Assessing the Economic Impact of Longevity Hedges

Andrew J.G. Cairns
Heriot-Watt University, Edinburgh
and
Director, Actuarial Research Centre,
Institute and Faculty of Actuaries

International Congress of Actuaries, Berlin, June 2018 des actuaires

Actuarial
Research Centre
Institute and
of Actuaries

Outline

- Introduction and motivation
- Hedging longevity risk with an index-based call-spread option contract
- Anatomy of a hedging calculation
- Numerical example
- Discussion

Motivation

- Longevity risk
- Measurement
- e.g. Capital Requirement
- Best estimate + extra for risk
- Longevity risk management
- customised hedges
- index-based hedges

Motivation

- Why use General Population Longevity Index based risk transfer instruments?
\rightarrow Capacity and Price
- Pros/cons
- Transferred risk is efficiently priced
- But hedger left with basis risk
- Thus we need
- a clear and rigorous approach to quantify basis risk
- hedger and regulator agreement on approach
- to quantify properly the Capital Relief

Introduction

- Life insurer
- Aim 1: measure mortality/longevity risk
- Aim 2: manage mortality/longevity risk
- e.g. to reduce regulatory capital
- e.g. to reduce economic capital
- e.g. to increase economic value

Regulatory Capital Requirements: Annuity Portfolio

Solvency II options:

- Solvency Capital Requirement, SCR = difference between Best estimate of annuity liabilities (BE) and Annuity liabilities following an immediate 20\% reduction in mortality
- or $\mathrm{SCR}=$ extra capital required at time 0 to ensure solvency at time 1 with 99.5% probability
- or $S C R=$ extra capital at time 0 to ensure solvency at time T with $x \%$ probability

Liability to be Hedged

- $L=$ random PV at time 0 of liabilities
- $L(0)=$ point estimate of L based on time 0 info
- $L(T)=$ point estimate of L based on info at T $=\mathrm{PV}$ of actual cashflows up to T + PV of estimated cashflows after T
- Risk \Rightarrow capital requirements

What type of hedge to modify capital requirements and manage risk?

Hedging Options

Index-based hedge (derivative)

- Synthetic $\tilde{L}(T) \approx \operatorname{true} L(T)$
- Call spread derived from underlying $\tilde{L}(T)$

Payoff at T, per unit

$$
H(T)=\left\{\begin{array}{lll}
0 & \text { if } \tilde{L}(T)<A P & \text { (Attachment Point) } \\
\tilde{L}(T)-A P & \text { if } A P \leq \tilde{L}(T)<E P & \text { (Exhaustion Point) } \\
E P-A P & \text { if } E P \leq \tilde{L}(T) &
\end{array}\right.
$$

The Synthetic $\tilde{L}(T)$

- $\tilde{L}=$ random PV at time 0 of a portfolio of synthetic liabilities
- Synthetic mortality experience
- based on general population mortality
- adjusted using experience ratios
- $\tilde{L}(T)=$ point estimate of \tilde{L} based on info at T $=\mathrm{PV}$ of actual synthetic cashflows up to T +PV of estimated synthetic cashflows after T

Questions and Observations

- What is the impact of the hedge:

$$
L(T) \quad \longrightarrow \quad L(T)-H(T) ?
$$

- Need a two population mortality model
- Practical reality: calculation is more complex than academic 'ideal world'
- What are good choices of $A P, E P, T$?

Anatomy of a Hedging Calculation: Looks Complex!

Historical Data

Modelling Based on Data Up To Time 0

Generate Stochastic Scenarios Up To Time T

Modelling Based on Data Up To Time T

Central Forecast After T For Each Scenario Up To T

Extract $m_{G / P}(x, t)$: Calculate $L(T), \tilde{L}(T), H(T)$

How many models do you need?

Academic 'ideal': One model
In practice:

- Time 0 :
- Liability valuation model (BE + SCR)
- Simulation model $(0 \rightarrow T)$
- Time T :
- Hedge instrument valuation model
- Liability valuation model
- 'Models' for extrapolating to high (and low) ages

Time 0 Models

- Unhedged Liabilitiies:

Deterministic BE $+20 \%$ stress

- Simulation: (by way of example)
- General population: (Lee-Carter/M1)

$$
\ln m_{\text {gen }}(x, t)=A(x)+B(x) K(t) \quad(\text { Lee-Carter } / \mathrm{M} 1)
$$

- Hedger's own population: (M1-M5X)

$$
\ln m_{p o p}(x, t)=\ln m_{\text {gen }}(x, t)+a(x)+k_{1}(t)+k_{2}(t)(x-\bar{x})
$$

Time T models

- Hedge instrument:
- Lee-Carter (M1) for general population
- Recalibration: on basis specified at time 0

$$
q_{p o p}^{H}(x, t)=q_{g e n}^{H}(x, t) \times E R(x, 0) \rightarrow \tilde{L}(T) \rightarrow H(T)
$$

- Liability: specific (hedger's) population
- Lee-Carter (M1) for general population
- Possibly different calibration from the hedge instrument
- $q_{p o p}^{L}(x, t)=q_{g e n}^{L}(x, t) \times E R(x, T) \rightarrow L(T)$
- Approach must mimic local practice

Hedging Example

- Data: Netherlands
- CBS national data
- CVS insurance data (Dutch aggregated industry experience data)
- Hedge instrument maturity: $T=10$
- Attachment and exhaustion points at 60% and 95% quantiles of $\tilde{L}(T)$
- Key point: $E P \ll 99.5 \%$ quantile of $\tilde{L}(T)$

Hedging Example

- Portfolio of deferred and immediate annuities
- Current ages 40 to 89
- Weights (\equiv pension amounts):

Pension Weights (Amounts)

- Before and after: Compare $L(T)$ with $L(T)-H(T)$
- $\operatorname{SCR}=99.5 \%$ quantile - mean

Hedging Example ($n=10,000$ scenarios)

Simulated Annuity Portfolio Present Values

Note: Population basis risk typically increases SCR (without hedge) as a percentage of $B E$.

What is the Impact of Population Basis Risk?

Liability Distribution Functions

Liability Distribution Functions

With $E P=95 \%$ quantile At the much higher 99.5% level: $H(T)$ pays off in full with or without population basis risk.

Hedging Example: Higher AP (0.65) and EP (0.995)

Liability Distribution Functions

Liability Distribution Functions

Numerical Example: AP, EP $=60 \%$ and 95% quantiles

$L(0):$	$S C R_{20 \% \text { stress }}$	840	
$\tilde{L}(T):$	$S C R_{10}$	840	(Pop 1; no hedge)
$\tilde{L}(T)-H(T):$	$S C R_{11}$	478	(Pop 1; with $\tilde{L}(T)$ hedge)
$L(T):$	$S C R_{20}$	960	(Pop 2; no hedge)
$L(T)-H(T):$	$S C R_{21}$	598	(Pop 2; with $\tilde{L}(T)$ hedge)

Table: SCR values in excess of the mean liability. For the hedging instrument $A P=10779$ (60% quantile) and $E P=11228$ (95% quantile). Pop 1: synthetic $\tilde{L}(T)$. Pop 2: true $L(T)$.

How good is the hedge? Issues:

- "Good" \Rightarrow price and risk reduction
- "Good" \leftrightarrow Types of basis risk
- Structural (e.g. non-linear payoff)
- Population basis risk
- Within population (e.g.linkage to different cohort)
- Different population
- Hedge effectiveness \Rightarrow \% reduction in required capital
- Haircut \Rightarrow impact on capital relief as a result of population basis risk
- EIOPA Solvency II guidelines \Rightarrow regulatory approval should focus on the haircut

Numerical Example: AP, EP $=60 \%$ and 95% quantiles

$L(0):$	$S C R_{20 \% \text { stress }}$	840	
$\tilde{L}(T):$	$S C R_{10}$	840	(Pop 1; no hedge)
$\tilde{L}(T)-H(T):$	$S C R_{11}$	478	(Pop 1; with $\tilde{L}(T)$ hedge)
$L(T):$	$S C R_{20}$	960	(Pop 2; no hedge)
$L(T)-H(T):$	$S C R_{21}$	598	(Pop 2; with $\tilde{L}(T)$ hedge)

Table: SCR values in excess of the mean liability. For the hedging instrument $A P=10779$ (60% quantile) and $E P=11228$ (95\% quantile). Pop 1: synthetic $\tilde{L}(T)$. Pop 2: true $L(T)$.

What is the impact of Population basis risk on hedge effectiveness?

$$
\text { Haircut } \quad H C=1-\frac{S C R_{20}-S C R_{21}}{S C R_{10}-S C R_{11}}=0.000
$$

Haircut ≈ 0 : Interpretation

- Here $E P \ll 99.5 \%$ quantile
- Above the 99.5% quantile the call spread (almost) always pays off in full
- So population basis risk \Rightarrow little impact
- Structural basis risk prevails
- More detailed analysis \Rightarrow Haircut is worst (highest) when EP is close to the 99.5\% quantile.

Haircut: Dependence on AP and EP

Haircut as a Function of the
Attachment and Exhaustion Quantiles

Reduction in SCR: Dependence on AP and EP

Reduction in SCR with Hedge as a Percentage of SCR without Hedge

Economic Benefits

Purpose of hedge:

- To manage and reduce risk
- To reduce statutory or economic capital requirements $(t=0)$
- To enhance economic/shareholder value

Economic Value (work in progress)

Payments:

- Fixed P_{t} payable at $t=0, \ldots, T-1$
- Contracted at time 0
- Time 0 value, $V_{P}=\sum_{t=0}^{T-1} P_{t} \exp (-r t)$

Benefits:

- $H(T)$ at time T
- Capital reduction, $C R_{t}$, at $t=0, \ldots, T-1$
- Time 0 value

$$
\begin{aligned}
V_{B} & =\text { value of } H(T) \\
& +C \tilde{o} C \times \text { 'value' of } C R_{0}, \ldots, C R_{T-1}
\end{aligned}
$$

Compare V_{B} with V_{P}.

Discussion

- Rigorous approach: practical assessment of the impact of a longevity hedge
- Call spread: choice of EP \Rightarrow impact on haircut \Rightarrow impact on regulatory approval
- Choice of AP and EP \Rightarrow impact on SCR reduction
- Interaction: SCR reduction \leftrightarrow price \Rightarrow tradeoff
- Applies equally well to economic capital

Thank You!

Questions?

Paper online at:
www.macs.hw.ac.uk/~andrewc/ARCresources

Bonus Slides

Tradeoffs and Other Considerations

How to choose Maturity, AP and EP?

- Reduction in SCR \nearrow
- Cat Bond nominal 】
- Bull spread price
- Shareholder value added
- Insurer risk appetite, hedging objectives etc.

Sensitivity to Hedge Maturity, T

- e.g. $T=20$
- \% reduction in SCR is slightly higher
- Haircut is slightly worse
- Haircut is still ≈ 0 for $E P \leq 99.5 \%$ quantile
- The longer the maturity:
- less liquid market
- less confidence in future reserving method
- more future capital relief (everything else held constant)

The Actuarial Research Centre (ARC)

 A gateway to global actuarial researchThe Actuarial Research Centre (ARC) is the Institute and Faculty of Actuaries' (IFoA) network of actuarial researchers around the world. The ARC seeks to deliver cutting-edge research programmes that address some of the significant, global challenges in actuarial science, through a partnership of the actuarial profession, the academic community and practitioners.
The 'Modelling, Measurement and Management of Longevity and Morbidity Risk' research programme is being funded by the ARC, the SoA and the CIA.

www.actuaries.org.uk/arc

ARC Research Programmes

Actuarial Research Centre (ARC):
funded research arm of the Institute and Faculty of Actuaries

Three major programmes started in 2016, including Modelling, Measurement and Management of Longevity and Morbidity Risk

- New/improved models for modelling longevity
- Management of longevity risk
- Underlying drivers of mortality
- Modelling morbidity risk for critical illness insurance

