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FOR the first eighty years of our Institute’s existence, approximate integration 
of actuarial functions was confined to ascertaining the area of a plane surface 
bounded by three straight lines and one curved; although the function to be 
integrated is usually a product, its components were ignored, and the product 
itself treated as the integrand. 

2. This is the more curious since so long ago as November 1868, in his 
Presidential address to the Actuarial Society of Edinburgh ( J.I.A. XV, 257), 
Edward Sang pointed out that ‘the integral or primitive of a product is a series 
composed of the products of the derivatives of the one by the primitives of the 
other factor’, that ‘the primitives and derivatives of are known’ and that 
accordingly we can integrate the product ux+n vn when the derivatives of ux+n 
terminate—an invitation in the clearest terms to abandon the product- 
integrand,to treat ux+n as a polynomial, and to make use of the reduction 
formula 

3. In 1927 Prof. J. F. steffensen wrote in the Skandinavisk Actuarietidskrift 
upon the sum or integral of the product of two functions, and in 1933 G. J. 
Lidstone wrote upon product finite integration by parts ( J.I.A. LXIV, 160). 
From 1918 increasing attention had been paid in this country to the use of 
moments in approximate valuation, led by Henry, and there naturally followed 
the application of such methods to the approximate calculation of isolated 
values. This brief statement may assist in allaying the surprise of the student 
of the future when he is told to look for our own first systematic contribution 
to the evaluation of the product-integral in a paper the title of which com- 
mences On a modification of the net premium method of valuation. . . (W. Perks, 
1933, J.I.A. LXIV, 286). 

4. Perks was followed by H. G. Jones (p. 318) and by A. W. Joseph (p. 329 
and J.I.A. LXV, 277), and in the following year in a more elementary field, and 
by a geometrical instead of an analytical approach, by the author of The Curve 
of Deaths (1934, J.I.A. LXVI, 17). There the matter rested (if that be the right 
word to apply to what was evidently a considerable display of industry) until 
1945, when Perks presented Two-variable developments of the n-ages method 
( J.I.A. LXXII, 377), followed by R. E. Beard in 1947 with Some notes on approxi- 
mate product-integration( J.I.A. LXXIII, 356), and in 1948 with Some experiments 
in the use of the Incomplete Gamma Function for the approximate calculation of 
actuarial functions ( Proc. Cent. Assembly Inst. Actuaries, 11, 89). 

5. In the discussion on Beard’s 1947 paper, F. M. Redington neatly sum- 
marized the position (p. 407) by saying that into the theoretical problem of 
integrating the fø product 
f and ø entered symmetrically, although in the practical problem the two factors 
night be introduced in very different shapes, and might have to be treated separately, 
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160 Approximate Integration 
However it was certainly important to choose suitable mathematical adjectives to describe 
both f and ø. The adjectives used in most of Perks’s work and in the present paper 
could briefly be described as ‘moments’ for ø and ‘points’ for f — one or two or three 
or four specimen points. . . . The use of moments for both f and ø had been examined 
in their different ways by Henry and Joseph. 
Perks (p. 411) visualized the possibility of product-integration ‘by substituting 
a few rectangular distributions in the form of a histogram’, which system 
‘might be called “ n –slab” formulae to distinguish them from the n –point 
formulae’. 

6. In the course of the same discussion Dr L. J. Comrie said that ‘on first 
reading the paper he had encountered a difficulty at the very start. . . . Why 
could not f( x ) and ø( x ) be multiplied together and the ordinary methods of 
quadrature then applied?’ (p. 406). C. D. Rich (p. 413) threw light upon this 
question by pointing out that for instance ‘was the integral of a continuous 
function which could be tackled directly, or which could— on the lines adopted 
by the author— be split into two component factors. It seemed that, perhaps 
because of the nature of the function, the latter course was probably advan- 
tageous.’ 

7. It may be convenient to deal a little more fully with this question at once. 
It will be recalled that the symbol ( d ) x was tentatively used in 1934 for the 
ordinate of the Curve of Deaths, but one felt then, and still feels, that a Greek 
letter is to be preferred for this ‘instantaneous d’, by analogy with µ and , 
and we will here follow R. D. Clarke in A bio-actuarial approach to forecasting 
rates of mortality (1948, Proc. Cent. Assembly Inst. Actuaries, 11, 12) in using 
øx for this ordinate. Also d a-b was used for ( lx + a – lx + b ), i.e. the deaths between 
ages ( x + a ) and ( x + b ), but a more convenient notation is required. Regarding 
lx as ‘all the deaths after age x’, it is hoped that for ‘all the deaths 
after age x within n years’ will be readily recognizable. Then, in deciding 
whether, for instance, 

should be treated as a series of areas, or as a series of solids in each of which the 
face-area is and the third dimension is the ordinate of the die-away curve, 
vn, we shall get some assistance from the block shown by solid lines in diagram 1, 
all the six surfaces of which are planes, regarded as a first approximation to 

8. The broken lines show the cross-section of the block at the mid-point of h, 
and the rectangular prism formed by extending this cross-section over the 
whole length of h. The dotted lines delineate a pyramid; the dimensions of the 
rectangular base (shaded) of the pyramid are manifestly ( øa – øb ) and ½  ( va – vb ),* 
and its height ½  h. A moment’s inspection will show that, if this pyramid is cut 
away, the remainder of the original block can be converted into the rectangular 
prism by turning wedge A through 180° on axis A, and wedge B through 180° 
on axis B, the new position of the wedges being indicated by dot-dash lines. 
From this it follows that the volume of the whole original block is 

* Suffixes have been used for v, in place of indices, because of the assumption of a 
straight line. 
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Clearly this formula is equally applicable if slopes in the opposite direction, 
for then the turning of the two wedges will leave the rectangular prism deficient 
by the same pyramid, and the term rightly becomes negative. The 
formula reduces to 

at which we could have arrived very much more simply, since it is a well- 
known rule of mensuration. Indeed, since for each function the mid-value 
is the mean of the terminal values, the mensuration corresponds precisely to 
Simpson’s Rule, although it preceded it by about 3500 years, having been known 
since circa 1850 B.C. However, there was a reason which will immediately 
appear for expressing V by the formula above, and a reason which will emerge 
later for arriving at that formula geometrically. 

9. A quadrator who has not seen the block, and who is not told that and v 
are each of the first degree, is given only the three figures f ( a ), f ( b ), and h, 
where f ( a ) is ava and f ( b ) is bvb; What can he do with these three figures 
further than to treat f ( n ) as a function of the first degree? His best estimate 
can be no better than 

Q = 

which reduces to 

=V + e (say). 
11-2 
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10. A geometer is supplied with two figures only, namely, 

and the mean value of v ( = ½ ( va + vb )). He knows that he will not get the correct 
volume of the block by multiplying the area of the face by the average thickness, 
unless the height be constant; but as he does not know whether is, in fact, 
constant, or whether it is increasing or decreasing, it is the best he can do. He 
thus reaches 

=V-½ e. 

His error is precisely half that of the quadrator. 
11. In practice x will usually not be a straight line. Whether it be concave, 

or convex, the quadrator will arrive at the same value as previously; the geo- 
meter, on the other hand, will arrive at a value differing from that for a straight 

line, for he uses the true value of the area dt in his calculations. Consider 

the case where x is convex; above the plane of the straight line a to b is 
a segment-shaped slab which the geometer’s method allows for by multiplying 
the area of the segment by the mean value of v. There can be little error in so 
doing, since the ordinate of the segment is zero where the value of Vt differs 
most from the mean value, and the ‘weight’ of the slab is in the centre, where 
the mean value is approximately correct. Furthermore, although x and Vn 
are not the simple functions we have assumed as a first approximation, the 
same principles apply in a more complex way to the more complex functions. 

12. Reverting to the block with six plane surfaces, we can improve upon 
the results of both the quadrator and the geometer. Since, as we have seen, the 
true value lies one-third of the way between the two, we shall arrive at the 
exact volume of the block if we add Q to twice G, and divide by 3. We will 
leave the exciting possibilities of this artifice for later exploration. 

13. It is the purpose of this paper to consider the practicability of obtaining 
monetary values, A x for instance, from mortality functions, either x or x, 
available only for every n th age, either by means of existing formulae, or by 
modifications of existing formulae, incidentally adapting to equally spaced 
datum points the simple cubature formula suggested in 1934 ( J.I.A. LXVI, 28): 

This formula depended for its rough accuracy partly upon the feature illus- 
trated in § 10 supra, partly upon the deliberate use (as a compensating error) 
of .95 as the mean value of vn from v 0= 1 to Va = .9, etc., but also to a consider- 
able extent upon the equal decrements of vn which resulted from the use of 
unequally spaced datum points (the simplification of the arithmetic being an 
incidental result of, and not the motive for, those equal decrements). However, 
before considering the adaptation of this formula to equally spaced datum 
points, before returning to the artifice of § 12, or to 1868 and Edward Sang 
and the use of integration by parts, it is appropriate to see whether we need 
anything more than our existing equipment. 
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‘The manner in which engineers, physicists and actuaries so readily use parabolic 
curves is open to considerable criticism.‘—KARL PEARSON (1902, Biometrika, 11, 19). 

14. Formulae of quadrature which use ‘selected values of the function to 
be integrated’ have been in actuarial use only since 1883. From a date con- 
siderably earlier than the foundation of our Institute in 1848, the method used 
was to divide the area into vertical strips, assumed rectangular, to sum them 
and to apply a correction for curvilinearity in the form of the leading differences 
(Lubbock), until in 1863 W. S. B. Woolhouse applied the Euler-Maclaurin 
expansion to life contingencies ( J.I.A. XI, 61), replacing leading differences by 
leading differential coefficients. That paper, interesting historically and other- 
wise, is also entitled to our admiration for the skill with which Woolhouse dealt 
with the integral calculus without terrifying his contemporaries with integral 
notation. It is not difficult to read once one has become accustomed to A being 
used as the symbol for ax, and from it those who have forgotten may be re- 
minded that the original form of the familiar formula for the value of an annuity 
payable m times a year was to obtain ax, from values of D x+n /D x taken at intervals 
of n years, e.g. 

Such formulae were applicable to more complicated functions than those 
involving only one life, and apparently they were immediately adopted by the 
profession in 1863, in place of Lubbock. 

15. Twenty years elapsed. In a paper presented to the Institute in January 
1883 ( J.I.A. XXIV, 97) G. F. Hardy said, of the Euler-Maclaurin formulae: 
‘So far as the accuracy of these formulas is concerned, they scarcely admit 
of any improvement; the calculation of the differential coefficients. . . is oc- 
casionally, however, attended with some inconvenience’; and he added that 
‘a similar objection lies against Lubbock’s formula in consequence of the 
manipulation of the successive differences involved in its use’. To avoid these 
difficulties Hardy drew attention to the so-called Simpson’s Rule (published 
by Simpson in 1743, but given earlier by cavalieri in 1639—in geometric form, 
be it noted!—and by James Gregory in 1668), to the ‘three-eighths’ rule, and 
to Weddle’s rule. Incidentally Hardy demonstrated that Simpson’s Rule 
usually gives better results than the ‘three-eighths’ rule, and showed why. 

16. Hardy then turned his genius upon 

some important formulas of integration first introduced by Gauss. This mathe- 
matician has shown that, by properly selecting the ordinates, we can with n values 
effect the exact integration of a function of the ( 2n - r )th degree. 

The Gauss formulae, it will be remembered, use ordinates which are not only 
not equidistant, but which are not for integral arguments; but Hardy skilfully 
selected those for which integral datum points could be substituted for the 
irrational with good approximation, and produced four formulae of which the 
most elaborate was 

(H 1) 

but in none of which the datum points were equidistant, 



164 Approximate Integration 
17. Finally, Hardy set out into what appears to have been a new field, and 

used Jacobi’s method for the development of Gauss-type formulae ‘to find 
what ordinates should be selected to obtain the best results when the initial 
and final values of the function are already known’ (and for that reason are 
to be included in the formulae); for the cases where the function is of the 
7th, 9th and 5th degree respectively, he obtained three formulae (A), (B) and 
(C), using three, four, and two ordinates respectively, in addition to the initial 
and final values. He gave worked examples of formulae (B) and (C), as also 
of the four preceding formulae, but not, rather curiously, of formula (A): 

(H 37) 

It is known to many as ‘formula (37)', having borne that number in the chapter 
which Hardy later wrote for King’s Text-book, Part II. 

18. In February 1887 George King presented a paper ( J.I.A. XXVI, 276) 
dealing exclusively with (H 37) and modifications of it, and in particular made 
the valuable suggestion that a very powerful formula could be derived from 
(H 37) by summing in sections 

(HK 38) 

which Hardy later reproduced in the Text-book, Part II, as formula (38). 
Most of the Gauss-type formulae are unsuited to our present purpose, namely, 
to use datum points at intervals of n years, but one is not prepared to agree 
entirely with H. and B. S. Jeffreys when they say, in their monumental Methods 
of Mathematical Physics (1946, Cambridge University Press), at p. 264, that all 
such formulae as those due to Gauss ‘are best regarded as museum pieces’. 
There are exceptions. 

19. Formula (H 37), for example. Hardy achieved integral datum points 
by the not noticeably close assumption that .1727 and .8273 can respectively 
be replaced by and . It is true that the formula uses unequally spaced datum 
points, but only to the extent of eliminating u 2 h and u 4 h. It is correct to fifth 
differences, and as such it keeps reappearing in actuarial and quasi-actuarial 
literature; it has become the habit so to develop it for the student, and as 
Jones pointed out recently ( J.I.A. LXXIII, 409) everyone appears to have 
forgotten that it was developed by Hardy to be approximately true as far as 
seventh differences. Its disadvantage is that it requires the interval over which 
we are integrating to be divisible by 6, but this disadvantage does not arise 
when we use it in its replicated form (HK 38), with h constant (= 5, say), 
truncated where the data peter out. 

20. By truncating at 7 h, King arrived at the classic formula 39 (a), and his 
paper was devoted to numerical tests of that formula. For the first three de- 
monstrations he chose h so that ( X + 7 h) was just under ; but then, pointing 
out that u 7 h, was contributing nothing to his results, he thereafter chose h so 
as to eliminate u 7 h (and it is believed the profession has done so ever since) in 
which form 39 (a) differs from (H 37), applied with the same value for h, only 
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in using .56 instead of .28 as the coefficient of u 6 h. Both Wm. Sutton and T. G. 
Ackland asked why .56 was better than .28, but the question remained un- 
answered. 

21. Theoretically it is easy to see that, with ( x+ 6 h ) just under , (H 37) 
gives, for instance, A and that 39 (a), with its double dose of u 6 h, provides 
for what happens after age ( X + 6 h ), and gives x. The trouble with the theory 
lies in its practical application. Of the six examples worked in the current 
edition of Life Contingencies, three would have given precisely the same result 
had (H 37) been used instead of 39 ( a ) (pp. 262, 313, and 344), and in two cases 
(H 37) would have given better results (pp. 295 and 335)! Incidentally, it has 
been said of both (H 37) and 39(a), but admittedly not by either Hardy or 
King, that they are recommended by the simplicity of their coefficients. Since 
the formulae were originally demonstrated, and still are to this day, worked 
by logarithms, the only advantage of the simple coefficients would seem to be 
that they are easily remembered. 

22. Woolhouse was back at the Institute in the following year with an 
elaborate paper On integration by means of selected values of the function (1888, 
J.I.A. XXVII, 122) in which he expounded a technique for deriving Gauss- 
Hardy type formulae (i.e. Gauss formulae approximately correct to the ( 2 n - 1)th 
difference, but with integral datum points) in wholesale quantity. Fifteen 
formulae were set out (and many more implied) of which ten use ‘boundary’ 
ordinates, and with two of them Woolhouse was so delighted that he called 
them ‘Nugget No. 1’ and ‘Nugget No. 2’ respectively. The eminent astronomer 
was, perhaps, possessed of a sense of humour which some of his more ponderous 
writings did not always reveal. 

23. No. 5 of these fifteen formulae is, as Woolhouse himself pointed out, 
merely a reappearance of (H 37) in a new guise, his coefficients being set out 
in fractional, instead of in decimal form; but Woolhouse did not point out, and 
presumably did not realize, that his No. 9 is approximately the same as (H 1). 
No. 10, the so-called Nugget No. 1, becomes, with coefficients in decimal form, 

= h {.28093 ( u 0 + u 10 h )+ 1.61899( uh - u9h ) 

+ 2.18490 (ush + u,~) + 1*83036u,,}. (W 10) 

The resemblance of the first two coefficients to those of (H 37) will be noticed. 
This formula is so good, Woolhouse said, that it may be truncated beyond u 6 h; 
and he calculated 40 at HH 3½% by putting h = 9, reaching 16.5978 as against 
the true value 16.5989. It is a little unfortunate that if we use the whole formula 
by putting h =6, we arrive at a value which is not so good, namely, 16.5970. 
However, we will include (W 10) in the tests to be made in the next section of 
this paper; it is the only one of the fifteen formulae, apart from (H 37), of course, 
that is of use to us here, the others having datum points at uneven intervals. 

24. The appearance of Henry’s Calculus and Probability in 1922, prompted 
Chas. H. Wickens to contribute (1923, J.I.A. LIV, 209) a note in which he made 
the interesting point that there are an unlimited number of formulae using five 
equidistant ordinates, including the boundary ordinates, which will exactly 
integrate a function of not more than the third degree, and that such formulae 
can be scheduled systematically by writing down any multiple whatever of 
(1, 0, 4, 0, 1), attaching the appropriate factor, and repeatedly subtracting 
(1 - 4, 6, - 4, 1) = 0. He arrived at Simpson (in two different forms) and also 
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four other simple formulae ‘not so well known’, of one of which he said that 
probably for most purposes it would ‘give as good results as any’: 

(1, 2, 3, 2, 1), (Wi. 1) 

but unfortunately he gave no worked examples. 
25. Repeating the process with seven equidistant ordinates, exactly to repro- 

duce a function of not more than the fifth degree, he found that, in order to 
have positive coefficients throughout, the coefficients of the boundary ordinates 
must lie between .28 and .39, both inclusive; and commencing with 

(.28, 1.62, 0, 2.2, 0, 1.62, .28) 

[(H 37) again !], by repeated addition of 

(.01, -.06, .15, -.20, .15, -.06, .01), 

he reached Weddle’s rule in two steps, and tabulated twelve formulae in all, of 
which he selected the sixth (which has a strong resemblance to Simpson’s Rule 
applied three times): 

=.3 (1.1, 4.4, 2.5,4, 2.5, 4.4, 1.1), (Wi. 2) 

and suggested that it has some advantages over both Hardy’s formula and 
Weddle’s rule; but again, alas, no worked examples. 

26. In 1924 The Calculus of Observations by Whittaker and Robinson was 
published, and as its Preface acknowledges assistance from Lidstone it is not 
surprising that in Chapter VII entitled Numerical Integration and Summation 
we meet many old friends, commencing with the Euler-Maclaurin expansion, 
and Gregory’s and Lubbock’s formulae. Passing on to formulae which involve 
only values of the function to be integrated, the authors start from Gregory’s 
formula to point out (p. 152) that Weddle can be reached at once from (H 37) 
by adding the zero quantity , but they do not mention Wickens, nor 
that a whole series can be obtained by the repeated addition of —or (for 
that matter) ten times as many by the repeated addition of , and so on, 
ad infinitum. They do not mention that Hardy’s formula was designed to be 
approximately correct to seventh differences; and later they give Woolhouse’s 
‘Nugget No. 1’ and ‘Nugget No. 2’ with the same omission. Shovelton’s 
formula is given: 

(8, 35, 15,35, 15 36, 15,35,15, 35,8), (Sh.) 

and the Newton-Cotes series are dealt with systematically, including Simpson’s 
and the ‘three-eighths’ rules. The chapter concludes with Tchebychef’s 
formulae using equal coefficients for unequally spaced datum points, upon 
which Elderton in 1924 contributed a note ( J.S.S. 11, pt. 2, 140), and with 
Gauss’s formulae (which should have preceded any references to (H 37) 
and Nuggets 1 and 2, instead of following them) giving the four formulae set 
out by Hardy in J.I.A. XXIV, 97. With regard to the Cotes formulae, M. T. L. 
Bizley drew attention in 1946 to one which integrates between limits 0 and 5 n, 
and so can be employed when other formulae fail, i.e. when the number of 
years in the period of integration is an odd multiple of 5 and not also a multiple 
of 3 ( J.S.S. VI, pt. 2, 90), the Editor having apparently overlooked that this 
formula was given in 1922 in A. E. King’s essential paper ( T.F.A. IX, 218). 
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TESTS OF EXISTING FORMULAE 

‘The need of the moment. . . is arithmetic and arithmetic and arithmetic.‘*— J.I.A. 
LIV, 206. 

27. For testing existing quadrature formulae we will assume that the 
following is the whole of the information available of a particular, but for the 
moment unidentified, mortality table. (Later we shall use the lx, column alone 
to test a suggested cubature formula): 

X 
1 lx 10 

Text 

20 
25 
30 
35 
40 
45 50 
55 
60 
65 
70 
75 
80 
85 90 
95 

100 

1000 

958 

913 

843 

708 

470 

182 

21 

x 

39 
42 
43 
45 
52 
68 
94 

133 
183 
240 
286 
298 
254 
161 
66 
14 
1 

.2917 

.3587 

.4484 

.5577 

.6742 

28. If it is intended to put a replicated quadrature formula to any extensive 
use with h constant, = 5, it is convenient to rewrite it in the form 

where 
a = c 0 X 5, 

b = c 5 x 5 x v 5, 

c = c 10 x 5x v 10 

etc. 

The values of a, b, c, . . . at 3% are set out in the following schedule for (HK 38), 
(W 10), Simpson’s Rule, (Wi. 2), and (Sh.). A test was made of (Wi. 1) also, 
but the results did not encourage the tabulation of the coefficients. With 
h = 5, it replicates every twenty years, as compared with the ten years of Simpson, 
with which—on the basis of this one test—it cannot compete. Indeed, the 
arithmetic for this paper, only a small part of which is exhibited, has proved 
how powerful Simpson’s Rule is, in actuarial use, and how right Rich has been 
persistently to remind us of it. 

29. The values of etc., are written in sequence one under another 
on a strip of paper, which is laid upon the schedule with the ‘age at entry’ in 

* I will not insult the reader’s memory by naming the author. 
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line with t = 0. The multiplications are accumulated upon the arithmometer 
without being recorded, and the total, divided by lx, gives x at once. The 

t HK 38 W 10 Simp. 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

1.4 
6.987 
0 
7.060 
0 
3.869 
1.154 
2.879 
0 
2.909 
0 
1.594 
.475 

1.186 
0 
1.198 
0 
.657 
.196 
.489 

1.405 
6.983 
0 
7.012 
0 
4.371 0 
3.882 
0 
2.141 
.641 

1.593 
0 
1.599 0 
.997 0 
.886 

0 
.488 

1.667 
5.750 
2.480 
4.279 
1.846 
3.184 
1.373 
2.369 
1.022 
1.763 
.760 

1.312 
.566 
.976 
.421 
.726 
.313 
.540 
.233 
.402 

Wi. 2 Sh. 

1.650 1.587 
5.693 5.990 
2.790 2.215 
3.851 4.457 
2.076 1.648 
3.152 3.412 
1.360 1.226 
2.346 2.468 
1.150 .912 
1.587 1.836 
.855 .724 

1.299 1.366 
.560 .505 
.966 1.017 
.474 .376 
.654 .778 
.352 .280 
.535 .563 
.231 .208 
.398 .419 

results, with the errors ‘Calc. –True’ immediately beneath, are shown in the 
following schedule: 

3 % 20 30 40 50 60 
Mean 
error 

True .2917 .3587 .4484 .5577 .6742 
HK 38 
Error 

.2922 .3594 .4485 .5582 .6746 
5 7 1 5 4 4.4 

W 10 
Error 

.2920 .3592 .4486 .5578 .6752 
3 8 2 1 10 4.8 

Simp. .2920 .3591 
Error 

.4483 .5578 .6745 
3 4 –1 1 3 2.4 

Wi. 2 
Error 

.2920 .3590 .4485 .5578 .6741 
3 3 1 1 –1 1.8 

Sh. 
Error 

.2920 .3592 .4482 .5580 .6743 
3 5 –2 3 1 2.8 

In comparing the results it may be borne in mind that to obtain the five values, 
(HK 38) has involved us in only 43 multiplications, and (W 10) in only 39, 
whereas the other three have each required 65. 

30. As applied to this particular purpose, with these particular figures, it 
does not appear that (W 10) is a nugget of such dazzling lustre as to put (HK 38) 
off the gold standard. (Wi. 2) brings out, in this case, the lowest mean error, 
but it is probably true to say that this test shows no significant difference 
between any of the three formulae which use every fifth value of øx. It should 
be noted that, since it will presently be proposed to calculate x from decennial 
values of lx:10 with radix l20 = 1,000, it was thought not unfair to limit the 
scale of the øx figures to radix l20 = 10,000; but such small–scale figures naturally 
cannot guarantee the fourth place of , whatever the formula employed. 
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CUBATURE 

‘When I was at school the mean distance from the earth to the sun was stated as 
95,142,357 miles. I wonder why furlongs and inches were not mentioned.‘—PROFESSOR 
JOHN PERRY, in a lecture on Practical Mathematics, 1899. 

31. We return to solidity, and to the intention to adapt the 1934 formula to 
equal age-groups. That formula was evolved for the sole purpose of evaluating 

x, and made use inter alia of error-offsetting between the years immediately 
following the age at entry, and the later years of life. The formula about to be 
discussed, on the contrary, is intended to be approximately correct for each 
section of 2 n years, and it is not put forward for one purpose only, but is in- 
tended for the integration of any product function 

where we can readily obtain, and more especially if we already have available, 

a simple case of the general formula being that for obtaining directly 
from l and l 

32. Write 
( a ) 

and, by analogy with the formula for V in § 8, in which h. ½ ( a, + b ) is the 
equivalent of l , write 

( b ) 

This formula is put forward as a piece of geometrical mensuration in three 
dimensions, but in case the analogy is troublesome an alternative method of 
deriving it is shown in the Appendix. A formula which is closely similar is 
reached by integration by parts in a later section of this paper, the difference 
being slight and probably not significant. Furthermore, as noted in the 
Appendix, formula ( b ) as applied to the evaluation of is closely similar to a 
known process, the difference here being not quite so slight, and perhaps signi- 
ficant. Formula ( b ) may be (but is not here) reproduced by the two-to-one error 
artifice of § 12 if we treat both and v as of the first degree, or by simple algebra 
if we treat either or v as of the first degree and the other as of the second 
degree. However, because it does in fact make use of the true values of lx: 
and lx+n: , it is very much more accurate than any of these three modes of 
reproducing it would suggest. It is in every sense an approximate formula, it 
is not correct even if is constant, but it is very nearly correct in all circumstances 
likely to arise in actuarial practice. 
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33. Formula ( b ) transforms to 

whence 

where 

and 

34. Substituting ( lx - lx+n ) for lx: etc., in formula (c), we have 

or, for tests upon existing mortality tables for which D x, is tabulated, 

where 

i.e. 

( c ) 

(1) 

where 

35. We will presently put n = 10 and compare the results obtained by 
formula (1) with those summarized in § 29, but first we will put n = 8. At 3% 
formula (1) reduces to 

(1 a ) 

which is far too powerful a formula with which sensibly to compare the results 
of the quadrature formulae. Instead, in the schedule on p. 171, x is calculated 
for A 1924-29 Ultimate, from tabulated D x cut down by one figure, for every 
eighth age from 12 to 60, to five places of decimals, with a slightly greater 
accuracy, in the aggregate, than is obtained by multiplying the tabulated A x, 
values by (1 + i /2). 

36. If values of are required at high ages to obtain terminal figures for 
endowment assurances and temporary annuities, they can be calculated very 
accurately (if lx, or D x, is available from age 68 onwards at every fourth age) by 
the formula 

(1 b ) 

The calculations made by this formula, having been at first compared with 
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tabular A x x (1+ i /2), over 82% of the apparent discrepancies turned out 
to be due to the use of this formula, unreliable at old ages. In other words, the 
error in x , calculated to five places of decimals by formula (1 b ) for ages 68 

A 1924–29 ult. 3%. 

D x 
x 

12 

N (16) 
x+8 

1,148,544 

20 

699,123 

420,459 

542,745 842,590 

28 605,799 

36 325,219 422,131 

44 249,047 280,580 

52 186,720 173,084 

60 132,849 93,860 

68 
76 
84 
92 

100 

39,117 

1,118 

83,298 

10,533 

29 

+ True values are 

Tabular cut by 
one figure 

x 
.3182 N (16) 

x+8 
+.1547 N (16) 

x+16 Calc. 

365,467 
130,349 .21321 

495,816 

268,112 
93,717 .25574 

361,829 

192,765 
65,304 .30863 

258,069 

134,322 
43,406 .37592 

177,728 

89,281 
26,776 .45641 

116,057 

55,075 
14,520 .54969 

69,595 

29,866 
6,224 .65075 

36,090 

True* 

.21322 1 

.25574 0 

.30869 6 

.37596 4 

.45645 4 

.54976 7 

.65077 2 

Deficiency 
True – Calc. 

to 84 inclusive, is little more than one-fifth of the error involved in taking 
tabular A x and multiplying by (1 + i /2) (see p. 172). 

37. This accuracy is vastly greater than we need, and may even be greater 
than the accuracy of the tabulated data can justify. We are therefore encouraged 
to abandon n = 8, and substitute n = 10, although a wide range of calculations 
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indicates that the mean error with n = 10 is about five times as great as with 
n = 8, providing we are content to calculate to four places of decimals instead 
of five. If, in addition, we reduce the scale of our data we shall have a recording 
error which may exceed ±.00005; with radix l 20= 1,000, and with n = 10, we 
must be prepared for errors up to ±.0002. 

x 3% 
X 

Calc. True* Calc.— True 

68 .74888 .74888 0 
72 .79257 .79255 2 
76 .83064 .83059 5 
2 .83064 .86294 2 
84 .88952 .88949 3 

16 

Mean error 3.2 

A(1+ i /2) 

.74888 

.79249 

.83046 

.86272 

.88915 

Error 

0 
6 
13 
22 
34 

75 

15 

* True values are 

38. The following table contains all the data now supposed available of the 
specific but hitherto unidentified mortality table (it is, in fact, the AM(5) Table) 
used for the quadrature formulae tests: 

X lx : X lx : 
20 42 60 238 
30 45 70 

80 
288 

40 70 161 
50 135 90 21 

Formula (1) now becomes 

(1 c ) 

but, since it is assumed that D x values are not now available, it will be more 
convenient to return to formula ( c ) rewritten as 

(2) 
where, at 3% and 

so that we can use the continuous method of the following schedule (cutting 
f 0 and f 10 to three figures): 

(1) 

x 

(3) 

lx : 

(2) 

lx 

21 
182 
470 
708 
843 
913 
958 

1000 

(9) (10) 
x 

True +(8)–( 

(7) 
(l ) x 

=(4)+(5)+(6) 

(4) 
lx : 
x .904 

18.98 
145.54 
260.35 
215.15 
122.04 
63.28 
40.59 
37.97 

(5) 
lx +10: 
x .606 

—  
12.73 
97.57 

174.53 
144.23 
81.81 
42.56 
27.27 

90 
80 
70 
60 
50 
40 
30 
20 

21 
161 
288 
238 
135 
70 
45 
42 

(6) 
( l ) x +20 

x v 20 
(=.55368) 

—  
—  

10.51 
87.63 

203.99 
264.28 
260.37 
226.66 

18.98 
158.27 
368.43 
477.31 
470.26 
409.37 
343.52 
291.90 

(8) 
Ax 

=(7)÷(2) 

—  
—  
—  

.6742 

.5578 

.4484 

.3586 

.2919 

—  —  
—  —  
—  —  

.6742 0 

.5577 1 

.4484 0 

.3587 –1 

.2917 2 
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39. Now we have a mean error of .00008, as against quadrature mean errors 
in the tests summarized in § 29 varying from .00018 (Wi. 2) to .00048 (W 10); 
but it should be said at once that the close agreement in § 38 must be partly 
fortuitous with so low a scale as l 20, = 1,000, according to the argument of § 37, 
On the basis of comparative mean errors the case for a new formula is not 
made out conclusively, but its support is also argued from 

(i) the use of decennial figures only, whereas quinquennial figures were used 
for the quadrature formulae, 

(ii) the use of lx only, to the scale of l 20,= 1,000, instead of having also øx to 
the scale of l 20= 10,000, and 

(iii) the greater arithmetical simplicity. 

In particular, if dt is tabulated, but ux+t itself is not, we cannot 

use a quadrature formula to evaluate 
found ux, if we can. 

dt directly until we have first 

40. There is an obvious transformation of formula ( c ) if we want only one 
or two isolated values, or if for some reason we want our (l ) x values displayed 
in their twenty-year component parts: 

where etc. At 3% we have 

f 0 = .90378, f 50=.18585, 

(3) 

f 10 = .60623, f 60 = .15341, 

f 20 = .50040, f 70 = .10290, 

f 30 = .33566, f 80 = .08494, 

f 40 = .27706, f 90 = .05697, 

these factors being cut to four or to three figures when we are working with a 
radix of 1,000. 

41. For studying curves of death in arithmetical form with equally spaced 
datum points as advocated by A. W. Evans in 1934 ( J.I.A. LXVI, 56), we need 
not be limited to a constant radix at only one age; we can show our mortality 
table in composite form with a constant radix at every decennial age, and yet, 
since we require lx at decennial ages only, keep it compact if we are satisfied 
with the degree of accuracy in our monetary values which can be obtained with 
a radix of 1,000— still more compact, of course, if it is conceded that the 
essence of a mortality table is preserved when the radix is reduced to 100. For 
example, the following schedule shows the English Life Table No. 10 (Males), 
by means of nine curves of death in arithmetical form. These lx : figures, 
and others which follow, have been obtained by scaling down the lx column 
and differencing. Accumulation of recording error is thereby eliminated at 
the expense of such inconsistencies as 7 deaths for l 40: with the radix at 
age 30, as against 8 when the radix is at age 20. 
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ƒ 
.904 
.606 
.500 
.336 
.277 
.186 
.153 
.103 
.085 
.057 

English Life Table No. 10 (Males)— ‘ 100-deaths’ 

x 
0 11 —  —  

10 2 2 —  
20 3 3 3 
30 3 4 4 
40 6 7 8 
50 11 13 13 
60 21 22 22 
70 27 31 
80 14 

31 16 17 
90 2 2 2 

—  —  —  —  —  —  
—  —  —  —  —  —  
—  —  —  —  —  —  
4 —  —  —  —  —  

8 —  —  —  7 —  
14 13 15 —  —  —  
24 25 27 32 —  —  
32 34 36 43 63 
17 18 20 22 33 90 
2 2 2 3 4 10 

42. From a mortality table arranged in this form, using formula (3) with the 
coefficients cut to three figures, we can obtain approximate values of 10x 
with a likely error of not more than ± .001 at the ages mostly required for 
assurance purposes, which appears to be within the variation of the current 
retail selling price. In applying formula (3) there is no division to be performed 
for l10x is universally 100. One merely writes the coefficients on a strip of paper, 
places it upon the schedule against the appropriate lx:10 column, and accumu- 
lates the products on the arithmometer. The results for the English Life Table 
No. 10 (Males) are: 

Age 10 20 30 40 50 60 70 80 
Calc. 3% = .222 .282 .352 .444 .552 .670 .789 .874 
True 
Calc.–True= 

.222 .282 .352 .444 .552 .670 .787 .875 
0 0 0 0 0 0 2 -1 

43. The somewhat remarkable results at ages 60, 70 and 80 are not so 
fortuitous as might be supposed. 
‘100-deaths’: 

For example, from the A 1924–29 (ultimate)– 

60 28 - - 60=.651,true 
70=.773, true 

.651 
70 42 58 - we have .771 

.865, true .863
90 4 5 13 

and from the O[NM] ultimate: 

60 36 - - 
70 41 64 - we have 

60=.686, true 
70= .794, true 

.687 
.790 

80 21 33 91 80 = .877, true .876 
90 2 3 9 

44. English Life Table No. 8 (Males)— ' 100-deaths’: 

x Calc. x, True Calc.–True 
0 19 – – – – – – - - - – – 

10 2 2 – – – – – – – .242 .242 0 
20 3 4 4 – – – – – – .307 .306 1 
30 4 6 6 6 – – – – – 1 .382 .381 
40 8 9 9 10 10 – – – – .470 .471 -1 
50 12 15 15 16 17 19 – – – .575 .575 0 
60 19 23 24 24 26 29 36 – – .575 .575 0 
70 21 26 27 28 30 33 41 34 – .792 .788 80 11 13 13 14 15 17 20 32 89 .871 .871 

4 
– 

90 1 2 2 2 2 2 - - - 3 4 11 

80 26 37 87
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HM (Makeham graduation)— 

10 4 -- 
20 6 7 — — — 

8 7 8 — — –1 
9 10 11 12 — 

14 15 15 16 19 — 
21 21 24 26 29 35 — –1 
24 25 26 29 33 41 — .790 .789 
13 14 15 15 17 22 .877 .876 
1 1 

100-deaths’: 
Calc. x, True 

.272 .272 
-- .333 .333 -- .396 .397 -- .478 .478 -- .575 .575 

.682 .683 

34 91 

Calc.—True 
0 
0 

0 
0 

1 
1 

30 
40 

70 
80 
90 

45. 
X 

— — — — — 
— 
— 
— 

50 
60 — 

63 

1 2 2 2 3 9 — — — 

46. For select tables it is, of course, essential to have a curve of deaths for 
each of the decennial ages at entry: 

A 1924–29 (select)—' 100-deaths’ 

X 
10 2 — – — — 
20 2 2 – — — 
30 3 3 3 — — 
40 5 5 5 5 — 
50 10 10 10 11 11 
60 21 22 23 23 25 1 
70 33 34 34 35 37 .762 4 
80 21 21 22 23 23 .848 11 
90 3 3 3 3 4 

Calc. [x] 
--- .203 
--- .254 --- .324 --- .414 --- .524 
27 - - .647 
42 56 - .766 
27 38 85 .859 
4 6 15 - 

True 
.203 
.255 
.323 
.413 
.523 
.646 

- 

Calc. – True 
0 

-1 
1 
1 
1 

— 

It will be noticed that for one select table, at least, the formula tends towards 
values of [x] higher than the true values, particularly at the older ages. This 
was to be expected from the nature of the formula. 

47. The following is the whole of the working for the values of joint-life 
annuities for two, three and four lives, aged 10, by HM 3%: 

10 100 
20 96 92 
30 90 66 18 21 
40 82 
50 73 60 59 
70 38 
80 14 
90 1 

100-lives 
100 100 

81 
89 
73 

67 55 
53 39 
35 21 
14 5 
2 - 

- - 

100-deaths 

100 8 11 15 
85 11 

14 
16 19 

45 14 16 17 
28 18 18 16 
12 21 16 1O 
2 12 5 2 

- 2 - - 
- - - - 

Calculated = .3655 
Converted to A = 

.4275 .4788 
.3601 .4212 .4717 

Converted t0 a =20.97 18.87 17.14 
Tabular a = 20.98 18.80 17.10 

The corresponding figures for age 20 are: 
Calculated a =18.55 16.14 
Tabular a 

14.50 
= 18.62 16.29 14.55 

These results are interesting, having regard to the small scale of the figures. 
It will be appreciated that while we have used equal ages in order to be able to 
compare our results with tabular values, we could as easily have used different 
ages, and indeed different mortality tables. 

AJ 12 
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RATIONALE OF THE CUBATURE FORMULAE 

48. We return to 1868, and Edward Sang. When u and w are both rational 
functions of t we have 

whence, by reduction, 

49. Now suppose that from x to ( x + 20), ø x+t = ux+ t -10 is a polynomial of 
not more than the fourth degree, and write: 

so that 

Then 

or, for convenience, writing p for 

At 3% (i) 

50. Now 

and similarly 
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so that, by formula (2) at 3%, 

177 

a result which supports the remarks at the end of § 32. 

(ii) 

51. Had one started with the approach of §§ 48 and 49, instead of with 
a geometrical approach, being nevertheless seised of the idea of expressing 

in terms of and one might have been bold enough to ignore 
the coefficients of c, d and e, in (i) above, obtaining by solving the two equations 
of the coefficients of a and b : 

and instead of (ii) we should have had 

(iii) 

This hardly differs from (ii) for a, b, c and e, but where (ii) fits (i) badly, namely, 
the coefficient of d, (iii) is worse. However, the differences between f 0 and f 10, 
and f' 0 and f' 10, are probably not significant. Over any period of 20 years it depends 
upon the slope of the curve of deaths which of these two sets brings out the 
larger value for but over the whole future lifetime of ( x ) we may expect 
.9038/.6062, or .904/.606 to bring out larger values than will .9029/.6071 or 
.903/.607. Whichever set of factors we adopt, we have the answer to the question 
when is it better not to deal with the product of ux+t, a mortality function, 
and vt, as the integrand for an ordinary quadrature integration— when 
ux+t more closely resembles a polynomial than does ux+t vt. Some light is 
thrown on this by supposing that in § 27 we had given the quadrator only 
the øx figures, and not the lx figures, which accordingly, since he needed them 

X øx 
1 

lx 10 

20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 80 
85 
90 
95 

100 

39 
42 
43 
45 
52 
68 
94 

133 
183 
240 
286 
298 
254 
161 
66 
14 
1 

6 
10 

250 

275 

418 

809 

1429 

I732 

964 

I23 

1 

6001 

5751 

5476 

5058 

4249 

1000 

958 

913 

843 

708 

for his denominators, he calculated by Simpson’s Rule. He would, in fact, 
have reached precisely the lx figures which were supplied to him. Let it be 
said at once that the AM(5) is by no means the only mortality table in which, 
for the main ages, øx over 10-year periods can be assumed, with great accuracy, 
as being of not more than the third degree. 

12-2 
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52. In order to show that the essence of a mortality table can be contained 

in a schedule of small compass, emphasis has been placed in the later part of 
this paper upon simplicity rather than upon on accuracy. By way of contrast, the 
schedule below sets out calculations of x at quinquennial ages from 10 to 65 
by the OM table at 3%, to five places of decimals, with n = 5, by the continuous 
method of § 38, with a mean error for the twelve values of .00001 precisely. 
Similar tests with the HM and English Life Table No. 10 each gave a mean 
error of .00002. 

X 

100 

95 
90 
85 
80 
75 
70 

65 
60 

55 

50 

45 
40 
35 
30 
25 
20 
15 
10 

lx 
lx:5 

lx:5 
(tabular) x.95106 

7 
186 

1,596 
6,359 

15,530 
27,752 
40,615 
52,307 
62,073 
69,919 
76,185 
81,262 

85,467 
88,995 

91,942 
94,387 
96,453 
98,284 

100,000 

7 
179 

1,410 
4,763 
9,171 
12,222 
12,863 
11,692 
9,766 
7,846 
6,266 
5,077 
4,205 
3,528 
2,947 
2,445 

2,066 

1,831 
1,716 

6.7 —  

170.2 5.5 
1,341.0 139.7 
4,529.9 1,100.4 
8,722.2 3,717.3 
11,623.9 7,157.5 
12,233.5 9,538.7 
11,119.8 10,038.9 
9,288.1 9,125.0 
7,462.0 7,621.9 
5,959.3 6,123.4 
4,828.5 4,890.3 
3,999.2 3,962.3 
3,355.3 3,281.8 
2,802.8 2,753.4 
2,325.3 2,300.0 
1,964.9 1,908.2 
1,741.4 1,612.4 
1,632.0 1,429.0 

x.78045 
(l )x+10 

x v10 
(=.74409) 

—  

—  

5.0 
130.7 

1,105.5 
4,286.7 

10,078.7 
17,164.7 
23,699.9 
28,516.1 
31,335.9 
32,442.3 
32,307.3 
31,371.7 

29,963.6 
28,282.0 
26,429.9 
24,486.0 
22,548.2 

6.7 
175.7 

1,485.7 
5,761.0 

13,545.0 
23,068.1 
31.850.9 
38,323.4 
42,113.O 
43,600.0 
43,418.6 
42,161.1 
40,268.8 
38,008.8 
35,519.8 
32,907.3 
30,303.0 
27,839.8 
25,609.2 

—  

—  

—  

—  

—  

—  

—  

.73266 

.67844 
.62358 
.56991 
.51883 
.47116 
.42709 
.38633 
.34864 
.31417 
.28326 
.25609 

(l )x Ax Calc. -True 

—  

—  

—  
—  

—  

—  

—  

+3 
+1 

+1 

–1 

+2 

0 
0 
0 
0 

–1 
0 

-3 

Total of 12 errors 12 
Mean error .00001 



Approximate Integration 179 

APPENDIX 

Since this paper was in draft form, attempts have been made to improve it 
at a number of points as a result of suggestions from Perks and others, to whom 
I am greatly indebted. In particular, the original Appendix reproduced 
formula ( b ) of § 32 by the two-to-one error artifice of § 12, and the § 33 trans- 
formation of that formula by algebra in two different ways, but all three of these 
demonstrations involved ‘intuitive’ substitutions such as do not call for any 
great ingenuity when one knows the expression to be reproduced, but which 
ordinary people like the author do not hit upon when they are attempting to 
derive a formula, as distinct from reproducing one. Thus these demonstrations 
were clumsy, and I am accordingly grateful to Perks for a chance but very 
pregnant remark which has stimulated a neater method of reproduction, which, 
by your leave, I substitute for the original Appendix. 

Diagram 2. 

Consider the area I under the arc AFE. With BC = CD, assume that the area 
of segment AE is four times the area of the two segments AF and FE together. 
This is manifestly equivalent to assuming that in using the area of the quadri- 
lateral ABDE as an approximation to I the error involved, say 4 e, is four times 
the error, e, in using the sum of the areas of the quadrilaterals ABCF and 
FCDE. Then I = ABDE + 4 e, 
and alternatively 4I= 4ABCF + 4FCDE + 4 e. 
By subtraction 3I=4(ABCF+FCDE)–ABDE, 
which reduces at once to Simpson’s Rule. 

Now apply the same error assumption to actuarial cubature; for instance, 
assume (i) 
and alternatively assume 

(ii) 
Subtract (i) from (ii) and divide by 3, and formula ( b ) of § 32 follows immediately. 

This stresses the relationship, already implicit in the ‘analogy’ of § 32, 
between formula ( b ) and Simpson’s Rule, but I am indebted to Joseph for 
having pointed out the nature of this relationship, namely that as applied to 
the cubature formula is very near indeed to the evaluation of by conversion 
of obtained by Simpson replicated, a process which for obvious reasons 
produces better values of than are obtained by direct quadrature; see, for 
example, the remarks of Rich in 1934 ( J.I.A. LXVI, 46). 
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ABSTRACT OF THE DISCUSSION 

Mr William Phillips, in introducing the paper, said that for the past several weeks 
he had been in a state of some excitement upon discovering that three hundred years 
ago a professor of mathematics at Bologna had shown how to correct a bad integration 
by means of a worse. If the area beneath a curve were divided into an even number of 
vertical strips of equal width, from which the primitive process imposingly named the 
‘trapezoidal rule’ produced results insufficiently accurate, he thought the reaction of 
the average man would be to demand a lot more ordinates; not so Cavalieri, who said, 
in effect, ‘Let us discard the even-numbered ordinates. By doubling the width of each 
strip we shall get a worse value than the one which is not good enough, we shall get 
one, in fact, which is just four times as bad.’ Then by blending the two, Cavalieri pro- 
duced Simpson’s Rule, seventy years before Simpson was born! 

Had he, the speaker, known of that aspect of the Rule a year or so previously, he 
might have been deprived of some amusing work, for an application of the same prin- 
ciple to cubature would have produced formula (b) of § 32, without invoking the aid 
of solid geometry. The calculated value of 36, in the schedule on p. 171 had, in effect, 
been obtained from a bad first attempt of 

and a second, and worse, attempt of 

by treating the difference between the two values as being three times the error of the 
first. The final error was .00004, reached by blending errors of the order of .00303 
and .01221, a result which he found somewhat astonishing. 

He thought the underlying assumption, true in fact for a curve of the second degree, 
that the area of a segment is proportional to the cube of the base-line which subtends 
it, might have further applications. As a simple example, the geometry leads to the 
general formula 

which is in fact true to the third degree because it is symmetrical. The expression 
reduces to Simpson’s Rule upon putting a=n/2 and with other values of a produces 
a range of formulae in terms of four ordinates, including the ‘three-eighths’ rule in the 
special case of equidistant ordinates, with a = 2n /3. 

Mr L. V. Martin, in opening the discussion, said that he thought no one could 
accuse the author of being dull. The author had talked to the Institute of many things, 
such as backward time and light rays and, on one famous occasion, the carpenter’s 
shop in the life office basement. The new paper which was the subject of discussion 
that evening was a real tour de force, being both of great interest and of undoubted 
originality, and yet containing a mathematical theory so simple that any competent 
Part I student could follow it. Such a combination of virtues in a paper was rare, 
and there was cause for gratitude that the author’s legal light had not entirely dimmed 
his actuarial light. 

In the section on the tests of the existing formulae the author had used a very useful 
artifice in the application of the various rules. The tabulation of the coefficients in the 
form 5 c 0,5 v 5 c 5, etc., made possible a neat method of carrying out the calculations on 
a machine. Once the coefficients had been calculated, they could be used again and 
again; x and x could be calculated from the values of lx or øx, alone, and the D x 
values were not required. 

The values to four decimal places which the author had obtained should not be taken 
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as a reliable guide to the relative merits of the various formulae. In making the calcu- 
lations, the final step had been to divide by a value of lx, which was tabulated to only 
three significant figures. There was quite a possibility, therefore, of a large error, 
perhaps of 3 or 4 in the fourth place. It was possible that, if lx were taken to one more 
figure (and, of course, the author’s Øx figures were taken from a table with a radix of 
10,000), comparison of the values of x given by the various formulae might bring out 
rather different results. 

The main section of the paper dealt with the suggested cubature formula. Anyone 
who had looked through the results would agree that by the use of surprisingly few 
figures the author had obtained amazingly accurate results. In the section in which the 
author dealt with ‘100 deaths’ and obtained values of x, to three decimal places it 
might be wondered whether a similar criticism should be made of the accuracy of the 
last decimal place. In effect, however, the author was weighting the various values of 
lx: with a value of vn at a particular age n. Since the lx column was exactly the sum 
of the lx: column, the errors due to rounding-off had a comparatively small effect 
on A,. For example, if the deaths in one 10-year age-group were given as 8, and in the 
next 10-year age-group were given as 7, and there should be 7·5 deaths in each, the 
error, even if it was in the first two age-groups, would not be greater than about 
·5 v 6 (1 - v 10) in the value of lx x resulting in a comparatively small error in the third 
decimal place of IIx . 

In the table on p. 171, he thought that the author had been a little luckier than he 
deserved. The author had taken G and H, the two coefficients in formula (1) of § 34, 
to four decimal places only; the use of four-figure coefficients might well produce an 
error of as much as 1 in the fourth decimal place, whereas the results were given to 
five decimal places. The values to five decimal places of G and H were ·31824 and 
·15465+, so that the errors tended to counterbalance; had they been in the same 
direction there, might have been a substantial error in the fifth place. 

While admiring the results which had been obtained, he wished that the author had 
adopted, not the formula which he had in fact adopted, but the alternative which 
was given in § 51. As the author said, the formula which he used had been obtained 
by analogy with his geometrieal example. That was an approach which might be 
expected to appeal to him; but surely the point was that the author was expressly 

considering integrals of the form dt -and it was known that vt was not a 

straight line. An algebraic approach would show that the formula used by the author 
was accurate if vt was of the first degree in t, and ux+t of the second. It was not strictly 
accurate if vtux+t was of the fourth or higher degree in t, though the fourth difference 
error was small. 

There was an alternative approach. Were it supposed that l 20 was required from 
given values of l 20 and l 30 it could only be assumed that the deaths were evenIy spread, 

1 -V 10 
and the result would be l 20 If that method were extended, values of lx x 

1 -v 10 
would be obtained by summing vxlx: i.e. by assuming a series of histograms. 

The results given by such a method would be too high at the young ages and too low 
at the old ages. 

The values of x obtained by that method from the lx, data of § 27 at ages 20 ,30, etc., 
were ·2931, ·3601, ·4504, ·5590 and ·6726. Despite the crudity of method, the results 
were within ½% of the true values. That was surely a good starting point, and one from 
which the formula developed by the author in § 51, could be reached. In effect, the 
values 1x were grouped in pairs and Øx was assumed to be of the form a + bx over a 
range of 20 years. 

The formula of § 51 could be expressed in two other ways. First of all, it could be 
expressed as 
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that was the histogram method applied over the whole 20 years with an adjustment of 
( lx -lx+ 10 : ), multiplied by a constant C, where C was ·14792. Alternatively, the 
formula could be expressed in terms of two separate histograms and written 

where K was ·03714-about one-quarter of the value given for C. 
The fact that the formula could be obtained as an adjustment of the original estimate 

made him feel that it would have been preferable had the author adopted that formula 
instead of the one derived by geometrical analogy, although, as the author said, for the 
calculation of x the difference between the two formulae was small. Taking § 35 as an 
example, the author gave the coefficients as ·92241, ·3182 and ·1547. Those obtained by 
applying Simpson’s Rule for x and then converting were ·92118, ·3153 and ·1576- 
figures which confirmed the remark made in the paper that the suggested formula 
was very close to an inversion of Simpson’s Rule. The formula in § 51 was even closer 
to the inversion of Simpson’s Rule, giving coefficients of ·92193, ·3170 and ·1559. A 
test on the table on p. 171 showed, as the author said, that there was no significant differ- 
ence in the results whichever one of the three sets of coefficients was used. 

The author, of course, had obtained his formula by grouping values of lx: in pairs. 
There was no particular reason why that should have been done, and it suggested 
that a series of other formulae could be obtained by different groupings. For example, 
by analogy with central differences, a good value of lx might be expected to be 
obtained from lx- 10: , lx: and lx+ 10: 

In actuarial work there were three main occasions when approximate integration 
formulae might be needed. One was when it was desired to know the monetary effect 
of a change of basis on say premiums or reserves; the second was for approximate 
valuation, and the third for evaluating actuarial functions such as For the first, 
he did not think that any existing methods would help to obtain A x from qx without 
obtaining lx, first (except perhaps Beard’s differential analyser). For the second, R. E. 
Beard in 1947 ( J.I.A. LXXIII, 356) dealt with the problem in some considerable detail, 
and in the discussion Perks made some suggestions about the possible use of an ‘n-slab 
method’. The method of the paper, though somewhat akin to the ‘n-slab method’, 
was hardly appropriate, because it was specifically confined to integrals of the form 
so that he thought that, in its present form at least, the formula was restricted 

to the calculation of actuarial functions. 
There again, he feared, its use was limited by the fact that there were so few actuarial 

functions for which it was possible to obtain ux + tdt. It was possible to obtain x in 

that way, and also xy, but there were comparatively few other functions for which 

ux + tdt was available. Contingent assurances could not be calculated in that way, nor 

reversionary annuities; in fact, the method could not be used for most of the awkward 
functions for which Simpson and Hardy-King formulae were used. That might seem 
to be a pessimistic estimate of the chances that the paper would be put to practical use, 
but it did not mean that the paper was not of very great interest. Had the author led 
his readers into a cul-de-sac? He hoped not, and perhaps someone that evening would 
show how the formula could be profitably developed. 

Mr G. V. Bayley referred to pp. 176 and 177 of the paper. The formal solution of the 
problem which the author had set himself was given there on familiar lines. He (the 
speaker) agreed with the opener that a pure mathematician who was concerned with 
product integrations in general, rather than simply would have derived formula (iii) 
rather than formula (ii), and would then, probably, have expressed his solution in 
terms of the true integral plus an error. If the error were expressed in terms of ux 
and its differences, it became much easier to appreciate the power of one particular 
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formula as compared with another. Thus, solution (ii) on p. 177 was equal to the true 
integral 

and solution (iii) was equal to the true integral 

There was no need to stop there. Instead of supposing ux, to be of the first degree it 
could be assumed to be of the second degree, which would lead to a formula involving 
three terms instead of two, and so on; a whole family of formulae could be derived 
with obvious advantage. If ux were assumed to be of the second degree over periods of 
18 years, the formula corresponding to (1 a ) in § 35 would be 

That gave results as accurate as those of the author for whole-life assurances, and better 
results for temporary assurances. 

The author’s 16-year temporary assurance errors were not shown on p. 171. They 
were small at the younger ages, but at age 60 amounted to as much as 48, compared 
with the ‘whole-life’ error of 2 shown in the last column. He thought that the accuracy 
of some of the ‘whole-life’ integrations depended on compensating errors. At age 68 
the error had been kept rather ‘under the counter’. It was -22, and from there 
onwards he thought that the compensation disappeared. If the 3-term formula which 
he suggested had been used, the 18-year temporary assurance error at age 60 would 
have been 34-compared with 48-and the ‘ 15-year’ error 11. He mentioned that 
because the suggested formula might be more dangerous than appeared from the 
‘whole-life ’ results. 

The author, at the suggestion of Mr Joseph, had explained that the calculation of 
by formula (1 a ) in § 35 was similar to the calculation of by Simpson’s Rule replicated, 

then being converted to , a process which might be called the inversion of Simpson’s 
Rule. The procedure led to a formula which was similar to (1 a ) and had been given 
by the opener. In comparing the formula with the author’s, he, also, had found it 
necessary to use five significant figures rather than four in the numerator of that 
expression; attention could then be confined solely to the power of the formulae. The 
results were similar to those obtained by the author’s formula as modified. The inversion 
of Simpson’s Rule led to errors which were only slightly larger up to age 60, and at 
age 68 the error was -2 instead of -22. 

He had emphasized the closeness of those formulae because the inverted approach 
need not be confined to Simpson; other quadrature formulae could be inverted also. 
The ‘three-eighths’ rule could be inverted to give a 2-term formula, with results 
admittedly not quite so good as the inversion of Simpson’s Rule. The close similarity 
of (1 a ) to the inversion of Simpson’s Rule did suggest, however, that § 36 displayed 
the results of an approximate integration of rather than A; that was, he thought, the 
reason why the results were better than those given earlier in the paper for the calcu- 
lation of by direct quadrature. 

He asked the author to reconsider the notation in § 7 for the deaths between ages x 
and x + n. He submitted that, by analogy with A x: lx: defined the number of people 
who died between ages x and x + n plus the number who survived age x +n, and there- 
fore became indistinguishable from lx. He thought that would be consistent with 
the international notation, or possibly dx: which had been suggested by Mr Ogbom. 

Mr R. E. Beard, in a contribution which was read to the meeting, wrote that the 
subject of approximate integration was essentially practical, and thus it was not sur- 
prising that from time to time valuable suggestions for the development of new formulae 
arose from essentially practical considerations. The author, in a characteristic manner, 
had discovered a new formula, the analysis of which gave a valuable insight into the 
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nature of product-integration formulae, and led to useful ideas for further develop- 
ment. 

In any particular problem the type of formula to be selected for use depended on 

the nature of the available facts. If u ( t ) w ( t ) dt was to be computed from the three 

values u (O), u ( n ), u (2 n ) and the first two moments of w( t ), then a convenient formula 
was available in equation (71) of the writer’s paper on Product Integration ( J.I.A. 
LXXIII, 371). In the particular case where w( t ) = vt the solutions had been worked out 
in the same paper for various values of i and n (Table 7). The author’s approach in 
§ 51 used precisely the same facts, and his formula (iii), which he did not use, could 
be obtained directly from Table 7 of the paper referred to, in the following way: 

The formula was rigorously true if lx+t was of the second or lower degree in t and 
would appear to be the proper basic approximation when w ( t ) = vt. 

If, however, the moments of w ( t ) were not available, but only the values w (t ) dt 

and w ( t ) dt- which were the conditions assumed by the author-a formula could 

be derived by assuming that w ( t ) could be replaced by a straight line passing through 

the points ( n /2, w ( t ) dt/n ) and (3 n/ 2, w ( t ) dt/n ). Denoting w ( t ) dt by A1 and 

w ( t ) dt by A2 the formula resulting from the calculation of the first two moments 

of the straight line would be 

Putting w (t )= vt, formula ( b ) of § 32-which was the basis of the author’s paper- 
followed after a slight rearrangement. 

The author’s formula ( b ) involved an unnecessary assumption, since the moments 
of vt were known; yet it was an extraordinarily good approximation, and would, in 
fact, be better than the formula in § 51 in those freak cases where the deviation of u ( t ) 
from a second degree function just counteracted the error in substituting the approxi- 
mate moments of vt. 

In view of the closeness of the approximate results it was of interest to compare 
the moments of vt with those of the substituted straight line. The former were tabulated 
in Table 5 of the writer’s paper and the latter were 

and 

Comparative values were shown in the following table: 

i Range Subst. m 1 True Subst. m 2 True 

·02 1O 4·835 4·835 31·685 31·695 
20 9·342 9·342 120·175 120·340 
30 13·526 13·523 255·768 256·579 
40 17·394 17·387 429·078 431·555 

·06 1O 4·518 4·517 28·512 28·598 
20 8·111 8·100 95·550 96·801 
30 10·888 1O·837 176·651 182·244 
40 13·005 12·854 253·535 268·892 
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Clearly for low values of ni the true and approximate formulae gave identical results 
and confirmed the author’s comments in his § 51. Alternatively, w ( t ) might be expanded 
in powers of t when it would be found that m 1 was exact for expressions of the second 
degree and m 2 for expressions of the first degree. 

The analysis could be concluded by a reference to the error term. Since the author’s 
formula was a close approximation to the more accurate formula (91) of the writer’s 
paper, the error terms tabulated in Table 7 might be used. For n = 10 the error term 

(true- calculated) in calculating would be where 

20 or approximately 2·8 For n = 8 the numerical factor was about ·8 as 

compared with 2·8 so that a considerable, if not a fivefold, increase in the error by 
increasing n from 8 to 10 was confirmed. Owing to the lack of smoothness in the 
A 1924-29 table it was difficult to obtain reasonable values of the error term from 
although it would be found that they were of the right order of magnitude. 

In conclusion, he congratulated the author on his new approach to the problem of 
quadrature, which opened up a new set of formulae based on different conditions from 
those previously used, and which clearly merited analytical investigation. There were, 
of course, other ways of looking at the new formula, but in his opinion the most con- 
venient for analytical development was the systematic development of the substitution 
principle. 

Mr A. W. Joseph called attention to a paper by Prof. Steffensen entitled On certain 
formulas of mechanical quadrature ( Skand. Akt. 1945, p. I), where G. F. Hardy’s process, 
in J.I.A. XXIV, 97, of substituting near integral arguments for the irrational arguments 
of Gaussian formulae was carried a stage further. 
been unaware of G. F. Hardy’s earlier work. 

Prof. Steffensen seemed to have 

Interesting though the author’s historical survey was, he felt sure that the author 
would want and expect the paper to be judged by the new formula in § 32 and its 
transformation in §§ 33 and 34. The formula in § 32 was quite remarkable and of a 
new type. It expressed the integral of Øxvx in terms of ‘slabs’ of Øx and points of 
vx. By ‘slabs’ was meant the integral of Øx, i.e. lx Actuarial literature was studded 
with pleasing and remarkable formulae, but a formula needed to be something more 
than that if it was to become a valued and useful tool. There was an obvious dis- 
advantage in a ‘slab’ formula, because the ‘slab’ itself had to be evaluated. Whenever 
that could be done easily, the area of the ‘slab’ was the difference between two values 
of the integrated function; in other words, it was a points relation of the integrated 
function. Thus whenever it was practicable to use the author’s formula (which intro- 
duced the slabs) the formula turned out to be a ‘points’ formula. 

The transformation in §§ 33 and 34_brought that out clearly, because formula (1) 
in § 34 was only a simple relation for A x in terms of D x and as had been said many 
times already, when converted into a formula for x it took on a familiar form-almost, 
but not quite, Simpson. The use of Simpson’s Rule replicated for the calculation of 
x would enable calculations to be made on parallel lines to those in §§ 38-47. He had 

done the whole work quite easily, and, in order to compare the results with those of 
the author, he had converted x to x. At many ages the results were identical with 
the author’s, and where they differed they were slightly less accurate. Was a slight 
gain in accuracy enough to win allegiance from the well-tried and-in the words of 
1066 and all that -‘memorable’ Simpson formula? 

What was the real problem with which they were faced? It was to compute the 
integral from o to infinity of the product of a number of functions. In that product 
vt usually appeared, and also or frequently there were other actuarial 
functions or less restricted functions of t such as ‘ t’ itself. It would be very desirable 
for each such function to be typified by one or two constants which could be mani- 
pulated in a simple way to produce the desired integral. Almost all attempts so far 
had been by way of a polynomial approach. The present paper followed the same lines. 
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Personally, he felt sure that the solution was waiting round the corner, but it would 
be a process as transcendental and revolutionary as the process by which logarithms 
changed multiplication into addition. 

Mr W. Perks welcomed the paper, because, as had already been suggested, it opened 
the door to an entirely new set of product-integration formulae. 

Before coming to that, however, he desired to say something about the author’s 
mensurator and quadrator. He did not think that the author had been quite fair to the 
quadrator, because he had given more knowledge to the mensurator than to the 
quadrator. If the quadrator had the same knowledge as the mensurator-i.e. if he 
knew the values of each of Øa, Øb, va, and vb- he would surely fit a straight line to Ø 
and another straight line to v, and then calculate an approximate value of ØV at the 
midpoint between a and b. He would thus have three values of the product. As the 
product of two straight lines was a parabola, he would automatically apply Simpson’s 
Rule and get the same answer as the mensurator. At any rate, that was a much easier 
way of getting the result than by trying to unravel the diagram on p. 161. 

The analogy by which the author had reached formula ( b ) of § 32, which was the 
main formula of the paper, had given him a great deal of trouble, but he had produced 
the formula by three other processes, which he thought would illuminate the author’s 
methods. 

First, a straight line could be fitted to the curve of deaths from age ( x ) to age ( x + z n ) 
using the deaths from ( x ) to ( x + n ) and from ( x+n ) to ( x+2n) . One nth of these 
numbers represented ordinates at ( x+n/ 2 ) and ( x+ 3 n /2) and one nth of the difference 
represented the slope of the straight line. From that straight line, the ordinates at 
( x ), ( x + n ) and ( X + 2 n ) could be calculated and the results multiplied by 1, vn and v 2 n 
respectively; Simpson’s Rule applied to the products to obtain the integral from ( x ) to 
( X + 2 n ) would produce the author’s formula. 

The second process was to fit a straight line to the curve of deaths, exactly as in the 
first method; the first and second moments of the straight line could then be used in 
Beard’s formula (71) to obtain a 3-point solution, which produced the author’s formula 
in the form of coefficients of 1, vn and v 2n, i.e. and 

That method had a certain similarity to the method described by Mr 
Beard-but he had, in effect, fitted a straight line to vt. 

The third process was to fit a parabola to vt, using 1, vn and v 2 n, and then to compute 
the area and first moment of the curve as a distribution in n. The distribution could 
then be replaced by two slabs on bases (o to n ) and ( n to 2 n ) with the same area and 
first moment as the parabola. The heights of the slabs represented the author’s f 0 
and fn . 

Those various ways of reaching the author’s formula showed that it was a remarkable 
formula indeed. It represented an ordinary approximate integration formula, an 
n -point formula with moments of one factor and a slab formula with moments of the 
other factor. There were obvious ways of developing other formulae of the same family. 
For example, three slabs could be used instead of two, or four points instead of three 
and so on. Thus there seemed to be an entirely new series of possible formulae. 

If in the third method outlined the true area and first moment of vt were taken 
instead of the area and first moment of the fitted parabola, the following expressions 
for f 0 and fn were obtained : 

and 

The process led to the formula in § 51, but by the opposite route from that used by 
Mr Beard. 

The symmetry seemed to him at first sight to be remarkable, but when it was realized 
that the data assumed in the author’s formula were really the values of each of lx+t 
and vt at t= o, n and 2 n, the symmetry was not so surprising. The fitting of a straight 
line to the curve of deaths was really the same as fitting a parabola to lx, and so the 
formula assumed that lx and nt were both of the second degree. That explained the 
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symmetry, but it did not explain why the application of Simpson’s Rule to the product 
of two second degree functions (i.e. to a fourth degree function) should give an exact 
answer very close to Simpson’s Rule applied directly to v t lx+f ( t ) which implied the 
assumption that f ( t ) was a curve of the third degree. 

The analogous formula corresponding to the three-eighths rule could be easily 
obtained by fitting a parabola to three slabs of deaths, obtaining the ordinates of that 
parabola at o, n, 212 and 3 n, multiplying by 1, vn, v 2 n and v 3 n respectively, and then 
applying the three-eighths rule to the products. He had done that and worked out 
a few examples, and there was, as would be expected, no improvement over the author’s 
results. It was clear that there was a similar formula corresponding to Weddle’s Rule. 

Mr F. M. Redington said that he might be able to help Mr Perks in the difficulty 
which Mr Perks mentioned towards the end of his remarks. The basic formula in 
§ 32 of the paper was, as one or two speakers had implied, accurate to the third degree- 
i.e., if the functions Ø and v were expressed as polynomials the formula was correct 
as far as the third degree in the product. But it was something more than that: if the 
second function, v, was a constant, the formula was exact whatever the other function, 
Ø, and that would be true for the constant part of V, even if as a whole v were not 
constant. 

That led him to a consideration which might be of help in answering some of the 
criticisms made in the discussion. The formula was accurate to the third degree and, 
as he had explained, a little more. But that statement was insufficient to explain the 
marked success of the author’s formula, which exceeded what might be expected from 
a formula theoretically accurate to a much higher degree. It was profitable to ask why 
it was so accurate. 

A peculiar feature of many of the functions with which actuaries had to deal, and 
particularly mortality functions, was that if differences were taken of, say, lx or qx, it 
would be found that the successive differences diminished rapidly down to the third, 
but then started to rise. The rise in the values of the differences was due partly to the 
roughness caused by limiting the number of decimal places taken. If, for example, the 
last column of a set of logarithm tables were differenced, the differences began to 
mount very quickly. In addition to that roughness, the waves in the curve, whether 
intrinsic or due to graduation, themselves gave rise to differences which were liable 
to increase rapidly after the third. 

That was the explanation of the disconcerting fact that a formula accurate to the 
fifth or sixth degree might produce results which were less accurate than those of 
a formula accurate only to the third or fourth degree. There was a good deal of chance 
in the problem beyond the third or fourth degree, and elaborate mathematics might 
be out of place. 

In that connexion he would take up again the comments of his which were quoted 
in the paper. A function such as vt was perfectly smooth, and, for that reason, it was 
safe to typify the curve by a number of points on it. The fact that two or three points 
would not exactly identify vt was immaterial; the error was small and regular. On the 
other hand, it was unsafe to rely upon a few points when dealing with a mortality 
function. It was possible to describe a house by a certain number of point descriptions- 
length, breadth and so on-but it was not possible to describe a face with a number of 
points like that; to describe a face it was necessary to take some integrating adjective 
and to say that it was kindly or miserable, for instance. That was the secret of the 
author’s success. For the vt curve, which was mathematical and smooth, the author 
had used points, but for the mortality curve, which was complex and ‘organic’, the 
author had used integrals. 

Mr H. A. R. Barnett remarked that in the discussion most of the speakers had been 
concerned largely with the theory of the author’s formula, but had not considered the 
extent to which it might be applied. He did not know how it would work out in 
practice, but he would like the author to think about it. It could be applied to A and 
to and it would be interesting to know whether it could also be applied to certain 
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functions required in pension fund valuations, provided the progression of the salary 
scale was not too irregular. He did not see why it should not be so applied, and, if 
so, it would certainly be very valuable for making an approximate valuation of a pension 
fund. That was a practical question to which some thought might be given. 

Mr C. D. Rich regarded it a privilege to be allowed to close the discussion on a paper 
by Mr Phillips, for the papers previously submitted by him to the Institute had proved 
him to be an actuary of original ideas. Moreover, his ideas, besides being original, had 
usually proved to be of real importance. Thus the main idea underlying the author’s 
1936 paper on Binary Calculation had since turned out to be invaluable in the con- 
struction of electronic calculators. 

Certain previous speakers, including the opener and Mr Bayley, had commented 
on a question of arithmetic which arose more than once out of the paper, namely, that 
the result of a calculation could not be expected to be correct to more figures than 
were used in the working. As an example, the values of in the tables on p. 171 and 
near the top of p. 172 were given to five places of decimals, although the formulae by 
which they were calculated, i.e. (1 a ) and (1 b ) of §§ 35 and 36, contained coefficients 
taken to only four places. It seemed that the extent of any correspondence or divergence 
in the fifth place between the true and calculated values must be largely fortuitous. 

Many people would probably regard the paper as giving confirmation of the excellence 
as an approximate integration formula of the repeated Simpson’s Rule 

That was borne out not only by the schedule in § 29, where the repeated Simpson’s 
Rule was among the three formulae giving the best results out of the five formulae 
tested, but also by the author’s own cubature formula itself, for that formula-as was 
mentioned in the Appendix to the paper, and had been referred to by other speakers- 
was almost identical with the result of applying the repeated Simpson’s Rule to deter- 
mine x and thence deducing x by the conversion formula x = 1 - x. The ‘pattern’ 
of the repeated Simpson’s Rule formula (in which, apart from the end terms, the even 
coefficients were double the odd coefficients) could in fact be seen in the examples of 
the author’s formula given in the paper, e.g. in ( l a ) of § 35, where the coefficient 
·3182 was not very different from twice the coefficient ·1547. 

Indeed, if the coefficients of the author’s formula (as given in (I) of § 34) and of the 
formula using the repeated Simpson’s Rule were both expanded in ascending powers 
of the force of interest, the difference between the formulae, ignoring fourth and 
higher powers of , was 

The difference was easily seen to be a small quantity, for itself was small and the 
series-which represented the repeated (1, - 2, 1) pattern, just as the repeated Simpson’s 
Rule represented the repeated (1, 4, 1) pattern-had a sum whose value to first 
differences was zero. 

He himself had made some comparisons between the values of x calculated by the 
author’s formula and by the repeated Simpson’s Rule formula (using the same intervals 
in each case) and had obtained results which, in his opinion, showed that for accuracy 
there was little to choose between the two formulae: 

Total of errors in fifth place 
of decimals 

Author’s 
formula 

Repeated 
Simpson’s 

Rule 

Table on p. 171 (7 values) 
First table on p. 172 (5 values) 
Table on p. 178 (12 values) 

30 37 
21 10 
12 13 
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The differences between the figures he gave for the errors by the author’s formula in 
the tables on pp. 171 and 172 and those given in the paper were explained by the fact 
that he had recalculated to six places of decimals the coefficients in the author’s formulae 
(1 a ) and (1 b ) of §§ 35 and 36, their values together with those for the corresponding 
repeated Simpson’s Rule being: 

( 1 a ) Author’s formula : 

Repeated Simpson’s Rule: 

(1 b ) Author’s formula : 

Repeated Simpson’s Rule: 

It was interesting to consider why the repeated Simpson’s Rule formula-correct 
only to third differences-gave such good results that it was often more successful than 
formulae theoretically correct to a higher order of differences. Mr Redington’s remarks 
had touched on that point. The answer probably was that the repeated Simpson’s 
Rule fitted a number of third degree curves over short intervals; the error in each was 
small because the interval was small, and the total error over n intervals might be less 
than that involved in fitting a single curve of higher degree over the whole range. 
Mathematically, if Simpson’s Rule were applied once over the interval o to 2 h, the error 
would be proportionate to the fourth difference multiplied by h 5; in applying the 
repeated Simpson’s rule over the range o to 2 nh the maximum error was thus pro- 
portionate to nh 5. If, on the other hand, a single curve of, say, the seventh degree were 
fitted aver the range, the error would be proportionate to the eighth difference multi- 
plied by h 8. The significance of the comparison lay in the ratio between h 5 and h 9, and 
it was clear that, though over a short range the higher degree formula might be more 
accurate, over a sufficiently long range the reverse would apply. 

He did not remember ever having seen it mentioned that any approximate integration 
formula of the kind considered on pp. 163-168-i.e. formulae in terms of values of the 
function at integral points-could, if it extended over an even number of intervals, 
and if it were correct to at least third differences, be expressed as sums or differences 
of applications of Simpson’s Rule. A simple example was Wicken’s formula, denoted 
in § 24 as (Wi. 1), which could be written in the form 

where (1,0,4,0,1 represented Simpson’s Rule applied once over the whole range 
and (1,4,2,4,1) represented Simpson’s Rule applied twice, i.e. once over each half 
of the range. The proof of the general proposition, which was not difficult, involved 
repeated use of the pattern (1, -4, 6, -4, 1) which itself could be written as 

Since all such formulae were capable of being represented by combinations of 
Simpson’s Rule, he thought it probable that the most successful formulae were those 
which came nearest to the simple repeated Simpson’s Rule. That was confirmed by the 
schedule in § 29, where (Wi. 2) and (Sh.) gave better results than (HK 38) and (W 10), 
it being observed from the formulae set out in §§18-26 that the coefficients of the 
two former came nearer the pattern (1, 4, 2,4,2, . . . , 4, 1) than those of the two latter. 

In the paper the author had given three different demonstrations of his cubature 
formula. They should be called demonstrations rather than proofs, for none of them 
gave any measure of the size of the error involved in the formula, and an approximate 
equality could hardly be said to be proved unless some limit to the degree of approxi- 
mation were established. Although, therefore, he regarded parts of the paper as 
plausible rather than convincing there were two good reasons why he was satisfied 
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about the merits of the new formula. One was the fact that it was almost identical with 
a recognized formula-the repeated Simpson’s Rule--under a new guise, and the 
other was that, the author having previously shown himself to be a good judge of 
approximate integration formulae, his recommendation could be accepted with con- 
fidence. 

The President (Mr F. A. A. Menzler, C.B.E.), in proposing a vote of thanks to the 
author, said that he had achieved a number of things that evening. First of all, he 
had succeeded in writing in a characteristic and lively manner about a subject which 
was not inherently colourful. He had brought together a great deal of material in 
a systematic fashion and thereby provided a focus for an interesting debate. He had 
rendered the President a personal disservice by bringing about an acute attack of 
nostalgia. The very sight of the fraction 1/720 and the reference to formula 39( u ) made 
him think back 35-40 years. He at once had recourse to Freeman’s Actuarial Mathe- 
matics, where there was a chapter on approximate integration which he read and, to his 
surprise, understood. He then remembered that that did not exist when he took the 
examinations, and he tried to recall what he did read. His mind went back to King’s 
Text-book, Part II, 1902 edition, and he remembered very well looking at the chapter 
on what King called ‘ Summation’. At the time he had found it very heavy going, 
so he had asked his tutor what he would recommend for the systematic study of the 
subject. He was told that ‘Nobody has written anything since 1860, the date of 
Boole’s A Treatise on the Calculus of Finite Differences’--a revised edition of which 
was published in 1872. In the preface Boole said that he had paid particular attention 
to ‘the connexion of the methods of finite differences with those of the differential 
calculus’. There was a chapter in Boole’s book on ‘Approximate Summation of Series’, 
which was well worth re-reading. 

When he was taking the examinations, the modem idea of the progressive approach 
had not been invented. There was a formula which did what was wanted, and that was 
largely the end of it. Nobody bothered too much about the systematic underlying 
theory so long as the right answer was obtained. They had progressed a long way since 
then, and students were much better looked after. 

He remembered, when re-reading those ancient text-books, that formulae of the 
kind under discussion had to be used when tabulated values of functions involving 
two or more lives were not available; but the author had drawn all his examples from 
the single-life function x. In real life commutation columns would be run off and 
the complete table of x would be ready-made for future use, without any approximation 
at all. He asked the author whether, if his formula were applied to complicated functions, 
the results obtained would be just as good. 

Mr Phillips, in reply, agreed with Mr Bayley that formulae (1) and (3) were partially 
compensatory as between one integration interval and another, though not to nearly 
so great an extent as was the 1934 formula. 

Many speakers had referred to the opportunities for further exploration; that pleased 
him, because he occasionally came across such statements as that of E. T. Bell in 
Development of Mathematics (1940) : ‘Of actuarial science in general it may be said 
that it has been so thoroughly explored that little remains to attract a professional 
mathematician’-a view with which he was in profound disagreement. 

As to those opportunities, there was nothing he could say at short notice, except 
that-corresponding to the assumption that the error of the trapezoidal rule was 
increased four-fold by doubling the datum interval-when Simpson’s Rule was 
applied upon a curve of the fifth degree, first with an interval of 2 h, and then in suc- 
cession on each interval of h, the respective errors were in the ratio of 16 to 1. From 
that intuitive guess, since verified with no great difficulty, blending reproduced the 
formula (true to the fifth degree) 
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a formula which might have been more often remembered had it not become an 
obsession to integrate over an interval of 5 h years. He had been tempted to try the 
effect of modifying that formula to cubature, in the way Simpson’s Rule modified to 
formula (b), and a number of speakers had also given attention to the possibilities of 
using more than two slabs and three points; but he thought that Mr Rich had given 
the right answer to anyone who might attempt too wide a spread: it was better to 
assume acurve of the third degree over a succession of short intervals, than one of a higher 
degree over a long span. Whether or not they had reached a cul-de-sac, as the opener 
had suggested, they had apparently come to a door with the name ‘Simpson’ upon it. 

The criticism of Mr Rich and other speakers that it was unpardonable to attempt 
to test two things at the same time—a new algebraical expression and the effect of 
condensing the arithmetic—was unanswerable, at least in the case of the schedule 
on p. 171, for there had been no striving for brevity at that stage. However, he had in 
fact known that he was reducing one coefficient by .000041 and increasing the other 
by .000049, so that his luck had been limited to finding that chance opportunity for 
saving the time of a computer who had no arithmometer. He had, in fact, had another, 
indeed a double, piece of luck, which could not be expected to recur at a different rate 
of interest, namely, that when .90378 and .60623 were cut to four figures one went up 
by 2 and the other down by 3, or when cut to three figures one went up by 22 and the 
other down by 23. 

With no special reference to the opener’s criticism of the comparison of the five 
classic formulae, where at least it could be said that all five had been subjected to the 
same strain, he felt that actuaries were sometimes a little over-anxious to attain an 
accuracy which might prove illusory. He would offer a comment in the form of a 
dream in which he was being shown round a life office. He came to a clerk who was 
sorting cards, and was told ‘These are a hundred lives insured by our Taunton broker 
last year.’ When asked ‘What will happen to your Taunton broker if all the hundred 
die this year or next?’ the clerk smiled in a superior way and murmured something 
about the law of averages. On the way back a little later he found the same clerk adding 
up figures, to three places of decimals, in a large book, a hundred lines to the page. AS 
the clerk started on the third place of decimals, he asked him ‘Why don’t you save time 
by assuming the total is 450?’ The clerk replied haughtily ‘They might all be 8’s or 
9’s’ The moral of that story was that it could be seen at a glance that the figures were 
not all 8’s or 9’s, whereas there was nothing to show that those hundred lives might not 
all die that year or the next. If actuaries were willing to trust human beings to accord 
with the law of averages, even in small groups, why could they not trust figures to do so? 

Mr C. D. Rich subsequently wrote as follows: 
In the course of my remarks in the discussion, I drew attention to the fact that any 

formula of approximate integration which (1) is in terms of values of the integrand for 
integral values of the variable, (2) extends over an even number of intervals, (3) is 
correct to third differences, can be expressed as sums or differences of applications of 
Simpson’s Rule. This can be demonstrated by an example, and I give below details 
of the working by which Hardy’s (37) formula can be expressed in the manner referred 
to. 

The formula (which is given in § 17 of the paper) can be written as (.28, 1.62, 0, 2.2 
0, 1.62, .28). In the working the coefficients have been multiplied by 150 to avoid 
decimals and fractions. The notation used is explained as follows: 

(H) denotes Hardy’s (37) formula for 

(S) denotes Simpson's Rule for 

(RS) denotes the Simpson's Rule for 

AJ 

(i) 

13 
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which may be written as (1, 4, 2, 4, 2, 4, 1), 

We commence by writing 

and 

where E has its usual meaning 1 + . 

(ii) 

Subtracting: 

(iii) 

Since (H) and (RS) are both approximations to the integral correct to the third 
(or higher) degree, the difference between them must vanish up to and including this 
order of differences and consists therefore of fourth and higher differences of u. Hence 

must be a factor of the expression in brackets on the right-hand side of 
(iii). Dividing the expression by 

the quotient is found to be 
-8+11E-8E2. 

Hence 

Substituting from (i) and (ii), we obtain 

If at the beginning we had deducted (S) = (1+4E3+E) u 0 instead of (RS) we 
would have arrived at a different expression for (H) in terms of applications of Simpson’s 
Rule. There are, in general, many alternative ways of expressing a given formula in 
the required manner. 

It is easily seen from the above that the difference between two approximate in- 
tegration formulae, each of which is correct to the n th degree, can be expressed in 
terms of (n + 1)th differences of the integrand. This leads to a generalization of the 
remarks of Wickens in J.I.A. LIV, 209. 

Mr M. E. Ogborn has sent the following note: 
Quadrature formulae which use selected values of the function to be integrated 

derive from the work of Newton whose name is not usually associated with the formulae. 
It is an interesting question how Simpson’s name became attached to the three-ordinate 
formula. The author, and also Whittaker and Robinson in The Calculus of Observations, 
p. 156, refer to Simpson’s Mathematical Dissertations published in 1743, and by the 
kindness of the author I have been able to borrow a copy from the London Mathe- 
matical Society. But on p. (vii) of the preface to that work Simpson states: 

The ninth (part) relates to mechanic uadratures, or the Method of approximating the 
Areas of Curves, by Means of equidistant Ordinates. This Method was originally an Invention 
of Sir Isaac Newton’s, since prosecuted by Mr. De Moivre, Mr. Stirling, and others: However, 
as I here assume nothing to myself, but a Liberty of putting the Matter in such a Light, as I 
judge will be most plain and satisfactory to the Reader, I see no reason why I may not be 
allowed the same Privilege as Others. 
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Simpson gives two propositions for finding the areas of curves by approximation; 
Proposition I deals with the simple case of three ordinates, and the repeated application 
of the process; Proposition II deals with the general form for any number of ordinates. 

A year earlier, in 1742, in The Doctrine of Annuities and Reversions, Simpson had 
quoted the formulae for 3, 4, 5, 6 and 7 ordinates which, he stated, were ‘by a known 
method for approximating the areas of curves by means of equidistant ordinates’. 

Simpson, it is clear, did not claim that the three-ordinate formula, ‘Simpson’s Rule’, 
was original. The method went back to the Methodus differentialis of Newton, written 
before October 1676, though the trapezoidal rule and the three-ordinate formula were 
known earlier. 

Proposition VI of the Methodus Differentialis, as translated by D. C. Fraser in 
J.I.A. LI, 100, states: 

To find the approximate area of any curve a number of whose ordinates can 
be ascertained. 

Let a parabolic curve be drawn through the extremities of the ordinates by 
means of the preceding propositions. This will form the boundary of a figure 
whose area can always be ascertained, and its area will be approximately equal 
to the area required. 

Newton’s proposition is general in form and applies to ordinates at unequal as well 
as at equal intervals. The general form of the coefficients for equidistant ordinates, the 
Newton-Cotes formula, was given by Newton in the Principia (see The Calculus of 
Observations, p. 154). 

Newton develops the four-ordinate formula, the ‘three-eighths’ rule, as an example 
of Proposition VI—perhaps because the three-ordinate formula had already been given 
by James Gregory a few years earlier. 

Mr William Phillips writes: 
A number of my friendly critics have expressed a preference for the and of § 51; 

originally I had no great preference either way, but now that I am aware of the relation- 
ship between Simpson’s Rule and its modification, I have a personal preference for the 
f 0 and fn of § 33, because I now know the rationale of their emergence, whereas and 
are reached by arbitrarily ignoring the coefficients of c, d and e in formula (i) of § 49. 

In speaking of the relationship between the formulae demonstrated and Simpson’s 
Rule, I am referring only to their common use of the four-to-one error assumption, 
and not to the closeness of the results to those obtained by calculating by Simpson 
and converting to A x. As Mr Rich said, other formulae can be used for the first half 
of this double process; for example, the formula of the paper. Choosing for a test 
English Life Table No. 8—Males, because all ‘the data required, and the answers, are 
readily available in Life Contingencies, I have calculated from values of by 
Simpson replicated, and then from values of T10 x by the formula 

with the following results: 
(X) 

Age 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

(S) 
Calc.—True 

(X) 
Calc.—True 

.004 .001 

.006 .003 
-.006 .004 

.009 .004 
-.012 .007 

.022 .005 
-.061 .006 

.083 -.032 

.911 -.059 
1.825 -.065 

13-2 
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On converting we have the following values for 

Age (S) (X) True 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

.2424 

.3060 

.3811 

.4712 

.5751 

.6835 

.7899 

.8685 

.8950 

.9033 

.2423 

.3061 

.3808 

.4713 

.5746 

.6840 

.7881 

.8719 

.9237 

.9596 

.2424 

.3062 

.3809 

.4715 

.5748 
.6842 
.7883 
.8709 
.9220 
.9554 

Calc.-True 
(S) (X) 

0 -1 
-2 -1 

2 
-3 

-1 
-2 

3 -2 
-7 -2 
16 -2 

-24 10 
-230 17 
-521 42 

However, this process of conversion does not lend itself very readily to the evaluation 
of each 20 years separately, as will be appreciated from the somewhat chaotic form of 
‘Simpson converted’: 

a point which does not emerge when it is put in the form of the formulae of § 35 which 
Mr Martin quoted. 

I feel that a wide vista has been opened up by Mr Joseph’s suggestion that future 
progress in approximate integration for actuarial purposes lies in a direction away from 
polynomials. True though it be that any continuous curve can be reproduced with any 
required degree of accuracy by a polynomial of the n th degree, if n is sufficiently large, 
this might prove to be a cumbersome method of judging the efficacy of a formula 
which was being used to integrate a function which turned out to be of a precise 
mathematical form other than a polynomial, and the whole proceeding would appear 
faintly ridiculous if it transpired that the formula integrated that particular function 
with mathematical precision. Perhaps I am guilty of having started a wild goose chase 
in mentioning polynomials in connexion with formula (b) and its variations, for I 
cannot feel that either Mr Perks or Mr Redington are quite happy in their minds about 
the attempts to measure the formulae with this particular yard-stick. On the other 
hand it is possible to postulate a number of mathematical non-polynomial forms for 
for which formula (b) brings out exact results. 

I am much intrigued by Mr Rich’s ingenious analysis of those formulae which use 
an even number of intervals into what one may call, perhaps, ‘molecules’ of Simpson, 
a logical development of the interesting Note in J.I.A. LIV, 209. If the process Mr 
Wickens there suggested is employed in a more elaborate form, commencing with 

subtracting from it continuously 

a vast number of formulae are obtained, all correct to the third degree, and eventually 

the formula mentioned in the reply to the discussion as being true to the fifth degree. 
Perhaps the analysis of Mr Rich will reveal some simple method of identifying the 
‘best’ formulae in a schedule constructed by Mr Wickens’s continuous method. 

If from the general formula given in my opening remarks u 0, and un, are eliminated 
by putting’ 

and 
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we arrive at the Gauss formula, true to the third degree 

195 

which Hardy gave in 1883 (J.I.A. XXIV, 104) in its approximate form 

This is also a Tchebychef formula, and as such was duly noted by Elderton (J.S.S. 11, 
pt. 2, 140). 

Hardy tested it in its replicated form 

and further recent tests suggest that it should not be forgotten when a quick rough 
approximation is required; certainly it would seem that simplicity can go no farther 
when the function to be integrated is available at all integral ages. 

With the greatest respect for the President’s contention that ‘in real life’ values of 
would be obtained by constructing the commutation columns, it happened a short’ 

while ago that I wanted to compare the values of 3% for the English Life Tables. 
As we say in another place, ‘I have been informed (by those most likely to know) and 
verily believe’ that these values are not available for English Life Tables Nos. 4, 5 
and 7—Males, and I accordingly calculated them for quinquennial ages from the 
columns by formula (3) of § 40, at a cost of about twenty minutes for each table. I 
seem to remember that there is a short method for obtaining, from a body of data, 
the values of perhaps one day we shall be satisfied to obtain from the data the 
values of 

I shall not be lured into an argument by the picture Mr Perks has drawn of the 
quadrator who turned out to be a mensurator after all; it is not a picture of the quadrator 
I had in mind who, far from looking at ux and wx separately, or at all, takes the logarithm 
of each and adds them together. 

Geometry may yet prove of actuarial value, if only for its powers of suggestion, and 
I am glad to find that I am not the only remaining disciple of Thomas Young, though 
‘for a hundred years and more, his was a voice crying in the wilderness that few appear 
to have heard’; that I am not alone in disputing that geometry ceased to be of any 
practical value in the middle of the eighteenth century. Perhaps I may be permitted 
to quote the concluding words of the preface which Thomas Simpson wrote in his 
Miscellaneous Tracts on some curious, and very interesting subjects, published in 1757: 

And it appears clear to me, that, it is by a diligent cultivation of the Modern Analyfis, that 
Foreign Mathematicians have, of late, been able to push their Refearches farther, in many 
particulars, than Sir Ifaac Newton and his Followers here, have done: tho’ it must be allowed, 
on the other hand, that same Neatnefs, and Accuracy of Demonftration, is not every- 
where to be found in those Authors; owing in some measure, perhaps, to too great disregard 
for the Geometry of the Antients. 




