

Introduction The Basis Risk Question

- We consider two populations with forces of mortality $\mu_1(x,t)$ and $\mu_2(x, t)$ at age x in year t, that is from time t-1 to time t.
- Assume that the first force of mortality is associated with the population for England and Wales.
- The second force of mortality can be associated with the actual lives underlying a portfolio identified for hedging,
- The problem is: given a pre-defined hedging instrument whose value is governed by changes in μ₁, how effective is that instrument for hedging the liabilities of the pension fund or insurance company?

he Group		
 LBRWG set up in I problem 	December 2011 to	o think about the
 Joint group consist 	ing of LLMA men	nbers and Actuaria
Profession Affiliate	•	
•	•	LLMA or IaFoA representative
Profession Affiliate	S	LLMA or IaFoA
Profession Affiliate	S	LLMA or IaFoA representative
Profession Affiliates Name Kevin Armstrong	S Affiliation AVIVA	LLMA or IaFoA representative LLMA
Profession Affiliates Name Kevin Armstrong Peter Banthorpe	S Affiliation AVIVA RGA	LLMA or IaFoA representative LLMA IaFoA
Profession Affiliates Name Kevin Armstrong Peter Banthorpe Robert Bugg	S Affiliation AVIVA RGA Milliman	LLMA or IaFoA representative LLMA IaFoA IaFoA
Profession Affiliates Name Kevin Armstrong Peter Banthorpe Robert Bugg Andrew Gaches	S Affiliation AVIVA RGA Milliman Hymans Robertson	LLMA or IaFoA representative LLMA IaFoA IaFoA IaFoA

Obstacles to Index Based Swaps: Progress made and remaining barriers

Addressed

- Standardization and transparency
 - Standardization of basic derivatives (q/s-forwards)
 - Launch of LLMA Indices
- Knowledge and education
 - Mainstream exposure
 - LLMA pricing framework
- Long-term nature of risk
 - Emergence of innovative structures appealing to both hedgers and investors

Outstanding

- Basis Risk
 - Cost-benefit analysis
 - Assessment of hedge effectiveness
 - Allowance for capital reduction (Solvency II)

Types of Basis Risk: Three Main Categories

Demographic

- Socio-economic status
- Lifestyle
- Geography

Sampling

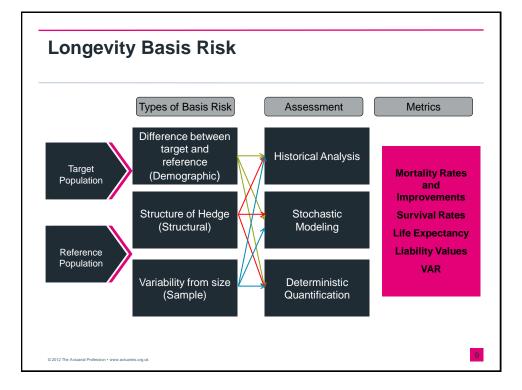
- Small population
- Large annuity amounts

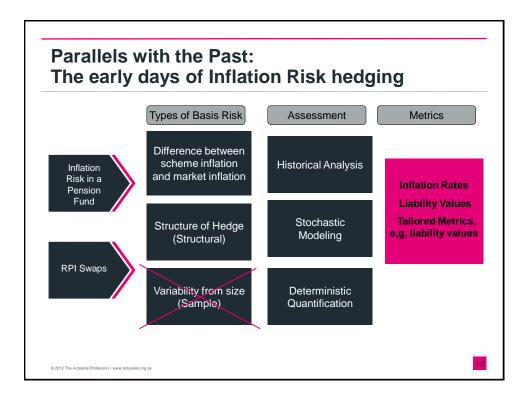
Structural

- Choice of reference age and genders
- Duration of hedge

Assessment of Basis Risk: Main Steps and Questions to Answer

Historical Analysis


- What relationship have the two populations demonstrated in the past?
 - Empirical assessment
 - Establish an underlying link


Modeling

- · What do you expect the future relationship to be?
 - Stochastic models
 - Two-population models

Measurement

- · What measure to use for hedge effectiveness?
 - Deterministic quantification
 - Select appropriate metrics

Assessment of Basis Risk: Historical Analysis

Objective

- · Empirical assessment to link reference and target populations
- Understand key differences

Assessment

- · Historical analysis of key metrics
 - Mortality rates
 - Life expectancy
 - Liability cash flows

Limitations

Availability of historical data

Assessment of Basis Risk: Modeling

Objective

- Predict future evolution of mortality for the two populations
- · Model the underlying stable, long-term relationship

Assessment

- Stochastic two-population models
 - Derive long term trends from general population
 - Estimate difference in short term trends for the target population

Limitations

- · Complexity of existing models
- · Limited data for the target population to calibrate models

Assessment of Basis Risk: Measurement

Objective

- Determine hedge effectiveness
- Cost-benefit analysis

Assessment

- · Quantify risk reduction with metrics
 - Variance in value: 1 $\sigma^2_{(Hedged Liability)} / \sigma^2_{Liability}$
 - Value at Risk: 1-VaR_(Hedged Liability)/VaR_{Liability}

Limitations

- Necessary to select a metric consistent with hedging objectives
- · Several dimensions should be considered in the decision to hedge

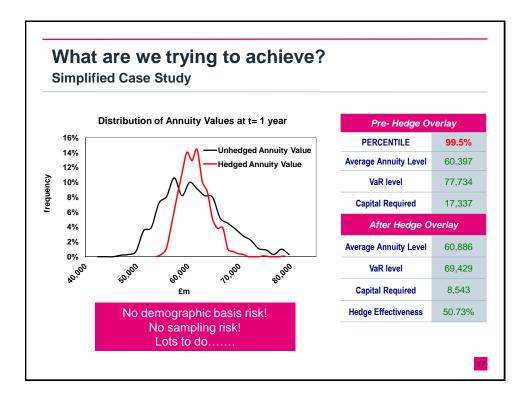
Assessment of Basis Risk: What's missing?

- Easily transferable assessment techniques
- Long time series of historical portfolio data, especially for small schemes
- 'Rules of thumb' for estimating basis risk given basic inputs (size, demographic, index)
- Widespread **knowledge of indices** and hedging **instruments** available
- Knowledge of complex two-population mortality models
- · View on hedge metrics aligned with hedging objective

The Longevity Basis Risk Working Group: The LLMA and the Institute and Faculty of Actuaries

Objective

• Define a practical methodology to assess basis risks for longevity transactions which is easily accessible to market practitioners


Work Performed

- Review of existing literature
- Identification of available inputs and desired outputs
- Simplified spreadsheet analysis

Conclusion

- Significant amount of research required
- · Necessary to involve a consultancy or academic institute

	ase Study		
Hedge Portfolio Assumptions		Projection Details	
Hedge Portfolio Assum	ptions		
Hedge Instrument	S-Forward	Model	Lee Carte
Maturity	10y	Calibration Period	1946-200
Reference Age	60y	Hedge Population Calibration Data	E&W
Strike (survival) rate	83.8%		
Hedge Contract Notional	£205,000	Annuity Population Calibration Data	E&W
Annuity Portfolio As	sumptions	Number of Simulation Paths	1000
Annuitant Ages	60, 65, 70,75,80,85		1000
Annuity Amounts	£1000		
Total Annuity Value after 1 year	£60,400		

What are we trying to achieve? The Biggest Challenge • The biggest challenge is how to model the demographic risk. Given the typical inputs for a pension scheme or annuity book: Pre- Hedge Overlay Target Population Size – Number of individuals Target Population Annuity/Pension Amounts Geographic location Historical mortality experience information if available ٠ How do we simulate the two populations? (Hedge and portfolio) How are their mortality diffusions related? If $\mu_1(x, t)$ is the force of mortality for E&W, we need to generate $\mu_2(x,t)$ (mortality for the pool). If $\mu_2(x,t) = f(\mu_1(x, t))$ where f is an appropriate function, what form should f take?

The Longevity Basis Risk Working Group: Proposal for Research Funds

Stage 1

• Invitation to tender, inviting consultancies and academic institutions to submit detailed proposals for research

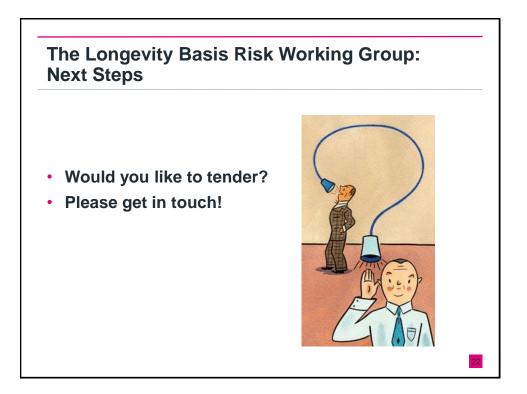
Stage 2

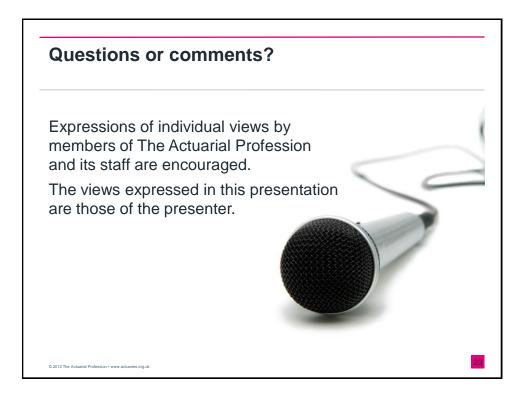
- Given approval of funding sponsors:
- Phase1
 - Delivery of a detailed methodology for measuring longevity basis risk and a thorough description of process, strengths and limitations
- Phase 2
 - Specification of metrics and a practical framework for quantifying longevity basis risk

The Longevity Basis Risk Working Group: Deliverables

Phase 1

Background research


- Review evidence of the differences in mortality improvement for various sub-populations
 - Socioeconomic groups
 - Geographic locations
- Review existing models to structure relationship between the mortality of the two groups
- Projection methodology
 - Produce detailed specifications of proposed modeling methodology
 - Detail the strengths and limitations of proposed methodology given objectives of the working group


Phase 2

- Quantification
 - Define metrics and framework to quantify results
- Case Study
 - Apply model and framework on a practical, realistic, illustrative example

The Longevity Basis Risk Working Group: Next Steps

- Produce a tender document to distribute to respondents
 - Background and expectations for the assignment
 - Research and deliverables required
 - Expected timelines
 - Required information in response to tender
- We will approach multiple parties (Mainly Consultants and Academic Institutions).....

