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abstract

Data from insurance portfolios and pension schemes lend themselves particularly well to the
application of survival models. In addition to the traditional actuarial risk-rating factors of age,
gender and policy size, we find that using geodemographic models based on postcode provides a
major boost in explaining risk variation. Geodemographic models can be better than models
based on pension size in explaining socio-economic variation, but a model using both is usually
better still. Models acknowledging heterogeneity tend to fit better than models which do not.
Finally, bootstrapping techniques can be used to test the financial applicability of a model, while
weighting the model fit can be used to address concentration risk.
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". Introduction

1.1 Actuaries have been long used to weighting their calculations by
policy size to take account of socio-economic differentials amongst
policyholders. So-called “amounts-based’’ measures routinely produce lower
mortality rates than their lives-based equivalents due to the tendency for
wealthier policyholders to live longer. This paper describes three different
approaches to allowing for socio-economic differentials within the structure
of a statistical model. These three approaches can even be combined to
provide a robust model of socio-economic differentials for financial
applications.

1.2 Cox (1972) introduced the application of survival models to life-table
problems. The proportional hazards model introduced the idea of a force of
mortality which is a constant proportion of the baseline hazard for some
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reference population. Such models use data at the level of the individual,
rather than modelling counts of events for grouped data. The original Cox
model assumed a constant proportion, so changes in mortality differentials
with age could not be modelled, nor did it estimate the baseline hazard. The
original Cox model was primarily useful for testing hypotheses (e.g. ‘does
Group A have different risk from Group B?’), but it has been extended for
actuarial use in a number of ways since.

1.3 At its core, the simplest model of constant hazard assumes that the
lifetime of an individual is distributed exponentially. This does not allow for
age-related increases. Using a transformation of the exponential distribution
of future lifetime produces more usable models for actuaries. For example,
Aitken et al. (1989) show that the extreme-value distribution arises from
taking the natural logarithm of a power transformation of an exponential
variable. This equates to a Gompertz mortality hazard (see Appendix 4), and
can be fitted simply using a package like R.

1.4 However, survival models based on transformations of the
exponential distribution have two major drawbacks. The first is that the
power transformation has to be applied equally to all lives, which is the
same thing as saying all lives have to have the same age-related change
in mortality. This is not the case for males and females, nor is it
typically true for different socio-economic groups or most other risk
factors. Indeed, Strehler and Mildvan (1960) showed that the stronger the
initial mortality differential between two populations, the faster those
differentials would narrow with age. This so-called compensation law of
mortality means that a model with multiple rating factors needs different
rates of ageing.

1.5 The second drawback of the transformation approach, at least as
implemented in standard software like R, is that it needs to assume
observation from birth in order to fit into a linear model-fitting algorithm.
Data used by actuaries, whether in life insurance or pension work, is almost
always left-truncated, i.e. the lives in question only become known to the
actuary many years after birth when the individual first enters observation
under a contract.

1.6 Here we will use an extension of these models which allows
mortality differentials to change with age, and also permits the handling
of left-truncated data. We will work with the log-likelihood function
directly, thus liberating ourselves from the constraint of needing a linear
model-fitting algorithm and opening up a wider choice of patterns for
mortality.
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Æ. Data, Validation and Preparation

“These budget numbers are [...] for the fiscal year that ended February the thirtieth.’’
US President George W. Bush, October 11, 2006

2.1 The data used in this paper comprise 777,111 distinct lives in a
combined portfolio of life-office pensioners and members of defined-benefit
pension schemes. The life-office pensioners are mainly purchasers of pension
annuities arising from money-purchase pension arrangements and are in the
slight majority. There were 118,494 deaths observed in the combined
portfolio, and several million life-years of exposure from the late 1990s to
mid-2007.

2.2 Data preparation is an essential part of any model-building process
and no model is valid unless the data are reliable. There are four stages of
data preparation described here: (i) data extraction, (ii) data validation, (iii)
deduplication, and (iv) profiling.

2.3 We prefer direct extraction from the administration or payments
system. This is easy for companies to arrange, as it is usually a
straightforward database query. Data which has been pre-processed for an
actuarial valuation system is rarely suitable, as this tends to hide valuable
data features for statistical modelling. We take direct extracts of data items
without any kind of calculation being performed, such as exposed-to-risk or
age rounding. In addition to being easier for the client to extract a date of
birth instead of calculating an age, this also avoids mistakes in interpretation,
such as ‘age next’ v. ‘age last’ or ‘age nearest’. Perhaps best of all, this
approach also does not tie us into a particular methodology, as it would if we
asked for particular calculations for age or exposed-to-risk. Furthermore,
the direct data contains more information: in the case of date of birth, this
not only gives age, but also cohort and even season of birth.

2.4 Experience data from life insurers and pension funds is essentially a
longitudinal study: at the start the exact date of policy commencement is
known, as are the date of birth, the gender, the pension size and other
features. The insurer or pension fund then makes regular payments
throughout time, keeping address and other details reasonably up-to-date.
Finally, the insurer receives timely notification of death, either from the bank
when the account is frozen for probate, or else when reported by a surviving
relative or partner. Such detailed, well-maintained data is therefore ideal for
survival models. We find that data quality is typically best where some kind
of regular payment is made, either paid as a pension or collected from
policyholders in the form of a premium. We generally find that data quality
is poor in other circumstances, e.g. pensions in deferment. Spouse mortality
data is usually only reliable once a spouse’s pension has commenced payment
after the death of the main life.
2.5 The above comments about regular maintenance aside, it is

nevertheless essential to check the validity of the basic data. Basic sense
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checks are always advisable, since even the best administration system has
the occasional piece of nonsensical data. Dates need to be first checked for
basic validity: no 30th February or 31st June, for example. The relationships
of dates also need to checked: for example, date of birth � commencement
date � date of death. Where a commencement date is not available, the date
of first pension payment (or first premium collection) makes a good
substitute. Other obvious checks apply: that there is a gender code, for
example, and that the pension paid is positive.

2.6 Further data inspection is also essential, since poor data can often
pass basic validity checks. A common example is 1st January 1901 ö it is a
perfectly valid date of birth to have, but if several hundred lives in a portfolio
have it, it is more likely a false date of birth entered during a migration to a
new computer system. The examination of the most frequently occurring
data items is also instructive. For example, an excessively common date of
death might indicate mass processing due to a certification exercise,
suggesting that the date is that of processing, not death itself.

2.7 In this paper we will use mortality-experience data from pensions in
payment from United Kingdom insurers and defined-benefit pension
schemes. A feature of such data is the presence of duplicate records in the
data set. By ‘duplicate’ we mean that the same person has more than one
policy or benefit record. For life-company annuities it is common for people
to have two or more annuities, and this is particularly common for wealthier
policyholders. Multiple annuities can arise for customer-driven reasons,
such as phased retirement, or for structural ones, such as different parts of
the pension having different escalation rates and having to be managed
separately. Pension schemes have similar duplication issues, although usually
not to quite the same extent as annuity portfolios. A pensioner can have
multiple records in the same scheme due to multiple periods of service, for
example. Another possibility is having both a main pension (because the
member worked for the employer) and a spouse’s pension (because their
deceased spouse worked for the same employer).

2.8 Duplicates are a major problem for statistical models due to the
requirement for assumed independence between deaths. If we do not remove
duplicate records then at the very least the standard errors on the parameter
estimates will be incorrect. We thus need to turn the set of benefit records
into a set of independent lives. One might hope that this could be done by
means of a unique client identifier or National Insurance number. In
practice, however, National Insurance numbers are not always routinely
entered onto the administration system, or else dummy values are entered.
Furthermore, servicing staff often find it easier to simply re-key a person
onto a system than try to link a second benefit to the original client record.
The major drawback of this is that the same person will then have two or
more different client records, making the system client identifier an imperfect
means of deduplication. To deduplicate the benefit records therefore
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requires a unique key which can be created from the ordinary data. A good
first start is a combination of date of birth, gender, surname and postcode.

2.9 To complicate things, however, re-keyed clients will often have
subtle changes in name format or even mis-spellings. One way to handle
variant spellings of surnames is to use the metaphone encoding system
(Phillips, 1990). We have used an extension called double metaphone
encoding, which can also handle non-Anglo-Saxon surnames. A further
requirement is to intelligently strip out punctuation such as apostrophes and
hyphens. Examples of this sort of approach are shown in Table 1.

2.10 We can make our deduplication key stronger still by including the
first initial of the first forename. We do not usually use the full forename
field, since this is not rigorously entered: some records have the forename,
some have the forename and any middle names, some just have the first
initial of the forename. It is also necessary to recognise and strip out any
titles which have been included in the forename field. Table 2 shows examples
of how this system will match a variety of records with differently
formatted forename fields.

Table 1. Examples of matching surname fields using double metaphone
(Phillips, 1990)

Record Surname Initial Comment

1 Richie G
2 Ritchie G Metaphone match on surname in record

3 Mohammed A
4 Muhammed A Metaphone match on surname in record 3
5 Mohammad A Metaphone match on surname in record 3
6 Mahamad A Metaphone match on surname in record 3
7 Muammad A Metaphone match on surname in record 3

8 O’HARE M
9 OHARE M Metaphone match on surname in record 8

10 DE-SANTIS J
11 Desantis J Metaphone match on surname in record 10
12 D’Santis J Metaphone match on surname in record 10

Table 2. Examples of matching forename fields The following five records
are all identified as the same person according to the forename matching

algorithm

Surname Forename(s) Comment

Richards Stephen First initial only used
Richards Stephen J. First initial only used
Richards S. First initial used
Richards Mr S. Title skipped, first initial used
Richards Rev Stephen J. Title skipped, first initial only used
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2.11 Deduplication must be done intelligently to build up the most
complete profile of the life being modelled. This means adding benefit
amounts together and picking a valid postcode from the two or more fields
on offer. As with the validation stage, it is useful to tabulate the most
frequently occurring data items. For example, in one portfolio we have seen
(not included here) the most common surname turned out to be SPOUSE,
which immediately alerted us to the fact that spouse records had been
mistakenly included in the extract. The calculation of the largest numbers of
duplicates eliminated can also be useful: in one portfolio we have seen, the
repeated use of dummy data in the administration system was quickly
identified due to very high duplicate merging.

â. Geodemographic Profiling

3.1 Actuaries in the United Kingdom are increasingly making use of so-
called geodemographic models of mortality, primarily driven by postcode.
The market for bulk annuities has long been driven by postcode for rating
socio-economic group, and now products marketed directly to individual
consumers are priced using postcode (Legal and General, 2007).

3.2 Postcodes were introduced to the United Kingdom by the state-
owned Royal Mail for the purpose of automating the sorting of mail. U.K.
postcodes are alphanumeric and have covered the entire country since 1974.
The full list is available electronically from the Royal Mail as the Postcode
Address File, and U.K. postcodes are copyrighted. Postcodes have been
widely adopted beyond their original mail-sorting purpose, including
consumer profiling for marketing, and premium calculations for general
insurance and bulk-annuity pricing.

3.3 There are around 1.8m postcodes in the U.K., covering around 27m
postcode addresses, of which around 1.6m postcodes are residential. A
postcode can cover a whole street, part of a street, or even a single building.
Around 200,000 postcodes are for commercial addresses only, and some are
non-geographic (such as mailbox addresses). In practice an average of
around 15 residential households are covered by a single postcode, providing
a high degree of granularity in determining where a person lives just from
their postcode alone. In most cases a combination of a house number and a
postcode is enough to deliver a letter to the correct address.

3.4 Postcodes in the U.K. usually take the form of one of the following
patterns: A9 9AA, A99 9AA, A9A 9AA, AA9 9AA, AA99 9AA or AA9A
9AA, where A signifies a letter and 9 a digit. Unfortunately there is no check
digit, so there is no way of knowing if a conformant postcode is actually
valid short of looking up a database of current valid postcodes. The first one
or two characters are called the postcode area, of which there are 124 in the
U.K. This corresponds to a geographic region and can thus be used to
determine the broad location of the address. This can be used for modelling
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regional variations in mortality, although in practice we usually find that
there is little or no regional variation after allowing for socio-economic
factors. The first half of the postcode is known as the postal district and it is a
common mistake to think that this contains all the usable data for postcode
profiling. It does not: with an average coverage of 8,800 households, the
postal district is much less homogeneous than the full postcode and is far less
useful for modelling mortality differentials as a result.

3.5 A number of commercial profilers will map U.K. postcodes onto a
smaller number of socio-demographic profiles, as listed in Table 3. Each
system has descriptive names and profiles for each category: for example, the
postcode EH4 2AB is Mosaic type 02 (“Cultural Leadership’’). These socio-
demographic profiles were developed primarily for direct marketing
purposes, but, as we shall see, they are particularly effective at predicting
mortality differentials. When dealing with real data, postcodes are sometimes
missing or fragmented (which we will assign to type 98) or else valid but for
a commercial address (which we will assign to type 99). Thus, when using the
Mosaic system we will have 63 type codes (61+2), whereas we will have 59
type codes using the Acorn system (57+2) and 47 (45+2) with FSS. The
Royal Mail typically recodes or reassigns postcodes continuously, so any
geodemographic profiling needs to be updated annually (as do any models
based on these profiles).

3.6 Similar postcode-driven systems apply in other countries, including
the United States of America (zip code), Canada (postal code) and the
Netherlands (postal code). As in the U.K., these countries use hierarchical
systems, so a given postcode can be used to give both regional and socio-
economic information. Similar modelling techniques can be applied to other
countries, but the full address is usually required for socio-demographic
modelling, not just the postcode. For example, the German Postleitzahl
89079 tells you the policyholder is in the area of Donaustetten in Baden-
Wu« rttemberg, but this covers hundreds of households and cannot on its own
be used for socio-economic profiling. The analogy would be just using the
‘EH4 2’ part of the full postcode ‘EH4 2AB’: the former is called the postcode
sector and covers hundreds of households. This would be of limited use for
socio-demographic profiling, although postcode sectors form the basis of the
simpler Carstairs scores (McLoone, 2000) for assessing deprivation, and
they work best when the sector is relatively homogeneous.

Table 3. Some geodemographic profilers in the U.K.

Name Provider Type codes Sample type code and description for EH4 2AB

Acorn CACI 57 13 ‘‘Prosperous Professionals’’
CAMEO Eurodirect 57 5B ‘‘Young & Older Single Mortgagees’’
FSS Experian 45 E13 ‘‘Fully committed funds’’
Mosaic Experian 61 A02 ‘‘Cultural Leadership’’
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ª. Limitations and Pitfalls of Geodemographic Profiling

4.1 It is important to note some pitfalls in using geodemographic
profiles. A particular issue is where a block of business has missing postcodes
for a particular reason. One example is where pensions are paid to a trustee
for onward forwarding to the pensioner and so the insurer holds no addresses
for the pensioners. This gives us the situation where a specific and distinct
class of business is not profiled for a systematic reason, rather than having
profiles missing at random. In this case people with missing postcodes could
have markedly higher mortality because a missing postcode was simply a
marker for bulk-annuity pension-scheme business instead of true individual
money-purchase annuities. Another example is a life office where annuitants
were given the head-office address upon death. The vast majority of deaths
thus all had a non-residential postcode and therefore ended up in category
99, which (unsurprisingly!) proved to be a category of very high mortality.
There may also be a connection with lower mortality: foreign and overseas
addresses will not be profiled, and so end up coded 98. If wealthier
annuitants are disproportionately likely to live overseas, or if death reporting
is less prompt than in the United Kingdom, then code 98 will be predictive
of low mortality. Commercial services are available which can reformat
address databases to Postcode Address File (PAF) format, which corrects
and updates postcodes as well as filling in missing ones where the address is
recognised. Such address “cleaning’’ is inexpensive and is a cost-effective way
of boosting the power of a geodemograhic model of mortality.

4.2 One way to detect these sorts of data problems is to calculate the
Cramer’s V statistic for all categorical variables. Cramer (1999) defines a
statistic measuring the strength of association or dependency between two
categorical variables. It takes the value 0 for no association, and the value
100 where two variables are perfectly associated and knowledge of one
variable completely specifies the other. We include the death status as a
categorical variable as well, which helps identify the sort of situation
described in {4.1.

4.3 Table 4 shows the results of all two-way associations between the
categorical variables for the life-office data set. The Cramer’s V statistic is
symmetric, so only the values in the upper right of the matrix are shown. The
diagonal is not shown, as all the values are 100 (a variable is always
perfectly associated with itself). In a clean data set such as this one, the
strongest association should usually be between year of birth and death
status (people with earlier years of birth should be more likely to be dead). If
the association between death status and type were larger, this would be
evidence of one of the systematic issues in {4.1. Interestingly, we can see
relatively weak association between pension size band and geodemographic
type (9.7), which is perhaps surprising as we might expect them to both be
proxies for socio-economic group. In general we find that a model with age,
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gender and geodemographic type can fit better than one driven by age,
gender and pension size. However, for the sort of reasons outlined in {4.1, a
model which incorporates both geodemographic type and pension size will
usually be better than using either variable on its own.

4.4 It is instructive to examine why geodemographic profiles might be
more powerful predictors of pensioner mortality than pension size. In each
case, the variable in question is merely acting as a proxy for the true
underlying drivers of mortality differentials: smoking, diet, drinking and
other health behaviours (or absence of them). In the presence of information
on smoker status in a model, for example, we would expect a much-reduced
impact of proxies for socio-economic group, such as pension size or
geodemographic type. When the geodemographic profiles result in a better-
fitting model than one based on pension size, this simply tells us that they are
a better proxy for the underlying differentials. Indeed, we tend to find the
importance of pension size reduces as new risk factors are added to a model.
For example, the addition of a factor for birth cohort will often further
reduce the role of pension size, since earlier birth cohorts tend to have
smaller pensions than later generations. This reducing role of pension size is
echoed by Richards and Jones (2004), who rated pension size as only the fifth
most important rating factor in a model of annuitant mortality.

ä. Methodology

5.1 Following Macdonald (1996a, b, c) we will be modelling using the
instantaneous mortality hazard, known to actuaries as the force of mortality,
as this makes better use of the data than q-type rates. To illustrate this,
consider two groups each consisting of four lives alive at the start of the year.
During the course of the year one life dies in each group, making the
estimated mortality rate, q̂A ¼ q̂B ¼

1
4 in both cases. If the death in group A

Table 4. Cramer’s V statistic for life-office pensioner data set (all ages)

Gender Region code Size band Status Type

Birth year 21.6 3.1 11.4 54.4 4.0
Gender 4.8 16.1 12.4 5.6

Region code 5.9 6.4 20.6
Size band 17.4 9.7

Status 10.4

Source: Own calculations using life-office annuitant data. The status variable takes the value 1
for a death, zero otherwise. The type variable is Experian’s Postcode Mosaic Type (61 levels, plus
two further levels for commercial addresses and unrecognised postcodes). The region code is
the U.K. region extracted from the postcode (124 levels). The relatively high association between
type and region code comes from the group of unrecognised postcodes, which are assigned a
dummy type code of 98 and a dummy region code of XX.
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occurs at the end of January, the estimated force of mortality is m̂A ¼
1
3 1
12
¼ 12

37.

If the death in group B occurs at the start of December the estimated force
of mortality is m̂B ¼

1
31112
¼ 12

47. As this simple example shows, working with the

force of mortality means we can use all the information available, and will
usually result in a better model. In contrast, working with q-type rates throws
away the information on time of death and is therefore less sophisticated.

5.2 In this paper we will not model mortality of groups, however, since
we have detailed information on each individual life. As we will see later, this
gives us far greater power in modelling mortality than can be done using a
GLM for Poisson counts. We therefore need to define some simple results at
the level of the individual. We start with the hazard rate at age x, mx, which
is given by:

mx ¼ lim
h!0þ

1
h

Pr death before age xþ hjalive at age xð Þ: ð1Þ

5.3 The probability of surviving from age x to age xþ t, tpx, is given by:

tpx ¼ eÿHxðtÞ ð2Þ

where HxðtÞ is the integrated hazard function:

HxðtÞ ¼

Z t

0
mxþsds: ð3Þ

5.4 For each life i of n lives we have (i) an entry age, xi, (ii) a time
observed, ti, and (iii) an indicator variable, di, for the state of the life at age
xi þ ti. The variable di takes the value 0 on survival and 1 on the event of
interest. This event can be death (as in this paper) or any other decrement of
interest, such as critical-illness claim, lapse or surrender. The likelihood
function, L , is therefore given by:

L /
Yn

i¼1
ti
pxi

mdi
xiþti

ð4Þ

and taking the natural logarithm of L gives us the log-likelihood function, ‘:

‘ ¼
Xn

i¼1

ÿHxi
ðtiÞ þ

Xn

i¼1

di log mxiþti
: ð5Þ

5.5 Thus, when applying survival models to individual data, it simply
suffices to specify the structure of the hazard rate, mx, and subsequently
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derive HxðtÞ. When fitting any model, we choose the parameter values to
maximise the log-likelihood function in Equation 5. We have used Longevitas
for all the models in this paper, which uses derivatives-based methods for
speed and reliability in maximising log-likelihoods.

5.6 Many implementations of survival models at the individual level
deal with age-varying mortality through a variable transformation. This
demands that the lives be observed from outset, i.e. from birth if
chronological age is to be used directly. In contrast, people tend only to start
life-insurance contracts or pension benefits when they are well into adult
life. The lifetimes observed are called left-truncated, since observation starts
at age xi and we have no data on deaths and exposure prior this age. Equally,
when an extract of mortality data is taken not all lives will be dead at the
extract date. Such data is called right-censored, since all that can be said of
the mortality process is that it will occur some time after ti years. Survival
models based on transforming the exponential distribution can handle right-
censorship easily enough, but left-truncation usually poses a problem.
However, by dealing directly with the log-likelihood in Equation 5 we can
automatically handle left-truncation.

å. Mortality Laws

6.1 A major advantage of fitting a statistical model is that smoothness
is built-in and there is no need to separately graduate the resulting fitted
rates. This is known as graduation by mathematical formula. One approach

Figure 1. Diagram of survival-model setup. The time observed, ti, is
shown in grey, while deaths are marked with a cross, �. Since people do not
usually enter into life-insurance contracts at birth, observations are left-

truncated, i.e. lives start being observed at age xi > 0. The upper case is an
example of right-censored data as death happens after the end of the

observation period
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to defining mx is to use penalised splines, which can be done in one or more
dimensions as described in Currie, Durban and Eilers (2004). This is a
flexible means of capturing different shapes of mortality pattern. However, in
this paper we will assume mortality follows some sort of law, which has the
benefit of requiring fewer parameters.

6.2 Some of the models in Table 5 are related to the Cox model. For
example, the Gompertz model can be expressed as a proportion of a
baseline hazard, albeit possibly as a time- or age-varying proportion. The
Makeham model, however, cannot be expressed in terms of a baseline
hazard due to the non-multiplicative eE term. The models in Table 5 are
mainly non-linear in their nature, although this has not led to any real
difficulties in fitting them. Here we have used derivatives-based methods for
optimising the log-likelihood, with an explicit formulaic calculation of the
information matrix for inversion to calculate the covariance matrix. For
converting into mortality rates, qx, for use in actuarial systems we use the
exact formula:

qx ¼ 1ÿ eÿHxð1Þ: ð6Þ

6.3 Note that the naming convention in Table 5 is different from what
might be seen elsewhere. For example, the model identified above as
Makeham-Beard was proposed by Perks (1932). We have opted (i) to use the
term Makeham wherever the constant eE appears, (ii) to name the simple

Table 5. Some mortality laws and their corresponding integrated hazard
functions, HxðtÞ

Mortality law mx HxðtÞ

Constant hazard ea tea

Gompertz (1825) eaþbx ðebt
ÿ 1Þ
b

eaþbx

Makeham (1859) eE þ eaþbx teE þ
ðebt
ÿ 1Þ
b

eaþbx

Perks (1932)
eaþbx

1þ eaþbx

1
b

log
1þ eaþbðxþtÞ

1þ eaþbx

� �
Beard (1959)

eaþbx

1þ eaþrþbx

eÿr

b
log

1þ eaþrþbðxþtÞ

1þ eaþrþbx

� �
Makeham-Perks (1932)

eE þ eaþbx

1þ eaþbx
teE þ

ð1ÿ eEÞ

b
log

1þ eaþbðxþtÞ

1þ eaþbx

� �
Makeham-Beard (1932)

eE þ eaþbx

1þ eaþrþbx
teE þ

ðeÿr ÿ eEÞ

b
log

1þ eaþrþbðxþtÞ

1þ eaþrþbx

� �
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logistic form
e�

1þ e�
after Perks, and (iii) to use the term Beard wherever the

logistic form has a so-called heterogeneity parameter, r, whose role and
derivation will be explained next.

6.4 One way to re-write the Gompertz law is zebx, where z ¼ ea. If the
members of the population are heterogeneous, then a so-called frailty model
has each individual i with their own personal value of zi. If the zi are
assumed drawn from a gamma distribution and fixed throughout life, then
the population hazard rate is that of the Beard model even when the hazard
of each individual is Gompertz. Similarly, heterogeneous individual
Makeham mortality results in a population hazard rate following the
Makeham-Beard law. These frailty-type arguments were first advanced by
Beard (1959).
6.5 These results mean that the shape of the mortality law at the

population level need not be the same as the mortality law acting on each
individual. This phenomenon could be turned around and used as a test for
the presence of unexplained heterogeneity: if individual mortality is assumed
to follow the Gompertz law, for example, yet the Beard model fits the overall
data set better, then one could conclude that there is further unexplained
variation not covered by the model fitted. As a model is developed, the
significance of the Beard parameter, r, could be used as a guide as to whether
there are further risk factors to be found. Note that this is not a given:
there are other structures which can lead to the Beard law, of which a
gamma-distributed frailty is just one. For example, Vaupel and Yashin
(1985) give a number of detailed examples where heterogeneity can cause
unexpected observed effects.
6.6 Appendices 1 and 2 give proofs of the Beard-type laws arising from

heterogeneity in a for both the Gompertz and Makeham laws. Appendix 3
shows how the Makeham-Beard law arises from a cascade process, where the
force of mortality is related to the number of accumulated defects in an
organism. Appendix 4 shows that a Gompertz force of mortality is equivalent
to assuming that the future lifetime is a random variable from the extreme-
value distribution, while the Beard law equates to a future lifetime from the
logistic distribution.

æ. Modelling Mortality Differentials

7.1 One of the key goals for actuaries in assessing risk is to group
people into pools of similar risk. We are using here a model for the mortality
of each individual, and we do this by assuming each life i has its own
specific parameters which describe its own combination of risks. In the
context of a Gompertz law for mortality, this means ai and bi for life i instead
of a group value of a and b. Thus:
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ai ¼ abaseline þ
Xm

j¼1

zijaj

bi ¼ bbaseline þ
Xm

j¼1

zijbj

ð7Þ

where there are m components (factors) to the overall risk, each aj and bj is
a parameter for a particular risk (aj) and its interaction with age (bj), and zij is
a binary indicator variable taking the value 1 when life i has risk factor j
and the value 0 otherwise. Note that we have assumed an age interaction for
each main effect in the model purely for simplicity. For example, in a model
with risk factors for both gender and smoker status:

ai ¼ abaseline þ zi;maleamale þ zi;smokerasmoker

bi ¼ bbaseline þ zi;malebmale þ zi;smokerbsmoker

: ð8Þ

7.2 Note that the model is structured as measuring differences from a
baseline profile. In the model specified in Equation 8, the baseline is a female
non-smoker, while the model parameters measure male mortality as a
departure from the female baseline, and smoker mortality is measured as a
departure from the non-smoker baseline. The zi;male are zero-one indicator
variables for whether life i is male, and the zi;smoker are similar zero-one
indicators for whether a life is a smoker. The advantage of this structure is
that there is no minimum group size required, which means there is no
minimum number of lives required and no upper limit to the number of risk
factors which can be investigated with this approach. This is particularly
useful for portfolios which are by their very nature small, but where there is
rich data available on each individual life. This approach also provides
substantial benefits where the data set is rich in individual details, but the
number of events is relatively small. A good example would be in term-
assurance portfolios, where this approach could be useful for a reinsurer
trying to make commercial pricing decisions.

7.3 However, many potentially useful rating factors are not easy to use
directly. For example, there are 124 postcode regions in the U.K., so fitting
this directly in a model would require 123 parameters (one is absorbed into
the baseline). Similarly, the Mosaic type has 63 levels, so using this directly
as a socio-economic factor would require 62 parameters. In each case we
would have an unwieldy and over-parameterised model.

7.4 One solution is to group complex factors into simpler meta-factors,
say to divide the postcode regions among three broad regional groupings, or
to put the 63 Mosaic types into four or five lifestyle groups. There is a variety
of ways of assigning these groups, but the one we will use in this paper is to
find the optimal assignment by fitting hundreds (if not thousands) of
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alternative models and choosing the best-fitting one. This has the advantage
of removing any human subjectivity from the groupings. The means whereby
we assess the goodness of fit is the AIC (Akaike, 1987), which is defined as:

AIC ¼ ÿ2‘þ 2n ð9Þ

where n is the number of parameters used in fitting the model. A lower
value of the AIC indicates a better-fitting model, as minimising the AIC is
equivalent to maximising the log-likelihood function for a given number of
parameters. This does carry the risk of some sub-groups finding themselves
in the “wrong’’ final group by random variation. If there is additional
knowledge of which sub-groups belong together (or should be kept apart)
then such constraints can be added to the search algorithm for minimising
the AIC.

7.5 This approach can be used both for categorical factors ö such as
region, socio-economic group, product type etc ö and for ordinal factors
such as pension size and year of birth. By splitting the pensioners into a large
number of equal-sized bands, the same process of minimising the AIC will
give us the optimum break-points for pension-size categories. We impose an
additional restriction on such ordinal factors, namely that the resulting
groups must be contiguous ranges. Thus, for a categorical factor like Mosaic,
if type codes 50 and 52 are in the same group, then type code 51 is free to
be in a different group. In contrast, for an ordinal factor like year of birth, if
the years 1920 and 1922 are in the same group, then 1921 must be as well.
Treating a factor as categorical will always give at least a good a fit as
treating it as ordinal, but it is important to respect the additional structure of
ordinal variables.

ð. Modelling Considerations

8.1 The first consideration is the date from which to start the modelling.
Where deaths data has been archived, for example, modelling should start at
that date and not before. For example, if a pension had a commencement
date in 1980, but all deaths were archived from the administration system in
2000, then modelling must start at the later date to avoid under-estimating
mortality. Equally, one has to be careful about the choice of end date for
modelling due to the tendency for delays in death reporting. For example, if
an extract of data were taken in June 2007, one might only want to model
mortality as far as end-2006 to ensure late-reported deaths were not a
material issue.

8.2 Before fitting a model it is necessary to consider the nature of the
data. For example, we find that the mortality of pensioners below age 60
does not exhibit the simple and straightforward patterns of mortality above
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age 60 ö see Figure 2. For this reason we typically truncate exposure (and
exclude deaths) prior to age 60 when modelling pensioner mortality. We also
find that mortality data is often unreliable above age 95^100 ö see again
Figure 2 ö so we typically truncate exposure (and exclude deaths) after 95
for this data set. We also often find that some lives are suspiciously long-
lived, such as when numerous pensioners are apparently older than 105. We
remove such cases from the exposure calculation entirely, since their
apparent high age is often an artefact of the way records have been entered
or stored on the administration system. An example would be an orphan’s or
guaranteed pension which had been set up on the payment system with a
date of birth of 01/01/01 simply in order to fill a required field. If such cases
are not excluded, mortality at older ages will be under-stated.

æ. Model Results

9.1 We decided to model mortality from 2000 onwards in order to be

Figure 2. Force of mortality for pensioners between ages 30 and 110:
observed crude force of mortality (�) together with fitted values from P-

spline regression. Only the mortality between ages 60 and 95 shows regular
behaviour suitable for a mortality law, with evidence of data-quality

problems above age 95. Source: Own calculations using mortality experience
of a portfolio of life-office pensioners
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confident about the quality of recent data, and we stopped modelling at end-
2006 as this was felt to be the latest date not materially impacted by delays in
death reporting. We start by fitting a model with age and intercept only, i.e. no
attempt to model sub-categories of risk. As a practical aside, we must
remember that it is the difference in AIC which is important, not the absolute
value: a difference of 2 (say) in the AIC counts as statistically significant.

9.2 Table 6 shows the results for sitting a simple model with age only.
One of the first features of interest is that adding a parameter does not
always improve the model fit: the Makeham model has a higher AIC than the
Gompertz model. Thus, just comparing these two models there seems little
support for a material Makeham constant component to mortality. The
exception lies with the Makeham-Beard model, which has a better AIC
compared to the Beard model. Since the only difference between the two lies
in the Makeham parameter, this might suggest that a constant component to
mortality can best be identified in the presence of the heterogeneity
parameter, r.

Figure 3. Distribution of lives and exposure. The discontinuities at ages 60
and 65 mark the two most common ages at retirement. The exposure line is

always less than the number of lives: the exposure is the time lived (or
waiting time) during the year of age and is therefore lower due to the

fractional years of life lost due to death or from entering observation after a
birthday. Source: Own calculations using mortality experience of a portfolio

of life-office pensioners
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9.3 Another interesting feature is how much better the logistic forms ö
Perks, Beard, Makeham-Perks and Makeham-Beard ö compare to the
others. The Perks law is a simple twist on the Gompertz law, and both
involve only two parameters, yet the Perks model has an AIC which is 124
lower, a significant improvement merely from restructuring the same number
of parameters into a different functional form.

9.4 The final feature of note in Table 6 is that the Beard model has an
AIC 182 lower than the Gompertz model, from which it is derived using a
frailty approach (see {6.4 and Appendix 1). Similarly, the Makeham-Beard
model has an AIC 185 lower than the Makeham model from which it can be
derived using the same approach (see {6.4 and Appendix 2). If we accept
the interpretation of the Beard r parameter as an indicator of unexplained
variation, this suggests that there is significant unexplained heterogeneity
present. Of course, we know what one of these sources is ö gender ö since
we have deliberately excluded it from the model.

9.5 Figure 4 shows the fitted force of mortality and the crude observed
forces of mortality for two of the models in Table 6. The crude rates show a
near-linear increase in log(mortality) ö i.e. exponential increase in mortality
ö over a wide age range, followed by a decelerating rate of increase in
mortality. This deceleration is a feature of many populations, and is referred
to as late-life deceleration by Gavrilov and Gavrilova (2001). Models which
reproduce this feature ö Perks, Beard, Makeham-Perks and Makeham-
Beard ö tend to fit better than models which do not. Note that neither of the
illustrated models in Figure 4 would be regarded as “good’’ö the Gompertz
model has long runs of over- and under-fitting, while the Makeham-Beard
model shows evidence of consistent bias towards under-stating the force of
mortality. However, the deviations between the observed rates and the fitted
curves are smaller for the Makeham-Beard model, which is what gives it the
lower AIC value in Table 6. We can now turn to a more realistic model
incorporating different values of a and b according to gender.

Table 6. Initial model with age only

Mortality law AIC
AIC relative
to Gompertz Parameters

Gompertz 386742 0 2
Makeham 386744 2 3
Perks 386618 ÿ124 2
Beard 386560 ÿ182 3
Makeham-Perks 386620 ÿ122 3
Makeham-Beard 386559 ÿ183 4

Source: Own calculations using mortality experience of life-office pensioners aged between 60
and 95 between 2000-2006.
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9.6 As expected, Table 7 shows that adding gender to the model has
made a very large improvement: the AIC has dropped by between 1799 and
1918, depending on the model. Table 7 also shows many of the same features
as Table 6. The one most of interest to us is that the Beard model has an
AIC 63 lower than the Gompertz model, from which it is derived using a

Figure 4. Comparison of Gompertz and Makeham-Beard models for age
only. Exposure and deaths above age 95 have been excluded as evidence in
Figure 2 suggested that such data was unreliable. Delays in death reporting
are felt to be minimal, since the modelling was done up to end-December
2006, at least six months before the extract of data was taken. Source:

Models fitted in Table 6

Table 7. Model with age and gender, i.e. Age*Gender

Mortality law AIC
AIC relative
to Gompertz Parameters

Gompertz 384824 0 4
Makeham 384826 2 5
Perks 384765 ÿ59 4
Beard 384761 ÿ63 5
Makeham-Perks 384762 ÿ62 5
Makeham-Beard 384728 ÿ96 6

Source: Own calculations using mortality experience of life-office pensioners aged between 60
and 95 between 2000-2006. Note that the AICs can be compared directly with those in Table 6.
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frailty approach. Similarly, the Makeham-Beard model has an AIC 96
lower than the Gompertz model (or 98 lower than Makeham model from
which it can be derived using the same frailty approach which links the
Gompertz and Beard models). The gap between the frailty models and their
antecedents has shrunk between Table 6 and Table 7, reflecting the fact that
including gender in the model has substantially reduced the unexplained
heterogeneity. If we accept the interpretation of the Beard r parameter as an
indicator of unexplained variation, the fact that there are still significant
gaps between the two suggests that there is still significant unexplained
heterogeneity present.

9.7 According to Richards and Jones (2004), one major source of
further heterogeneity is likely to be socio-economic group, which we can
investigate using the traditional actuarial proxy of pension size. We split the
population into fifty equal-sized groups of pensioners and look for the
optimal breakpoints giving us three size bands. There are 1,176 unique
combinations of assigning fifty groups to three size-bands, while both
preserving the ordinal structure of the original variable and having at least
one group in each band. The optimal breakpoints are determined by
minimising the AIC.

9.8 The results of using a three-level grouping based on pension size are
shown in Table 8. In all cases using pension size has made a very material
improvement in the model fit, as evidenced by drops in the AIC of between
1242 and 1262, depending on the model used. Again we see that the
Makeham model fits less well than the Gompertz, and that the logistic
models are generally better than the others. As before, the Makeham-Beard
model has performed best, with an AIC 76 units lower than the Gompertz
model. If we accept the role of the Beard parameter, r, the gap between the
Gompertz and Beard AICs (as well as the gap between the Makeham and
Makeham-Beard AICs) suggests that there is still significant unexplained

Table 8. Model with age, gender and pension size-band, i.e.
Age*(Genderþ SizeBand)

Mortality law AIC
AIC relative
to Gompertz Parameters

Gompertz 383562 0 8
Makeham 383564 2 9
Perks 383515 ÿ47 8
Beard 383513 ÿ49 9
Makeham-Perks 383510 ÿ52 9
Makeham-Beard 383486 ÿ76 10

Source: Own calculations using mortality experience of life-office pensioners aged between 60
and 95 between 2000-2006. The SizeBand variable is derived from fifty bands of equal numbers
of annuitants, optimised into a three-level ordinal factor. Note that the AICs can be compared
directly with those in Tables 6 and 7.
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variation. However, the fact that the gap in AIC due to the Beard
parameter has narrowed from 63 to 49 suggests that at least some of this
heterogeneity has been accounted for. While the optimisations were free to
set different break-points for each mortality law for the pension size-bands,
in each case the optimum was achieved by setting the first break-point
between the 14th and 15th fiftieths and by setting the second between the
41st and 42nd. This means that the first group consists of the 28% pensioners
with the smallest pensions, the second group with the next 54% and the
third group with the 18% of pensioners with the largest pensions.

9.9 The alternative to using pension size is to profile the population
according to geodemographic type. This we do using Experian’s postcode
Mosaic profiles (we could also use CACI’s Acorn system, Eurodirect’s
CAMEO code, or Experian’s alternative FSS classification). We then
optimise the assignment of the geodemographic types to three lifestyle
groups. The optimisation is determined as before by minimising the AIC, but
here the types are treated as categorical, i.e. a type code is free to belong to
a different lifestyle group than its immediately adjacent neighbours.

9.10 The results of using a geodemographic type based on postcode are
shown in Table 9. Comparing the figures with the equivalents in Table 8 we
can see that models based on geodemographic type can have lower AICs than
models based on pension size, depending on the choice of mortality law.

9.11 Another interesting feature of Table 9 is that the Makeham-Beard
model is still the best-fitting. Both of the laws with the Beard frailty
parameter, r, fit are better than their precursor models. If we accept the
interpretation of the Beard parameter as an indicator of further unexplained
variation, this would suggest that, despite the large improvement, there is still
some remaining unexplained heterogeneity amongst the pensioners.

9.12 One concern about relying on geodemographic codes might be
some kind of systematic data error which gives the illusion of predictive

Table 9. Model with age, gender and lifestyle group derived from postcode
via Mosaic type, i.e. Age*(GenderþLifestyle)

Mortality law AIC
AIC relative
to Gompertz Parameters

Gompertz 383537 0 8
Makeham 383539 2 9
Perks 383518 ÿ19 8
Beard 383520 ÿ17 9
Makeham-Perks 383513 ÿ24 9
Makeham-Beard 383509 ÿ28 10

Source: Own calculations using mortality experience of life-office pensioners aged between 60
and 95 between 2000-2006. The Lifestyle variable is derived from optimising a mapping of the
Postcode Mosaic Type. Note that the AICs can be compared directly with those in Tables 6, 7
and 8.
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power. For example, we have encountered life offices where address data is
deleted upon death. In this case, the geodemographic profile would be 98
(unknown) and this code would only be “predictive’’ of death merely because
of the treatment of addresses on death. We have also encountered life
offices where the pensioner’s address is changed to be that of the head office.
In this case, the geodemographic profile would be 99 (non-residential
postcode), and, again, this code would only be “predictive’’ due to the link to
death processing. For this data set, however, we see from Table 4 that the
association between death status and geodemographic type (10.2) is actually
much less than the association between death status and pension size (17.4).
This suggests that this particular data set does not suffer from any obvious
corrupting linkage between postcode and death processing, so the
geodemographic type is a genuinely powerful predictor of mortality.

9.13 The primary purpose of both geodemographic type and pension
size lies in acting as a proxy for socio-economic differentials. However, while
we have shown that both geodemographic type and pension size can do this,
the Cramer V statistic in Table 4 suggests relatively little linkage between
type code and pension size, so we might expect some benefit from using both
variables in the model. In this data set 10.5% of pensioners do not have a
geodemographic type, i.e. those of type 98 and 99, and for them pension size
is the only available proxy for socio-economic status. We would therefore
expect the predictive power of pension size to be linked to the number of lives
without geodemographic profiles. Furthermore, one can imagine that two
people of identical geodemographic type will have different standards of
living if one has several times the pension income of the other. The converse
is also true: two people with equal pension sizes might be distinguished by
their postcode-identified lifestyle. Other reasons why pension size is useful in
addition to postcode might be where a wealthier person chooses to live in a
less salubrious postcode ö perhaps due to family or other ties ö or has
multiple addresses and has registered the policy to an address which is not
representative of their overall lifestyle. In such cases, pension size will reveal
additional insights into a pensioner’s lifestyle which a postcode cannot
achieve on its own. Thus, we might expect a model using both postcode and
pension size to perform better because each can compensate for the other’s
failings.

9.14 In Table 10 the gap between the AICs of the Gompertz and Beard
models has shrunk further from 17 to 14. Using the interpretation of the
Beard r parameter as a marker for unexplained heterogeneity, this suggests
that a model using both geodemographic type and pension size is better at
explaining heterogeneity than either variable on its own. This is reflected in
the large falls in AIC between Table 9 and Table 10. Comparing just the
results for the Makeham-Beard model, using pension size on its own
improved the AIC by 1242 (¼ 384728ÿ 383486), whereas using postcode-
driven lifestyle groups improved the AIC by 1219 (¼ 384728ÿ 383509).
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However, using both factors together improved the AIC by 2152 (¼ 384728ÿ
382576). This improvement is far larger than would be expected from pension
size acting as a proxy for the unprofiled cases, so there seems to be a
genuine pension-size effect independent of the geodemographic type. Part of
this may be the cohort effect (Richards, Kirkby and Currie, 2005), since older
and long-retired people will tend to have smaller pensions.

9.15 Table 11 shows the impact of pension size and lifestyle group on
life expectancy and annuity value. These figures are calculated on as close a
basis as possible to the equivalent tables in Richards and Jones (2004) to
facilitate comparison. The overall change of 23.7% in Table 11 is less than

Table 10. Model with age, gender, lifestyle and pension size, i.e.
Age*(Genderþ SizeBandþLifestyle)

Mortality law AIC
AIC relative
to Gompertz Parameters

Gompertz 382597 0 12
Makeham 382599 2 13
Perks 382583 ÿ14 12
Beard 382583 ÿ14 13
Makeham-Perks 382575 ÿ22 13
Makeham-Beard 382576 ÿ21 14

Source: Own calculations using mortality experience of life-office pensioners aged between 60
and 95 between 2000-2006. The Lifestyle variable is derived from optimising a mapping of the
Postcode Mosaic Type. The SizeBand variable is derived from fifty bands of equal numbers of
annuitants, optimised into a three-level ordinal factor. Both Lifestyle and SizeBand variables are
re-optimised in the presence of each other to check the original mappings still hold true in this
more-complicated model. Note that the AICs can be compared directly with those in Tables 6, 7,
8 and 9.

Table 11. Impact of pension size and lifestyle

Gender
Pension
size Lifestyle e65 �a5%

65 �a2:5%
65

Change in
�a5%
65

Change in
�a2:5%
65

Female Highest Upper 22.88 13.26 17.05 n/a n/a
Male Highest Upper 20.23 12.23 15.43 ÿ7.8% ÿ9.5%
Male Highest Lower 18.56 11.50 14.34 ÿ6.0% ÿ7.1%
Male Middle Lower 17.06 10.83 13.36 ÿ5.8% ÿ6.8%
Male Lowest Lower 15.62 10.12 12.37 ÿ6.6% ÿ7.4%

Overall ÿ23.7% ÿ27.4%

Source: Own calculations using mortality experience of life-office pensioners aged between 60
and 95 between 2000-2006. Annuity reserves and life expectancies at age 65 calculated assuming
continuous payment of 1 per annum, continuous interest at 5% or 2.5% per annum, and
mortality according to the Makeham-Beard model and parameters from Table 10. Although
three levels were fitted for lifestyle, only the upper and lower types are shown here: 88.0% of the
other level had missing postcodes, so this cannot be said to be a true lifestyle classification.
Note that these calculations have no allowance for future improvements.
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the 33.6% in Richards and Jones (2004) as the latter used a larger number
of levels for lifestyle. This enabled the identification of a greater range of
lifestyle sub-groups, which results in a greater range of life expectancies. To
put the values in Table 11 in perspective, the equivalent complete life
expectancy using the PCA00 table is 18.4 years for males and 20.9 for
females, and a typical pricing margin for an annuity at the time of writing is
around 4^5% of the best-estimate liability. Since these mortality
differentials can change the annuity factor by more than the pricing margin,
accurate modelling of mortality is very important to the profitability of an
annuity provider.

"ò. Checking the Model Fit

10.1 It is not enough to select a model by targetting the smallest AIC.
One must also check the residuals for evidence of non-random patterns, or
for residuals too large to be plausibly normally distributed. Following
McCullagh and Nelder (1989) we use deviance residuals, and Figure 5 shows
that there are perhaps too many residuals around �2 for comfort. There are
also possible cyclic patterns with age, which may be caused by the cohort
effect ö see Richards (2008). A strong pattern by calendar time is also
evident, suggesting falling mortality rates over the seven-year period. Finally,
the pattern by duration suggests initial selection in the first few years after
the pension commences. We can extend the model to cope with all three:
cohort effects, time trend and initial selection.
10.2 The cohort effect is a tendency for mortality to be lower for later

years of birth, as documented recently by Willets (2004). This is a broadly
continuous trend, as shown by Richards, Kirkby and Currie (2006). We can
get a quick solution in the model by treating year of birth as an ordinal
factor, however, and using the AIC to optimise the breakpoints for at three
(say) broad cohorts. Although this does not acknowledge the continuous
nature of the cohort effect, it will suffice for our purposes here to detect the
broad pattern.

10.3 We can fit a parameter for time trend by extending the models as
follows for the Gompertz law:

mx;y ¼ eaþbxþdy ð10Þ

where y is the calendar time as a real variable, so we can track the time
trend continuously over the period. In practice we need to keep the variables
well-scaled for the fitting procedure, so we actually work with y0 ¼ yÿ 2000.
Note that the time trend observed in Figure 5 is likely to be partly composed
of the cohort effect, and partly of a genuine calendar-year effect as
mortality improves due to medical treatments and public-health initiatives.
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However, if we fit a model with a combined cohort factor and a time-trend
parameter, then we should be able to broadly separate the two. Such a model
is essentially an Age-Period-Cohort (APC) model, a variant of which was
used in Richards et al. (2007) to explore time trends separately from cohorts
in population data.

10.4 Finally, Figure 5 suggests we consider a select period of at least
three years, and possibly longer. This is likely to be an ordinary temporary
initial selection, but made stronger still by the advent of the enhanced-
annuity market: the portfolio here is of standard, non-underwritten annuities
and so will contain the presumably healthier lives who did not qualify for
enhanced annuities. We can allow for this in the model by adjusting each
individual’s value for a for the time in years since retirement. For simplicity
we will assume that the selection effect is constant within a select period. As
before, we will fit two-way interactions between age and the factors for
gender, lifestyle and pension size, although we will not fit any other second-
or higher-order interactions.

Figure 5. Deviance residuals plotted against (i) age, (ii) calendar time, and
(iii) duration since pension commencement. Source: Makeham-Beard model
from Table 10 with AIC of 382576. The deviance residuals are calculated
assuming a Poisson distribution for the number of deaths within each age

range (x! xþ 1), time period (y! yþ 1) or duration. The Poisson
parameter is the sum of the integrated hazard functions over each sub-range

over all individuals who have an exposure in the sub-range
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10.5 As Table 12 shows, there is a significant time trend, with an AIC
difference of 216 between a model containing a time trend and model without
it (¼ 382576ÿ 382360). There is also a significant selection effect, with an
AIC difference of 79 between a model containing a select period and a model
without it (¼ 382360ÿ 382281). There is a cohort effect, but it does not
appear to be quite as strong as the time-trend and selection effects: the drop
in AIC due to a three-band cohort is 27 units (¼ 382281ÿ 382254).

10.6 One question about the conclusion about the relative strength of
the time trend, cohort effect and selection is whether the order of fitting
makes a difference. This would change the ascribed drop in the AICs, but the
conclusion of order is unaffected. Table 13 shows the Z-values for the fitted
parameters, and it appears that the time trend is strongest (Z value of ÿ13.4),

Table 12. Comparison of Makeham-Beard models

Model AIC
AIC relative
to Age model Parameters

Age 386559 0 4
Age*Gender 384728 ÿ1831 6
Age*(Genderþ SizeBand) 383486 ÿ3073 10
Age*(GenderþLifestyle) 383509 ÿ3050 10
Age*(Genderþ SizeBandþLifestyle) 382576 ÿ3983 14
Age*(Genderþ SizeBandþLifestyle)þTime 382360 ÿ4199 15
Age*(Genderþ SizeBandþLifestyle)þTimeþ
SelectPeriod

382281 ÿ4278 18

Age*(Genderþ SizeBandþLifestyle)þTimeþ
SelectPeriodþCohort

382254 ÿ4305 20

Source: Own calculations using mortality experience of life-office pensioners aged between 60
and 95 between 2000-2006. SelectPeriod is a three-year select period. Note that the AICs can be
compared directly with those in Tables 6, 7, 8, 9 and 10.

Table 13. Selected parameters from
Age*(Genderþ SizeBandþLifestyle)þTimeþ SelectPeriodþCohort model

Parameter name Estimate Std. error Z value p-level

Cohort pre-1914 (baseline) 0 n/a n/a n/a
Cohort 1914^1929 0.0986196 0.0226 4.36 0
Cohort 1929 onwards 0.0360475 0.0342 1.05 0.2925

Select period 0^1 years (baseline) 0 n/a n/a n/a
Select period 1^2 years 0.0872149 0.0488 1.79 0.0736
Select period 2^3 years 0.135504 0.0479 2.83 0.0047
Ultimate: 3 years and over 0.279667 0.0396 7.06 0

Time ÿ0.0352319 0.0026 ÿ13.4 0

Source: Own calculations using mortality experience of life-office pensioners aged between 60
and 95 between 2000-2006. SelectPeriod is a three-year select period. Parameters are from the
final model in Table 12.
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followed by the selection effect (Z value of 4.36 comparing initial selection
against ultimate rates), then finally the cohort effect (Z value of 5.53
comparing the 1914^1929 generation with the pre-1914 one).

"". Concentration Risk

11.1 A major issue in financial work is concentration risk, namely the
tendency for a given proportion of the portfolio membership to have a much
larger proportion of benefits (and therefore liabilities). A statistical model is

Figure 6. Deviance residuals plotted against (i) age, (ii) calendar time, and
(iii) duration since pension commencement. Source: Final Makeham-Beard

model from Table 12 with AIC of 382254. There is a substantial
improvement in AIC of 322 over the model in Figure 5, but some concerns
remain over the non-random patterns of deviance residuals. This could be
resolved by making further refinements to the model, or by looking further
at the quality of the underlying data. One feature of survival models is that
they mercilessly expose any flaws in the data set: this can be frustrating
initially, but it eventually leads to better data and better modelling. As

demonstrated in Table 11, the financial impact of mortality differentials is
too important to gloss over unusual patterns (or, much worse, to not use

survival models and never know those patterns were there in the first place)
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democratic in that each life has equal weight, whereas both annuity
portfolios and pension schemes are very unequal. There are a number of
ways in which this concentration of financial risk can be illustrated. One way
is to calculate the Gini coefficient, which is used widely in social statistics to
measure income inequality. The Gini coefficient takes the value of 0% when
everyone has the same income (equality), and 100% when one individual has
everything (perfect inequality). The Gini coefficient for the U.K. as a whole
was 36.8% in 2005 according to the CIA World Factbook, and we find that
most pension schemes and annuity portfolios are generally much more
unequal than society as a whole. Another way is to sort the membership by
pension size and calculate the proportion of pension benefits paid to each
decile (say), or to calculate what proportion of the membership receives half
of all the benefits.

11.2 Table 14 shows that the top decile of membership has around half
of all annual pensions paid. We therefore have a group whose financial
significance is five times what their headcount would suggest. Equally, the
bottom decile of membership has just 1

2% of all pensions paid, so their
financial significance is twenty times less than what their numbers would
suggest. The inequalities would seem even larger if we measured the
proportion of liability for each of the membership deciles: in life-office
portfolios, for example, where benefit type can be chosen at retirement,
wealthier people tend to choose larger average escalation rates and are more
likely to buy a surviving spouse’s pension. Both of these choices depress the
initial pension, and so concentration by reserves is likely to be at least as
pronounced as concentration by pension size.

Table 14. Concentration of pension benefits by membership decile

Membership Percentage of portfolio pension:
decile (i) Life office (ii) Pension schemes

1 54.33% 46.3%
2 15.23% 17.8%
3 9.43% 11.4%
4 6.63% 8.0%
5 4.93% 5.8%
6 3.63% 4.1%
7 2.73% 2.9%
8 1.83% 2.0%
9 1.13% 1.2%

10 0.43% 0.5%

Total 100.03% 100.0%

Gini coefficient 66.03% 60.9%

Source: Own calculations using data for life-office pensioners aged between 60 and 95 between
2000-2006, and pension-scheme members aged between 65 and 100 between 2000-2006. Half of
all pensions are paid to 7.8% of policyholders in the life-office data, and 11.7% in the pension-
scheme data.
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11.3 The central issue with this level of concentration risk is that the
parameters in a statistical model are primarily driven by the part of the
population which accounts for the least part of the financial risk. This might
not be a problem if the fitted model is sufficiently rich and the data set is
sufficiently large or homogeneous. In practice, however, there is usually a
sub-group of very financially significant lives whose mortality is likely to be
over-stated due to their relatively small size in the portfolio. A deliberately
extreme version of this problem is shown in Figure 7, where an overly simple
model based on just age and gender has been fitted and used to predict the
mortality for a series of bootstrapped observations from a large portfolio.
Sampling with replacement we choose 50,000 lives and calculate the ratio of
the actual mortality outcome compared to the model’s prediction, i.e. a
classic “actual over expected’’ analysis. Unsurprisingly, the lives-based model

Figure 7. Frequency plot of ratio of actual v. expected mortality for
10,000 bootstrapped portfolios of 50,000 lives (lives-weighted fit). The

model is accurate on a lives basis, but clearly overstates mortality weighted
by pension size. The additional volatility of amounts-weighted mortality is

also clear from the wider horizontal spread. Source: Sampling with
replacement from 2006 mortality experience of a portfolio of several

hundred thousand life-office pensioners, with expected mortality according
to a Makeham-Beard model for age and gender only. The frequencies are

scaled so that the area under each curve is 1, i.e. the curves show the
empirical density function of the ratio of actual to expected mortality
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is on average a good predictor of the actual outcome, as the ratio is
distributed around 1, although there is a lot of variability in a single year’s
experience for even a portfolio of 50,000 lives. However, as every actuarial
student knows, mortality weighted by amounts is a more-useful indicator of
financial significance, and mortality weighted by pension size is much lighter
than this lives-based model predicts: around 15% lighter on average, but
with even more variation in a single year.

11.4 The traditional actuarial approach to mortality analysis is to
weight each death or life in the exposed to risk by its pension size and this,
too, can be accommodated within a survival-model framework. Equation 5
gives the general formula for the log-likelihood function under a survival
model for a single decrement (death), and the contribution of a single life, i,
is given by:

‘i ¼ ÿHxi
ðtiÞ þ di log mxiþti

: ð11Þ

11.5 Implicit in Equation 11 is that each life has equal weight. One
means of taking financial significance into account is to weight each life’s
contribution to the log-likelihood. This is an ad hoc adjustment to a well-
established statistical methodology, but it can be justified if a small number
of lives have disproportionate financial significance. If each life has weight
wi, the individual contribution to the weighted log-likelihood, ‘w

i , is then:

‘w
i ¼ ÿwiHxi

ðtiÞ þ widi log mxiþti
ð12Þ

where wi could be the reserve, the pension size, or some function of the
pension size such as the logarithm or square root. The wi are scaled so thatP

i wi ¼ n, which means the weighted log-likelihood can still be broadly
compared to the unweighted one. Figure 8 shows how weighting the
likelihood in this manner can transform even the simplest model into one
which can take better account of financial significance in mortality
modelling. However, it is potentially dangerous to rely on amounts-weighting
for overly simplistic models, since mortality differentials change with age. It
is better to include as many statistically significant risk factors as can be
found in a lives-based model, say by reference to the AIC, and thus account
for the incidence and timing of such differentials. If found necessary from a
bootstrapping check, the final fitted values for financial purposes can be
obtained by a refit with some kind of weighting.

11.6 Not all schemes can have their mortality predicted by a model
parameterised using the experience from another portfolio, however.
Defined-benefit pension schemes often contain individuals concentrated in a
particular industry or occupation. If that occupation is particularly hazardous,
then a model derived from general pensioner mortality ö whether using
postcode or pension size ö will under-state that scheme’s mortality. Such
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schemes can either have their mortality modelled on a stand-alone basis, or
else in a meta-model of multiple schemes where membership of a particular
scheme is treated as an additional risk factor.

"Æ. Conclusions

12.1 Life-insurance and pension-scheme data is a form of longitudinal
study, and therefore lends itself particularly well to the application of
survival models. The assumption of a suitable law for the force of mortality
removes the need to separately graduate or smooth the rates.
12.2 Geodemographic models of mortality can fit better than ones

Figure 8. Frequency plot of ratio of actual v. expected mortality for
10,000 bootstrapped portfolios of 50,000 lives (amounts-weighted fit). The
basis of calculation is the same as in Figure 7, but the contribution to the

log-likelihood is weighted by pension size. The model is now accurate on an
amounts basis on average, albeit with quite high variability. The model now
understates mortality on a lives basis. Source: Sampling with replacement
from 2006 mortality experience of a portfolio of several hundred thousand
life-office pensioners, with expected mortality according to a Makeham-

Beard model for age and gender only. The frequencies are scaled so that the
area under each curve is 1, i.e. the curves show the empirical density

function of the ratio of actual to expected mortality
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purely based on pension size, but a model which combines both will fit
better than using either one in isolation. The use of geodemographic profiles
in a statistical model also enables the discovery of data issues which remain
hidden from the traditional comparisons of actual mortality against a
standard table. The mortality differentials identified by such models are
highly financially significant and their impact can easily exceed the pricing
margin on annuity business at the time of writing.

12.3 Simple process models show how a system composed of non-ageing
elements can nevertheless show age-related increases in mortality. These

Figure 9. Frequency plot of ratio of actual v. expected mortality for
10,000 bootstrapped portfolios of 50,000 lives (reserve-weighted fit). The
basis of calculation is the same as in Figure 7, but the contribution to the
log-likelihood is weighted by the estimated reserve, calculated using 5.5%
interest and the PCA00 mortality table. The model is now accurate on an
reserve basis on average, albeit with quite high variability. As with the

amounts-weighted model, mortality is understated on a lives basis. Source:
Sampling with replacement from 2006 mortality experience of a portfolio of
several hundred thousand life-office pensioners, with expected mortality
according to a Makeham-Beard model for age and gender only. The

frequencies are scaled so that the area under each curve is 1, i.e. the curves
show the empirical density function of the ratio of actual to expected

mortality
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models also yield a slowing down in the rate of increase at advanced ages,
known as late-life mortality deceleration. This deceleration is observed in
human populations, and can be shown to arise from heterogeneity amongst
lives. Mortality laws which incorporate an explicit heterogeneity or frailty
parameter fit better than those which do not.

12.4 The use of bootstrapping can determine if there might be further
financially important variation not accounted for in a mortality model, while
the use of weights in model-fitting can help limit any mis-statement of
financial risk.
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APPENDIX 1

DERIVATION OF THE BEARD MODEL

A1.1 Suppose an individual has a Gompertz hazard, i.e. mz
x ¼ zebx,

where z ¼ ea. Suppose further that z is drawn from a gamma distribution at
birth, i.e. the density function for z, f ðzÞ, is:

f ðzÞ ¼
bazaÿ1

GðaÞ
eÿzb ð13Þ

where GðÞ is the gamma function and a > 0 and b > 0 are the gamma
parameters.

A1.2 In general, the hazard rate of the population at age x is as follows:

mx ¼

Z 1
0

f ðzÞxp
z
0m

z
xdzZ 1

0
f ðzÞxp

z
0dz

: ð14Þ

A1.3 Taking Equations 2 and 13 together with the appropriate integrated
hazard from Table 5, Equation 14 becomes:

mx ¼ ebx

Z 1
0

zðaþ1Þÿ1 exp ÿz bþ
ðebx ÿ 1Þ

b

� �� �
dzZ 1

0
zaÿ1 exp ÿz bþ

ðebx ÿ 1Þ
b

� �� �
dz

¼
abebx

ðbbÿ 1Þ þ ebx

¼
ea
0
þbx

1þ ea
0
þr0þbx

ð15Þ

where r0 ¼ ÿ logðabÞ and a0 ¼ log
ab

bbÿ 1

� �
.
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APPENDIX 2

DERIVATION OF THE MAKEHAM-BEARD MODEL

A2.1 Following Horiuchi and Coale (1990), suppose an individual has a
Makeham hazard, i.e. mz

x ¼ eE þ zebx, where z is drawn from a gamma
distribution at birth as in Appendix 1. Taking Equations 2 and 13 together
with the appropriate integrated hazard from Table 5, Equation 14 becomes:

mx ¼

Z 1
0

eE þ zebx
ÿ �

zaÿ1 exp ÿxeEð Þ exp ÿz bþ
ðebx ÿ 1Þ

b

� �� �
dzZ 1

0
zaÿ1 exp ÿxeEð Þ exp ÿz bþ

ðebx ÿ 1Þ
b

� �� �
dz

¼
eE bbÿ 1ð Þ þ abþ eEð Þebx

ðbbÿ 1Þ þ ebx

¼
eE þ ea

0
þbx

1þ ea
0
þr0þbx

ð16Þ

where r0 ¼ ÿ log abþ eEð Þ and a0 ¼ log
abþ eE

bbÿ 1

� �
. Horiuchi and Coale (1990)

further showed that the frailty z remains gamma-distributed for all ages.
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APPENDIX 3

MORTALITY AS A CASCADE PROCESS

A3.1 The following builds on results from Izsak and Gavrilov (1995).
Let n denote the integer number of defects of an individual, n � 0. Denote by
tn the state of an individual having n defects, and let sn be the number of
individuals in a population with n defects. In a small interval of time, t, an
individual can either die or accumulate another defect. The force of mortality
for an individual in state tn is m0 þ nm, where m0 > 0 is the constant
background rate of mortality and m > 0 is a constant. The instantaneous
transition rate for tn ! tnþ1 is l0 þ nl, where l0 and l are both greater than
zero. The instantaneous transition rate is therefore a linearly increasing
function of the number of existing defects, which makes this a cascade
process. These assumptions lead to the linear differential equation:

s0nðxÞ ¼
�
l0 þ ðnÿ 1Þl

�
snÿ1ðxÞ ÿ

�
l0 þ m0 þ nðmþ lÞ

�
snðxÞ: ð17Þ

A3.2 Solving the initial value s0ð0Þ ¼ s0; snð0Þ ¼ 0, we get the snðxÞ
functions. The number of individuals living at age x is:

X1
n¼0

snðxÞ ¼
mþ l

mþ leÿðmþlÞx

� �l0
l

eÿðm0þl0Þx ð18Þ

and so the force of mortality at age x, mðxÞ, is given by:

mðxÞ ¼ m0 þ
ml0 1ÿ eÿðmþlÞx

ÿ �
mþ leÿðmþlÞx

: ð19Þ

A3.3 At this point Izsak and Gavrilov (1995) note that this approximates
a Makeham law over a wide age range, with a decelerating increase in the
force of mortality at advanced ages and an ultimate value of l0 þ m0 for very
advanced ages. In fact no approximations are necessary as Equation 19 can
be re-written as:

mðxÞ ¼
m0 ÿ

ml0
l

� �
þ
m
l ðm0 þ l0Þe

ðmþlÞx

1þ m
l eðmþlÞx

: ð20Þ

A3.4 If we assume m0 >
ml0
l , then we can set E ¼ log m0 ÿ

ml0
l

� �
,

b ¼ mþ l, a ¼ log mþ logðm0 þ l0Þ ÿ log l, and r ¼ ÿ logðm0 þ l0Þ, Equation
20 can then be re-written as:
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mðxÞ ¼
eE þ eaþbx

1þ eaþrþbx
: ð21Þ

A3.5 Thus, our cascade process for mortality has resulted in a
Makeham-Beard force of mortality. This fits neatly with the frailty
derivation of the same mortality law, since at each age x there are individuals
with varying numbers of defects and thus heterogeneity in the population at
a given age. Iszak and Gavrilov (1995) pointed out that letting x!1 in
Equation 19 yielded a limit to the force of mortality of m0 þ l0, and therefore
an upper limit to the mortality rate, qx, which was less than 1.

A3.6 Gavrilov and Gavrilova (2001) developed the idea of an initial
virtual age, i.e. a life can start out with a non-zero number of defects. This
sort of approach explains why the actuarial practice of rating ages up or
down according to a standard table works well: if the main difference
between two populations is their average initial damage or initial virtual age,
then the mortality of one population will be concisely expressed in terms of
an age rating against the other.
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APPENDIX 4

MORTALITY LAWS AND FUTURE LIFETIME AS A RANDOM
VARIABLE

A4.1 A model for the force of mortality is equivalent to assuming that
the future lifetime is a continuous random variable, Tx, say. The probability
density function of T0, the lifetime from birth, is given by:

f ðtÞ ¼ tp0mt t > 0: ð22Þ

According to Aitken et al. (1989) the extreme-value distribution for T0 has
probability density:

f ðtÞ ¼
1
s

exp
tÿ y
s
ÿ exp

tÿ y
s

� �� �
ð23Þ

and hazard function:

mt ¼
1
s

exp
tÿ y
s

� �
: ð24Þ

A4.2 Setting a ¼ ÿ log sÿ
y
s
and b ¼

1
s
, Equation 24 can be re-written as:

mt ¼ eaþbt ð25Þ

which we recognise as the Gompertz force of mortality. Equally, assuming a
Gompertz force of mortality throughout life is the same as assuming the total
future lifetime is a random variable drawn from the extreme-value
distribution.

A4.3 Aitken et al. (1989) also give the probability density for the
logistic distribution for T0 as:

f ðtÞ ¼

1
s

exp
tÿ y
s

� �
1þ exp

tÿ y
s

� �� �2 ð26Þ

which has hazard function:
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mt ¼

1
s

exp
tÿ y
s

� �
1þ exp

tÿ y
s

� � : ð27Þ

A4.4 Setting a ¼ ÿ log sÿ
y
s
, b ¼

1
s

and r ¼ log s. Equation 27 can be
re-written as:

mt ¼
eaþbt

1þ eaþrþbt
ð28Þ

which we recognise as the Beard force of mortality. Equally, assuming a
Beard force of mortality throughout life is the same as assuming the total
future lifetime is a random variable drawn from the logistic distribution.
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APPENDIX 5

MORTALITY LAWS AND RELIABILITY THEORY

A5.1 We begin with some results for order statistics. If a random
variable X has probability density function f and distribution function F,
we can define two new random variables for the maximum and minimum
of a set of n independent, identically distributed random variables
fX1;X2; . . . ;Xng:

Xmax ¼ maxfX1;X2; . . . ;Xng

Xmin ¼ minfX1;X2; . . . ;Xng
: ð29Þ

A5.2 Larson (1982) gives the probability density and distribution
functions for Xmax and Xmin as follows:

fmaxðtÞ ¼ n½FðtÞ�
nÿ1

f ðtÞ

fminðtÞ ¼ n½1ÿ FðtÞ�
nÿ1

f ðtÞ

FmaxðtÞ ¼ ½FðtÞ�
n

FminðtÞ ¼ 1ÿ ½1ÿ FðtÞ�
n

ð30Þ

from which we can derive the hazard function, mðtÞ, as follows:

mðtÞ ¼
f ðtÞ

1ÿ FðtÞ
: ð31Þ

A5.3 The remainder of this appendix draws heavily from Gavrilov and
Gavrilova (2001). We assume that an element has a constant hazard rate of
failure, l, and so the hazard function, melement

t , is given by:

melement
t ¼ l l > 0; t > 0: ð32Þ

The time to failure of an element therefore has exponential distribution with
probability density function, f element

t , and cumulative distribution function,
Felement

t :

f element
t ¼ leÿlt

Felement
t ¼ 1ÿ eÿlt

: ð33Þ

A5.4 A block is composed of n elements working in parallel, so the
failure of all elements is required for the block to stop working. The time to

42 Applying Survival Models to Pensioner Mortality Data



failure of a block is therefore the maximum of failure times of the n
elements. Using Equations 30 and 31, the hazard for a block with n working
elements is then:

mblock;n
t ¼

lneÿlt 1ÿ eÿlt
ÿ �nÿ1

1ÿ 1ÿ eÿlt
ÿ �n n � 1: ð34Þ

A5.5 Finally, a system is composed of m blocks operating serially, i.e.
the failure of any one of the blocks results in failure of the system (death).
The time to failure of a system is therefore the minimum of the failure times
of the m blocks. We add a further detail, namely the probability, p, that any
given element is actually working at outset. The resulting hazard for the
system as a whole is now given by:

msystem;m
t ¼ mnpcleÿnpeÿlt

Xn

i¼1

ðnpÞ
iÿ1

ðiÿ 1Þ!
:
ð1ÿ eÿltÞ

iÿ1

1ÿ ð1ÿ eÿltÞ
i

ÿ � 0 < p � 1;m � 1; c > 0:

ð35Þ

A5.6 The normalising constant, c, allows for the fact that if p < 1 there
is a non-zero probability that all elements of at least one block are non-
functioning at outset, and thus that the system is “stillborn’’. We do not need
to know the precise value of c, as it is a constant applies across all times (or
ages), and so does not change the basic shape of the force of mortality. In
example calculations in this section we set c ¼ 1 for simplicity ö further
details of the derivation of c and the above formulae can be found in
Gavrilov and Gavrilova (2001).

A5.7 An illustration of this system structure is given in Figure 11. The
interesting thing about this system is that ageing ö i.e. increasing mortality
with age or time ö has arisen from a simple combination of elements which
themselves do not have age-related mortality. Furthermore, this same
structure which gives rise to ageing also gives rise to a decelerating rate of
increase at advanced ages. Gavrilov and Gavrilova (2001) describe how this
type of structure applies to many biological organisms, i.e. self-assembled
systems made from small elements with extensive redundancy compensating
for some initially non-functioning elements.
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Figure 10. Diagram illustrating hazard functions for elements and blocks.
An element has constant hazard, but the hazard functions of blocks exhibit
a period of exponential growth in hazard (mortality), followed by a period
of deceleration of the rate of increase. Using only the simplest of elements
with non-ageing mortality, we have created blocks which exhibit both age-
related increase mortality and the later deceleration of those age-related

increases
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Figure 11. Diagram illustrating a system with redundancy. The system is
composed of three blocks linked serially (A, B and C), where the failure of
any one of the blocks will result in failure of the system as a whole (death).
Each block is composed of four elements which work in parallel, i.e. in

order for a block to fail all elements must fail. Failed elements are marked
with a cross (�). Despite three failed elements, Block A is still functioning
as it has one working element left. Block C has failed completely because all
its elements have failed, and the failure of this block results in death of the

whole system
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Figure 12. Demonstration of force of mortality under a reliability model.
The reliability model has arbitrary specimen parameters l ¼ 0:01, n ¼ 22,

m ¼ 5850, and p ¼ 0:999, while the Gompertz “equivalent’’ was obtained by
a straight-line extrapolation of the log mortality between ages 50 and 70.
The force of mortality under PCA00Base has also been plotted to show the
same underlying pattern as the reliability model, namely near-linear increase

over a large part of the age range with mortality deceleration at higher
ages. The parameters for the reliability model were chosen to match

PCA00Base at age 60 and 100, and some more experimentation is required
to get a better match between ages 60 and 80. Nevertheless, it is clear that

reliability theory is a plausible basis both for the phenomenon of ageing and
late-life mortality deceleration
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APPENDIX 6

MORTALITY LAWS AND RUIN THEORY

A6.1 We explore here the idea of a life subject to a damage process
following a compound Poisson distribution. This is a continuous-time
alternative to the reliability-theory approach adopted by Iszak and Gavrilov
(1995). An organism has x > 0 functioning elements, but is subject to
random damage at rate l. When an event occurs the extent of the damage is
drawn from an exponential distribution with parameter m. The organism has
a repair rate of r � 0 which it can use to repair existing damage up to the
original level of x. This situation is directly analogous to the typical ruin-
theory set-up described in Dickson and Waters (2002): x is the surplus level,
l is the claim rate, m describes the exponential claim size and r is the
continuous rate of premium income. The only difference is that we do not
allow damage to be repaired above x, i.e. we do not allow growth. This is
analogous to a dividend strategy which pays out immediately above a certain
capital level.
A6.2 Denote by fðx; tÞ the probability that an organism with x initial

functioning elements will survive for time t � 0. f is therefore a survivor
function with 0 � f � 1. The following boundary conditions are satisfied:

fð0; tÞ ¼ 0; 8t � 0

fðx; 0Þ ¼ 1; 8x > 0
: ð36Þ

A6.3 The survival function can be conditioned on whether or not
damage occurs in a small interval dt and, if it does, whether the damage kills
the organism. Denoting the damage probability density function by f and
the distribution function by F, for small interval of time dt the following
applies:

fðx; dtÞ ¼ ð1ÿ ldtÞ:fðxþ rdt; 0Þ þ ldtFðxÞ þ oðdtÞ

¼ ð1ÿ ldtÞ:1þ ldtð1ÿ eÿmxÞ þ oðdtÞ

¼ 1ÿ ldteÿmx þ oðdtÞ

ð37Þ

since with probability ldtð1ÿ FðxÞÞ there is a damage event which is large
enough to kill the organism outright. From this we can calculate the force of
mortality at time zero with initial value x from:
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mðx; 0Þ ¼ lim
dt!0þ

1ÿ fðx; dtÞ

dt

¼ lim
dt!0þ

ldteÿmx
þ oðdtÞ

dt

¼ leÿmx:

ð38Þ

A6.4 Equation 38 makes intuitive sense: the force of mortality at time 0
is the event intensity, l, multiplied by the probability of the damage being
enough to kill the organism outright. Extending the derivation of the force of
mortality to any future time t is tricky and it is easier to explore mðx; tÞ by
Monte-Carlo means. The figure below shows that the choice of some
combinations of parameters leads to age-related increases in mortality, as
well as a deceleration at the most advanced ages.
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Figure 13. Force of mortality in one million simulations of ruin. Crude
forces of mortality (�) and the P-spline fitted values (solid line). The

parameters for the simulations were l ¼ 100, m ¼ 90, r ¼ 0:9 and x ¼ 10.
Although the model is very simple, it appears to produce both age-related
increases in mortality and an apparent late-life deceleration in mortality
increases at the oldest ages. This would need to be confirmed with more

analytic work, however, as there is always the risk that the empirical hazard
here is shaped by flaws in the random-number generator: we have used the
Minimal Standard generator discussed by Park and Miller (1988), with
implemementation taken from Press et al. (2002). The program which

generated this data is available for download at http://
www.richardsconsulting.co.uk/laws.html
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