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• Intuitive parameters including case reserve robustness measure

• Provides coherent measure of reserve uncertainty

• Supports negative development

• Can capture calendar effects

• Independent of DFM / BF

• Incorporates judgement

Overview
Features
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Models the claims 
generation process 



Background
Motivations
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1. Parsimony
– extract signal from noise
– description of individual cohort vs. average

2. Quantification of reserve uncertainty
– incorporate multiple information sources
– isolate drivers of uncertainty

3. Interpretability & Extensibility
– meaningful parameters
– option to capture specific process features Model

P3
P2 P1



Mixed-effects / hierarchical modelling

*Also known as a mixture of random effects and fixed effects

Cohorts

Parameters a mixture of 
those varying across cohort 

and those not*

Only estimate mean and s.d. of the variable parameters

Cohort P1 P2 P3 P4

1 P1,1

P2

P3,1

P4

2 P1,2 P3,2

… … …

N P1,N P3,N

Background
1. Parsimony
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Background
2. Reserve uncertainty
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)();()|( θθθ pyLyp ∝
Posterior   ∝ Likelihood x Prior

)();()|( ULRpincurredULRLincurredULRp ∝

Objective:

Bayes’ theorem: 

“Given any value (estimate of future payments) and
our current state of knowledge, what is the probability that 

final payments will be no larger than the given value?”

- Casualty Actuarial Society (2004)
Working Party on Quantifying Variability in Reserve Estimates



• These concepts have been applied to loss reserving:

Background
Existing research

7
Key idea: fit a nonlinear parametric curve to cumulative paid triangles in a mixed-effects modelling framework

A Bayesian non-linear model for 
forecasting insurance loss payments

Yanwei Zhang         Vanja Dukic James Guszcza
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Background
3. Interpretability/Extensibility

Meaningful parameters 
and extensibility

Reformulate to model claims generation process
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• Models provide control over complexity (vs. methods)
• Drug developers use modelling & simulation to predict exposure/response:

“Compartmental” Pharmacokinetic models

Blood Tissues
Drug 
dose
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Pharmacokinetics



*ODEs:  a collection of simultaneous Ordinary Differential Equations

Methodology
Compartmental loss reserving model

Structural model

• Cash flows between compartments governed by ODEs*

• Fit to paid and outstanding triangles
– Simultaneously
– Explicitly estimating tails

Premiums 
Written
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Supports negative development O
S 
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Methodology
Parameters

Parameters have natural interpretations

Reported loss ratio (“RLR”)

Rate of earning + reporting (“ker”)

Reserve robustness factor (“RRF”)

Rate of payment (“kp”)

RLR RRF

ker kp

ULR = RLR*RRF

Estimate parameters in a 
mixed-effects framework

Base model parameters for a single cohort

Premiums 
Written
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Exposed 
to risk

Claims 
reported

Claims
paid



Methodology
Rates → Patterns

11

EtR to Reported Pattern Reported to Paid Pattern

t

ker

t

kp

RLR RRF

ker kp

Premiums 
Written

t = development time

Pattern % = 1 – e-rate*t

Exposed 
to risk

Claims 
reported

Claims
paid

t t

% %



Methodology
Rates → Patterns
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EtR to Reported Pattern Reported to Paid Pattern

t

ker

t

kp

RLR RRF

ker kp

Premiums 
Written

t = development time

Pattern % = 1 – e-rate(t)*t

Exposed 
to risk

Claims 
reported

Claims
paid

t t

% %



Case Study 1
LSM

• Class X 
– Underwriting cohorts (1 – 5)
– Ultimate premiums & writing patterns
– Paid and incurred claims development

• Objectives
– Fit semi-Bayesian* compartmental model
– Extrapolate fits to ultimate
– Compare ULRs to LSM 

13
*Specify parameter starting values but not distributions



Case Study 1
Selected model
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t

ker

Exposed 
to risk

Claims 
reported

Claims
paid

RLR RRF

ker kp

U/W cohort model:

t

kp

Premiums 
Written

Variable rates Full random effects structure
Cohort RLR ker RRF kp

1 RLR1 ker1 RRF1 kp1

2 RLR2 ker2 RRF2 kp2

… … … … …

5 RLR5 ker5 RRF5 kp5

Fit model and explore diagnostics…



Case Study 1
Model diagnostics
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Case Study 1
O/S fits
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Case Study 1
Paid fits
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Case Study 1
Incurred fits
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Case Study 1
Incurred fits
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Signal or Noise?

BCL assumes 
signal



Case Study 1
Results Summary
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Case Study 2
Why do Bayesian data analysis?
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“Modern Bayesian methods provide richer information, 
with greater flexibility and broader applicability than 20th 

century methods. 

Bayesian methods are intellectually coherent and intuitive 
…[and] readily computed...” 

- John K. Kruschke 
Open Letter extolling the benefits of the Bayesian approach

http://www.indiana.edu/%7Ekruschke/AnOpenLetter.htm


Case Study 2
Why do Bayesian loss reserving?
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1) Estimate full probability distributions of quantities of interest:

2) Incorporate judgement:

3) Model structure flexibility*:

“Given our current state of knowledge…”

Alternative distributions

Calendar effects

Autocorrelation

External information

ULRBF = f(incurred, exposure, IELR)

*Provided by Gibbs sampling



Case Study 2
Data & Objectives

• Workers’ Comp Schedule P data
– Accident year cohorts (1988 – 1997)
– Earned premiums
– Paid and incurred claims development

• Objectives
– Fit Bayesian compartmental model
– Extrapolate fits & posterior predictive intervals 

(“PPIs”) to time 10*
– Compare fits & PPIs to lower triangles
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*PPIs account for Parameter and Process uncertainty



Case Study 2
Incurred data visualisation
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Calendar effect?



Case Study 2
Model 1
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Exposed 
to risk

Claims 
reported

Claims
paid

RLR RRF

ker kp

Base model

AY RLR ker RRF kp

1988 RLR1

ker

RRF1

kp

1989 RLR2 RRF2

… … …

1997 RLR10 RRF10

t

ker

t

kp

(extended):

ker

Constant rates 2 random effects

Fit model and explore diagnostics…

Premiums 
Written



Case Study 2
Model 1 Diagnostics
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Case Study 2
Model 1 O/S fits
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Case Study 2
Model 1 paid fits
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Case Study 2
Model 1 incurred fits
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Case Study 2
Model 1 O/S vs hold out sample
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Case Study 2
Model 1 paid vs hold out sample
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Case Study 2
Model 1 incurred vs. hold out sample

Under-reserving?
Late reporting?
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Case Study 2
Model 1 Summary (1)
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BCL projects over-reserving 
into the future*

33*BF method used in practice
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Case Study 2
Model 1 Summary (2)

Model estimates less over-reserving over time…

34

(Case) Reserving Cycle
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Case Study 2
Model 1 Summary (2)

Model estimates less over-reserving over time…
…but note under-reserving in 1997!*

*In practice: discuss with case handlers and sensitivity test prediction to changes in RRF 35

(Case) Reserving Cycle



Case Study 2
Model 2

Estimate case reserve % increases/decreases

36

RLR RRF

ker kp

Explicitly model calendar effect:

Case reserve 
review

C

Full random 
effects structure

Exposed 
to risk

Claims 
reported

Claims
paid

Premiums 
Written



Case Study 2
Diagnostics: Model 1 vs Model 2
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21



Case Study 2
Diagnostics: Model 1 vs Model 2
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Over fitted
21



Case Study 2
Model 2 incurred fits
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Case Study 2
Model 2 incurred vs. hold out sample
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Conclusions (1)
A modeller’s notes*

*Mike K Smith – Pharmacometrician, Pfizer

• “Fitting nonlinear mixed-effects models can be a tricky (and 
frustrating) business”
– Is the model appropriate?
– Convergence ⇏ correctness
– Different fitting methods ⇒ different results 

• “Model diagnostics are (even more) important for these models”
– Does the model describe all cohorts reasonably well?

“There are some general rules for fitting these models…
…but experience is the best guide”
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Conclusions (2)
Bayesian compartmental reserving
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Exposed 
to risk

Claims 
reported

Claims
paid

RLR RRF

ker kp

Premiums 
Written

)();()|( ULRpincurredULRLincurredULRp ∝



Conclusions (2)
Bayesian compartmental reserving

Try it out for yourself!

• Strengths of compartmental reserving:
– Independent stochastic method
– Meaningful parameters
– Parsimonious yet extensible

• Weaknesses of compartmental reserving:
– Model shape constraints with volatile data
– Sensitivity to starting values / priors
– Learning curve

Jake.Morris@LibertyGlobalGroup.com
Rob.Murray@lcp.uk.com
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supports negative incurred development
including measure of reserve robustness

can capture calendar effects

(strength!)

mailto:Jake.Morris@LibertyGlobalGroup.com
mailto:Rob.Murray@lcp.uk.com
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Appendix
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Mixed-effects / hierarchical modelling

*Also known as a mixture of random effects and fixed effects

Cohorts

Parameters a mixture of 
those varying across cohort 

and those not*

Only estimate mean and s.d. of the variable parameters

Cohort P1 P2 P3 P4

1 P1,1

P2

P3,1

P4

2 P1,2 P3,2

… … …

N P1,N P3,N

Background
1. Parsimony

47

“Borrowing
Strength”



Implementation
The modelling cycle
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(re)Define 
model

Specify 
starting 
values*

Run model

Examine 
diagnostics

*/prior distributions



Implementation
A departure from Excel

• Nonlinear mixed-effects models require complex solver algorithms:

• “f” is derived by solving ODEs:

Response y {OS,PD}
=

Non-linear function f of 
(Parameter vector ϕ and time t) 

+  
Noise w

dEX/dt = -ker · EX
dOS/dt = ker · RLR · EX - kp · OS

dPD/dt = kp · RRF · OS

Exposed
to risk

Claims 
reported

Claims
paid

Semi-Bayesian:

∏∏∫
∈ ∈

ℜ∈
⋅⋅

=ℑ

Ii Cc
b

iiici
SizePi dbbpdfbypdf

L

)(

0

)()()(
0

),(

)(
0

),|(),,|)((

)|,,(

σησβω

σηβ ω

EX OS PD

We don’t have to worry about this!

49

Fully Bayesian:



Case Study 2
Bayesian loss reserving in practice
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• Autoregressive sub-models
– for consecutive under/over fits

• Log-normal distributions
– for claims process parameters

• Prior distributions 
– for all other uncertain parameters

ULRi



Implementation
Semi-Bayesian

Cohort RLR ker RRF kp

1 RLR1

ker

RRF1

kp

2 RLR2 RRF2

… … …

N RLRN RRFN
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t*

ker

Judgementally select parameter starting values 

Exposed 
to risk

Claims 
reported

Claims
paid

RLR RRF

ker kp

Base model:

t

kp

*Development time

Semi-Bayesian

Constant rates 2 random effects



AY RLR ker RRF kp

1988 RLR1

ker

RRF1

kp

1989 RLR2 RRF2

… … …

1997 RLR10 RRF10

Case Study 2
Model 1.5

Fit new model and explore diagnostics
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Exposed 
to risk

Claims 
reported

Claims
paid

RLR RRF

ker kp

Base model

AY RLR ker RRF kp

1988 RLR1 ker1 RRF1 kp1

1989 RLR2 ker2 RRF2 kp2

… … … … …

1997 RLR10 ker10 RRF10 kp10

t

ker

t

kp

(extended):

4 random effects2 random effects



Case Study 2
Model 1.5 Diagnostics
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Reject model?



Case Study 2
Model 1.5 O/S vs hold out sample
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Case Study 2
Model 1.5 paid vs hold out sample

55



Case Study 2
Model 1.5 incurred vs. hold out sample
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Case Study 2
Model 2 O/S vs hold out sample
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Case Study 2
Model 2 paid vs hold out sample
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