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Background: Why build pricing models? 

• Statistical pricing models help to: 

– Avoid anti-selection 

– Target the right segment of customers 

– Enhance profitability 

– Gain competitive advantage 
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Background: Why build pricing models? 

• All statistical models have an element of uncertainty 

around their estimates. 

• Standard Error of the Mean  = s / √n 

– Where, 
– s is the sample standard deviation (i.e., the sample-based estimate of the 

standard deviation of the population), and  

– n is the size (number of observations) of the sample.  

 

• So could a simplistic application of statistical models and 

ignoring the inherent uncertainty actually be detrimental to 

profit? 
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Pricing uncertainty 

• Hypothesis: 

– Every insurer‟s own experience is only a sample of the overall market experience 

for any risk. 

– The smaller the sample the higher the risk of mispricing due to sample error. 

• Overpricing: less of an issue unless segment is critical to insurer‟s strategy. 

– Under-pricing: can be a significant issue, especially in the aggregator world. 
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Under-pricing? Challenges: 

► Working out by customer segment how much to 
adjust the basic risk price to allow for sample error. 

► Checking the under-pricing risk across the portfolio 
is within the insurer’s risk appetite. 

► Putting in place real-time portfolio management. 

Potential range of expected risk cost 

Estimating the burning cost in practice 

– The standard approach is to separately parameterise: 
• Frequency model => Number of Claims per Policy 

• Severity model  => Average Cost per Claim 

 

– To obtain the combined model:  
– Burning Costs = Frequency x Severity  

    => Average cost per policy 

 

– The Frequency and Severity models are appropriately 

chosen via Generalized Linear Models (GLMs). 
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How to measure the uncertainty around the 

parameter estimates? 

Assuming the dataset is sufficiently large, the parameter 

estimates  are asymptotically multivariate normal distributed. 
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But it’s only the burning cost that really matters! 
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What empirical method to use for determining 
pricing uncertainty? 
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• Randomly sample (with replacement) a dataset. This 

results in a set of different datasets that are only marginally 

different. 

 

• Fit the same Model to all the datasets. 

 

• Consider the variation of parameter estimates and 

predicted values or the fitted models. 
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The estimated burning cost can have significant 
variation 
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How does the range of the prediction intervals 
vary with the number of policies?  
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Graph showing the 

variation off burning cost 

where there is sparse data 

Why (not) to use bootstrapping? 

Advantages 
• Bootstrapping is a very simple 

method 

• Bootstrapping lets the data 

speak for itself 

• It is easy to implement 

• It is an appropriate way to 

control and check the stability of 

results 

Disadvantages 
• Bootstrapping is computationally 

heavy 

• Important assumptions are being 

made when undertaking the 

analysis (Independence of 

samples, good representation of 

population) 

• Difficult to derive an uncertainty 

measure out of the results 
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So what are the other options? 

 

• It would be easier to calculate a prediction interval directly around a 

price in the same way as you would a confidence interval around a 

parameter estimate. 

 

• There is a closed form uncertainty measure, which allows calculation 

of the prediction interval without having to use bootstrapping. 

 

• This allows us to industrialise calculating a measure and fit it into BAU. 

16 

Agenda 

1. Background 

2. Theoretical Pricing Uncertainty 

3. Emperical Pricing Uncertainty 

4. Practical applications of Pricing Uncertainty 

5. Practical applications within the Customer Lifetime Value 

framework 

6. Wrap up 

17 



01/11/2011 

10 

How to use pricing uncertainty in the Pricing 
Process? 

The Pricing Wheel provides a framework to help improve 

pricing capability. 
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Pricing decisions… 

• Insurers must offer a competitive price, especially on PCWs 

• A measure of uncertainty of the risk costs  will : 

– Help to indentify risks where we are more „certain‟ of a risk‟s 
expected profitability to  us – important when considering 
Winners curse. 

– Give confidence to RI that risks are adequately priced. 

– Help to build rate monitors and develop new risk monitors. 
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Rank Insurer Price

Price 

Uncertainty

Potential High 

price

Potential 

Low price

1 A 347 unk 347 347

2 B 370 unk 370 370

3 C 389 10% 428              350

4 D 398 unk 398 398

5 E 402 unk 402 402
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• The expected loss ratio looks out of control 
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How to balance maximising revenue and risk 
appetite? 

20 

• Significant rate increases = significant reduction in 

policies 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How to balance maximising revenue and risk 
appetite? 
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• Considering the range of the expected loss ratio could lead to 

significantly different decisions. 

 

 

How to balance maximising revenue and risk 
appetite? 
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And how can we use this for optimisation 
against market and channel? 

• CLV is based on numerous models all with a single point 
estimates. 

 

• Understanding the prediction interval allows to adjust the 
amount of uncertainty risk. 

 

• Reduce premium by a proportion of the prediction interval in 
segments where there is a higher Customer Lifetime Value. 

 

• Get more good business without exceeding the uncertainty 
threshold. 
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T T+1 T+2 T+3 

But what is Customer Lifetime Value? 

Customer holds 1 

product without 

payment issues 

Customer holds 1 

product with 

payment issues 

Projection years 
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How does this model work together with price 
optimisation? 

Payment behaviour Cancelation 

behaviour 

Cross sell 

Customer value 

per current policy  

Customer 

segmentation 

Customer value 

per segment 

Prediction 

model 

Bonus/penalty 

factor per segment 

Price for new 

customer 

“Price elasticity” 

Relative 

price position 
Conversions 
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The Customer Lifetime Value model is very 
intuitive 

Using the company‟s client data to model client behaviour: 

• A higher lapse rate results in a lower customer value. 

• A higher probability of non-payment results in a lower customer value. 

• A higher rate of cross selling results in a higher customer value. 

• A higher product yield results in a higher customer value. 

 

Assign a “pound value” to predicted client behaviour 

• Administrative costs (e.g. dept collectors) 

• Fixed cost per policy 

• Profit per policy 
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How to use Customer Lifetime Value and pricing 
uncertainty in price optimisation? 
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Wrap up 

• Where there less data available there is more uncertainty 

in a model‟s output. 

 

• We have defined this variability as pricing uncertainty. 

 

• By considering this uncertainty we can significantly alter 

the pricing decisions. 

 

• We could use it as a reporting function or within a 

customer lifetime value or price optimisation framework. 
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Questions or comments? 

Expressions of individual views by 

members of The Actuarial Profession 

and its staff are encouraged. 

The views expressed in this presentation 

are those of the presenter. 
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