Compartmental Reserving

a process-based Bayesian reserving approach

22 October 2015

Agenda

- Background
 - Motivations
- Methodology
- Case studies
 - Semi-Bayesian
 - Fully Bayesian
- Conclusions

Overview *Features*

- Intuitive parameters including case reserve robustness measure
- Provides coherent measure of reserve uncertainty
- Supports negative development
- Can capture calendar effects
- Independent of DFM / BF
- Incorporates judgement

Models the claims generation *process*

Background Motivations

1. Parsimony

- extract signal from noise
- description of individual cohort vs. average

2. Quantification of reserve uncertainty

- incorporate multiple information sources
- isolate drivers of uncertainty

3. Interpretability & Extensibility

- meaningful parameters
- option to capture specific process features

Background

1. Parsimony

Mixed-effects / hierarchical modelling

Cohorts

Parameters a *mixture* of those varying across cohort and those not*

Cohort	P ₁	P ₂	P ₃	P ₄
1	P _{1,1}		P _{3,1}	
2	P _{1,2}	D	P _{3,2}	D
		P ₂		Ρ ₄
Ν	$P_{1,N}$		$P_{3,N}$	

Only estimate mean and s.d. of the variable parameters

*Also known as a mixture of random effects and fixed effects

Background

2. Reserve uncertainty

Objective:

"Given any value (estimate of future payments) and our current state of knowledge, what is the probability that final payments will be no larger than the given value?"

> - Casualty Actuarial Society (2004) Working Party on Quantifying Variability in Reserve Estimates

Bayes' theorem:

 $p(\theta \mid y) \propto L(\theta; y) p(\theta)$

Posterior ∝ Likelihood x Prior

 $p(ULR | incurred) \propto L(ULR; incurred) p(ULR)$

7

Background Existing research

• These concepts have been applied to loss reserving:

A Bayesian non-linear model for forecasting insurance loss payments						
Yanwei Zhang	Vanja Dukic	James Guszcza				
•••••						
•••••						
•••••						

Background 3. Interpretability/Extensibility

- Models provide control over complexity (vs. methods)
- Drug developers use modelling & simulation to predict exposure/response:

Reformulate to model claims generation process

Methodology Compartmental loss reserving model

Structural model

- Cash flows between compartments governed by ODEs*
- Fit to paid <u>and</u> outstanding triangles
 - Simultaneously
 - Explicitly estimating tails

Supports negative development

Methodology

Parameters

Parameters have natural interpretations

Reported loss ratio ("RLR")

Rate of earning + reporting ("k_{er}")

Reserve robustness factor ("RRF")

Rate of payment ("kp")

ULR = **RLR*****RRF**

Estimate parameters in a mixed-effects framework

Methodology

Rates → *Patterns*

Pattern % = $1 - e^{-rate^{t}}$

Methodology

Rates → *Patterns*

Pattern % = 1 - e^{-rate(t)*t}

Case Study 1 LSM **SM**

- Class X
 - Underwriting cohorts (1 5)
 - Ultimate premiums & writing patterns
 - Paid and incurred claims development

- Objectives
 - Fit **semi-Bayesian*** compartmental model
 - Extrapolate fits to ultimate
 - Compare ULRs to LSM

0

000

0

Ó

12345

Case Study 1 Selected model

U/W cohort model:

Full random effects structure

Cohort	RLR	ker	RRF	kp
1	RLR_1	ker ₁	RRF ₁	kp1
2	RLR_2	ker ₂	RRF_2	kp ₂
5	RLR_5	ker5	RRF_5	kp ₅

Fit model and explore diagnostics...

Case Study 1 Model diagnostics

Case Study 1 O/S fits

Class X Outstanding Fits

Case Study 1 Paid fits

Class X Paid Fits

Case Study 1 Incurred fits

Class X Incurred Fits

Development period

Case Study 1 Incurred fits

Class X Incurred Fits

Development period

Case Study 1 Results Summary

"Modern Bayesian methods provide richer information, with greater flexibility and broader applicability than 20th century methods.

Bayesian methods are intellectually coherent and intuitive ...[and] readily computed..."

- John K. Kruschke Open Letter extolling the benefits of the Bayesian approach

Case Study 2 Why do Bayesian loss reserving?

1) Estimate **full probability distributions** of quantities of interest:

"Given our current state of knowledge..."

2) Incorporate judgement:

 $ULR_{BF} = f(incurred, exposure, IELR)$

3) Model structure **flexibility***:

Alternative distributions

Autocorrelation

Calendar effects

External information

1988

Case Study 2 Data & Objectives

- Workers' Comp Schedule P data
 - Accident year cohorts (1988 1997)
 - Earned premiums
 - Paid and incurred claims development

Incurred Claims

- Objectives
 - Fit Bayesian compartmental model
 - Extrapolate fits & posterior predictive intervals ("PPIs") to time 10*
 - Compare fits & PPIs to lower triangles

Incurred data visualisation

Case Study 2 Model 1

Base model (extended):

-Constant rates

AY	RLR	k _{er}	RRF	k _p	
1988	RLR ₁		RRF ₁		
1989	RLR ₂	Ŀ	RRF_2	Ŀ	
		ĸ _{er}		к _р	
1997	RLR ₁₀		RRF ₁₀		

random offacts

9

Fit model and explore diagnostics...

Case Study 2 Model 1 Diagnostics

Case Study 2 Model 1 O/S fits Observed • 95% PPI

Model 1 O/S vs hold out sample

Model 1 paid vs hold out sample

Model 1 incurred vs. hold out sample

Case Study 2 Model 1 Summary (1)

Case Study 2 Model 1 Summary (2)

Model estimates less over-reserving over time...

Case Study 2 Model 1 Summary (2)

*In practice: discuss with case handlers and sensitivity test prediction to changes in RRF

Case Study 2 Model 2

Explicitly model calendar effect:

Estimate case reserve % increases/decreases

Diagnostics: Model 1 vs Model 2

Diagnostics: Model 1 vs Model 2

Model 2 incurred fits

Model 2 incurred vs. hold out sample

Conclusions (1)

A modeller's notes*

- "Fitting nonlinear mixed-effects models can be a tricky (and frustrating) business"
 - Is the model appropriate?
 - Convergence \Rightarrow correctness
 - Different fitting methods \Rightarrow different results
- "Model diagnostics are (even more) important for these models"
 - Does the model describe all cohorts reasonably well?

"There are some *general* rules for fitting these models... ...but experience is the best guide"

Conclusions (2)

Bayesian compartmental reserving

$p(ULR | incurred) \propto L(ULR; incurred) p(ULR)$

Conclusions (2)

Bayesian compartmental reserving

- Strengths of compartmental reserving:
 - Independent stochastic method
 - Meaningful parameters
 - Parsimonious yet extensible

supports negative incurred development including measure of reserve robustness

can capture calendar effects

- Weaknesses of compartmental reserving:
 - Model shape constraints with volatile data
 - Sensitivity to starting values / priors (strength!)
 - Learning curve

Try it out for yourself!

Acknowledgements

for sponsoring intermediary development

Including former colleagues:

- Robert Ruiz
 - Leading semi-Bayesian mathematical documentation
 - Advocating the method
- Rob Murray, Charl Cronje, Matthew Pearlman, Richard Holloway, Matt Locke and Charlie Stone
 - Support at various stages
 - Sounding boards

Compartmental Reserving

a process-based Bayesian reserving approach

22 October 2015

Appendix

Background

1. Parsimony

Mixed-effects / hierarchical modelling

Only estimate mean and s.d. of the variable parameters

*Also known as a mixture of random effects and fixed effects

Implementation

The modelling cycle

 $L(\beta, \eta, \sigma \mid \mathfrak{I}_0^{(\omega_0)}) =$

 $\prod_{i \in I} \prod_{c \in C} \int_{\underline{b}^{(i)} \in \Re^{Size^{p}}} pdf(\underline{y}^{(i,c)}(\omega_{0}) | \underline{b}^{(i)}, \underline{\beta}, \sigma) \cdot pdf(\underline{b}^{(i)} | \underline{\eta}, \sigma) \cdot \underline{db}^{(i)}$

We don't have to worry about this!

Implementation

A departure from Excel

• Nonlinear mixed-effects models require complex solver algorithms:

Response y {OS,PD} = Non-linear function f of (Parameter vector \oint and time t) + Noise w

• "f" is derived by solving ODEs:

Bayesian loss reserving in practice

• Autoregressive sub-models

-for consecutive under/over fits

Log-normal distributions

-for claims process parameters

Prior distributions

-for all other uncertain parameters

Implementation Semi-Bayesian

Base model:

Constant rates

2 random effects

Judgementally select parameter starting values

Case Study 2 Model 1.5

Base model (extended):

AY	RLR	ker	RRF	kp
1988	RLR ₁	ker ₁	RRF ₁	kp ₁
1989	RLR ₂	ker ₂	RRF ₂	kp ₂
1997	RLR ₁₀	ker ₁₀	RRF ₁₀	kp ₁₀

7 random offects

Fit new model and explore diagnostics

Case Study 2 Model 1.5 Diagnostics

Model 1.5 O/S vs hold out sample

Model 1.5 paid vs hold out sample

Model 1.5 incurred vs. hold out sample

Model 2 O/S vs hold out sample

Model 2 paid vs hold out sample

