (minimum) select force μ[ a ].
Expressing φ (y) in terms of the μ's we have

The factor is a constant, so that if we take logs and

difference we shall eliminate it.

If φ (y) were e-ky, k constant, Δ log φ (y) would be constant.

(24.7)

(24.8)

(24.9)

(25.1)
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From a study of the A 1924-29 Select Tables it appears reason-
able to take the maximum value of μ as .56714, which is reached
at about age 101. For the purpose of an investigation of φ (y) in
relation to those tables the origin was therefore placed at age 101.

When beginning the work of investigating φ (y) I used the
values of μ15 and μ [ i s ] from the A 1924-29 Tables for μα and μ[α].
The ultimate rate at birth is unknown to us and so is μ1 for that
age. I regard the descending rates of mortality in early life as due
to an excess number of non-select lives existing at birth, possibly
due to the stress of birth, or possibly to the infant sharing the
mother's life up to that point, and therefore also her rates of
mortality until birth. After birth, the non-select lives tend to die
off quickly and the mortality reaches the unstable equilibrium of
the ultimate table at the end of the period that selection takes to
wear off, about 10 years. The A 1924-29 rates of mortality at
age 10, however, are, I think, not trustworthy as homogeneous
with the rest of the table, and it seemed likely that by age 15 the
minimum values of μ would have been reached in practice. I began,
then, with μα = ·00201, μ[α] = ·00115, and tabulated Δ log φ (y) and
Δ log [ — Δ log Φ (y)]. On coming to a conclusion as to the form
of φ (y) I proceeded to regraduate the table and was led to new
values of μα and μ[α]. It would be tedious to detail all the work
done, and in describing the process of the investigation of φ (y)
and the fixing of the values of the constants I shall assume a
knowledge of the final values which were the result of an iterative
process.

The values of μα and μ,[α] finally adopted, then, were

Table 1 shows the calculation of

for ages 30 to 40, using .00216 for μΙ5 since μ is tabulated to five
figures only, and in order to use five-figure logarithms. The com-
plete table stops at age 28 because the succession of uniform values
of μ in the official Table from that age backwards makes

for a series of ages.

 an d
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(1) (2) 

Age 
.00216 

40 3.20683 
39 3.13672 
38 3.05690 
37 4.97772 
36 4.89209 
35 4.79934 
34 4.71600 
33 4.62325 
32 4.51851 
31 4.43136 
30 4.36173 

(3) 

.00133) 

3.38739 
3.34242 
3.29447 
3.25042 
3.20683 
3.16435 
3.13033 
3.09691 
9.06446 
3.04139 
3.02531 

Table 1 

(4) (5) 
(2)-(3)= 

(.v) (4) 

(6) (7) 

(5) (6) 

1.81944 .02514 
1.79430 .03187 
1.76243 .03513 
1.72730 .04204 
1.68526 .05027 
1.63499 .04932 
1.58567 .05933 
1.52634 .07229 
1.45405 .06408 
1.38997 .05355 
1.33642 .03123 

2.40037 .10301 
2.50338 .04230 
2.54568 .07798 
2.62366 .07765 
2.70131 -.00829 
2.69302 .08025 
2.77327 .08581 
2.85908 -.05236 
2.80672 -.07796 
2.72876 -.23419 
2.49457 .04999 

It will be found that - log (y) shows a practically con- 
tinuous increase but A log [- log (y)], in the last column of 
the table, does not show any marked progression and apart from 
the ends of the table can be satisfactorily represented by a constant. 
It may be seen from (24.5) that (0) = 1, and it appears therefore 
that (y) can empirically be represented satisfactorily by the 
function e-kSY where k is a constant, or, by a suitable modifica- 
tion of k for purposes of calculation, by 10-ksy. 

The appropriate rate at which to calculate sy was found as 
follows : 

Assuming values of pot and µ[?], and writing I/h for the second 
factor in (25.1), 

Similarly for 46-65. 
The ratio gives 
from which i can be found. 

The values of i and k finally adopted were 

i=.1162, k=.000026494. 
AJ 

(25.2) 
I7 
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26. Having calculated φ (y), we find μα and μ[α] by simul-
taneous equations from the exposed and deaths using first and
second summations.

These should practically reproduce the assumed values but do
not do so. If, then, using new values of μα and μ[α] we again find
i and k and, hence, new φ (y), we find new values of μα and μ[α].
I have not been able to find a completely self-consistent set of
values of i, k, μα and μ[α]. This may mean either that the A 1924-29
data are not homogeneous or that the form of φ (y) adopted is not
quite correct. A further point materially affecting the values is
that I aimed at reproducing the actual deaths as adjusted for the
errors set out in J.I.A. Vol. LXVIII, p. 83, so that the graduated
curve of μ should be on the whole above that of the official table.

The formula finally adopted for the regraduation is

or

where

Tables 2 and 3 show the resulting values of μχ compared with
those of the official table, and the expected and actual deaths.

The regraduation given may not be the best that can be pro-
duced by this method and is given rather as an illustration.
I therefore refrain from commenting on it in detail.

(26.1)

(26.2)
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Table 2. Values of 100,000µx 

(a) By the formula; (b) From the official Table A 1924-29 

Age (a) (b) (a)-(b) 

201 201 +15 
211 +5 
220 220 -4 
228 228 -12 
233 -16 
235 -18 
235 235 -17 
235 235 -16 
235 -14 
235 -12 
235 -9 
235 -6 

Age (a) (b) (a)-(b) 

15 216 
16 216 
I7 216 
18 216 
19 217 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

217 
218 
219 
221 
223 
226 
229 
232 
236 
241 

30 247 
31 254 
32 261 
33 270 
34 279 
35 290 
36 303 
37 317 
38 332 
39 350 
40 370 
41 391 
42 416 
43 444 
44 474 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

509 
547 
590 
637 
690 
750 
816 
889 
972 

1063 
1165 
1279 
1405 
1547 
1703 

235 -3 
235 +1 
237 +4 
239 +8 
243 +11 
249 +12 
258 .+12 
268 +11 
279 +11 
294 +9 
311 +6 
330 +2 
353 -3 
377 -7 
402 -11 
427 -11 
453 -9 
481 -7 
512 -3 
512 +1 
584 +6 
629 +8 
678 +12 
736 +14 
800 +16 
871 +18 
951 +21 

1040 +23 
1141 +24 
1256 +23 
1387 +18 
1538 +9 
1707 -4 

60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 

1877 
2071 
2285 
2525 
2787 
3082 
340.9 
3766 
4'67 
4609 

1894 
2094 
2308 
2541 
2795 
3084 
3405 
3779 
4202 
4676 

5091 
5632 
6219 
6871 
7580 
8351 
9220 

10158 
11160 
12276 

5195 
5760 
6369 
7023 
7724 
8478 
9292 

10171 
11120 
12141 

13445 13240 
14751 14418 
16194 15671 
17646 17000 
19234 18409 
20847 19896 
22664 21463 
24681 23112 
26625. 24846 
28743 26670 
30764 28588 
32919 30604 
35149 32725 
37704 34955 
40264 37302 
42752 39774 
44830 42380 
47061 45132 
49009 48042 
51763 51124 
54128 54396 
56714 57875 

255 

- 17 
- 23 
- 23 
- 16 
-  8  
- 2 
+ 4 
- 13 
- 35 
- 67 
- 104 
- 128 
- 150 
- 152 
- 144 
- 127 
- 72 - 13 
+ 40 
+ 135 
+ 205 
+ 333 
+ 523 
+ 646 
+ 825 

951 
+ 1201 
+1569 
+1779 
+2073 
+2176 
+2315 
+2424 
+2749 
+2962 
+2978 
+2450 
+1929 
+ 967 
+ 639 
- 268 
- 1161 

17-2 

+ 
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Table 3. Comparison of the actual and expectant deaths 

Ages Expected Actual E-A (E-A) 

15½-19½ 
20½-24½ 
25½29½ 
30½34½ 
35½-39½ 
40½-44½ 
45½-49½ 
50½-54½ 
55½-59½ 
60½64½ 
65½69½ 
70½74½ 
75½-79½ 
80½-84½ 
85½89½ 
90½94½ 
95½99½ 

100½ 

61 
621 

1539 
2420 
3770 
5493 
7832 

10135 
11858 
12316 
13613 
15262 
14204 
9448 
4163 
1072 
149 

13 

113969 

63 
668 

1505 
2326 
3727 
5737 
7633 
9978 
11856 

12594 
13624 
15692 
14245 
9238 
3941 
1007 
122 

9 

113965 

2 
- 47 
+ 34 
+ 94 
+ 43 
- 244 
+ 199 
+ 157 
+ 2 

- 278 
- 11 
- 430 
- 41 
+ 210 
+ 222 
+ 65 
+ 27 
+ 4 

+1057 
-1053 

- 2 
- 49 
- 15 
+ 79 
+122 
-122 
+ 77 
+234 
+236 
- 42 
- 53 
-483 
-524 
-314 
- 92 
- 27 
— 

+4 

Note. The actual deaths have been adjusted to include 559 deaths originally 
omitted as set out in J.I.A. Vol. LXVIII, p. 83. 

CONCLUSION 

I have been looking for a Law of Mortality, which some think 
equivalent to chasing a will-o’-the-wisp. Whether they are right 
or not depends, I think, on what one understands by a ‘Law of 
Mortality’. It will not be a law that fits any and every mortality 
experience exactly. It will be, rather, a law of the essential cha- 
racteristics of a mortality table that is constructed in the way in 
which we construct mortality tables. Roughly it may be said that 
the shape of the earth is spherical. This does not quite fit such facts 
as the flattening of the earth at the poles, and the existence of 
mountains and valleys, but it is substantially correct, ignores 
irrelevant detail, and puts the earth in a general class of heavenly 
bodies, all described approximately by the same formula. This is 
the kind of law to look for, and when we find it, we shall find that, 
as in the case of many other laws of nature, it is there because we 
have put it there. So perhaps, after all, they are right who think 

- 
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there is no law of mortality ; it is a law of the way in which we think
about mortality rates.

I must admit that I do not think that I have found out all that
there is to find out about this law. For example, there is the
relationship, if any, between ψ (t) and φ (y), but I do not feel that
at present I can venture to add anything more to what is already
a long, and, superficially, a difficult paper. So here is the law as
it appears to me :

Written in this way, the representatives of the select portion run
across the paper, as do the select rates, and the representatives of
the ultimate portion run up and down the paper, as do the ultimate
rates. The general symmetry of the formula then becomes obvious.

w h e r e a n d are constants.
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