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Capital aggregation 
and attribution

Background

• Capital is the amount of money, assessed on a realistic basis, which a firm requires to cover the risks that it is 
running or collecting as a going concern, such as market risk, credit risk, and operational risk

• Typical questions of senior management in respect of capital are:

– What products, business units, or entities are capital efficient?

– What actions can be taken to improve the capital efficiency of the organisation?

– What is the impact of changes in business mix, organisational structure or strategy on capital?

– What are the impacts of various market, environment and business effects on my capital profile?

• To be able to answer the above with any real confidence a firm must understand how capital is aggregated and 
attributed:

– By capital aggregation, we refer to how the amount of capital across all the products sold by a firm is 
d i i l i l iaggregated to give a single capital requirement

– By capital attribution we refer to how the aggregate capital of a firm can be attributed to individual products, 
businesses, entities and risk classes
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Why is aggregation important?

• The aggregation approach adopted by a firm will drive the diversification benefit 

• Typically the diversification benefit for firms can be anywhere between 30-70% of the total capital requirementTypically the diversification benefit for firms can be anywhere between 30 70% of the total capital requirement

• Diversification impacts on standard approach (in € billion) from the results of the QIS 5:

– The diversification benefit between risks reduces the total capital requirement by €466 billion, i.e. 
approximately 35%

– The final SCR of €547 billion was approximately 41% of the sum of individual risks

• Diversification therefore has a massive impact on the expected level of capital that a company holds
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Source: [page 31, EIOPA Report on the fifth Quantitative Impact Study (QIS5) for Solvency II, EIPOA-TFQIS5-11/001, 14 March 2011, https://eiopa.europa.eu ].
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What are the requirements for aggregation 
techniques?

• Supervisory authorities must be satisfied that the system used for measuring diversification (i.e. the aggregation 
approach) is adequate

• What does adequate mean though from a regulatory and business view point?

EIOPA requirements Business requirements

• Identifies the key variables driving dependencies

• Provides support for the existence of diversification 
effects

• Justifies the assumptions underlying the modelling 
of dependencies

• Takes into particular consideration extreme 

• Quick to run

• Understood by senior management

• Facilitate decision making

• Flexible so changes to the business model can be 
incorporated

• Able to be audited controlled managed so thatp
scenarios and tail dependence

• Tests the robustness of the system on a regular 
basis including sensitivity and stress testing

• Actively take diversification effects actively into 
account in business decisions

Able to be audited, controlled, managed so that 
management have confidence in the result

• Appropriately allows for the interactions of risks at 
a BU and Group level

• Appropriately reflects group structure and 
interactions between entities

• Adequately reflects risk profile of the company
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Dependency

• A dependency structure describes the way that risk factors are linked together

• The most common and simplest form of dependency structure is linear correlation usually measured by theThe most common and simplest form of dependency structure is linear correlation, usually measured by the 
Pearson’s correlation

• There are many different types of dependency though that may be better captured by other correlation 
measures such as rank correlation or other techniques such as casual relationships etc

• Rank correlation measures the relationship between different rankings of the same set of items. Popular rank 
correlation statistics include

– Spearman's ρ 

– Kendall's τ 

• Rank correlations may be more appropriate when there is a non-linear relationship between risk factors

E l f h hi i h• Example of where this might occur are:

– Tail correlation 

– Causal relationship, eg big earthquake and stock market crash, unidirectional nature of causality

– Derivative non-linear price relationship to their underlying security

4

Linear v Rank Correlation

• A  Pearson correlation of 1 implies the relationship between X and Y can be described by a linear equation

• A Spearman correlation of 1 occurs when the two variables being compared are monotonically related, even if 
their relationship is not linear. p

• Let (Xi, Yi) and (Xj,Yj) be a pair of (bivariate) observations. If Xj -Xi and Yj - Yi have the same sign, we shall say 
that the pair is concordant. A Kendall’s Tau correlation of 1 is achieved if all n(n -l)/2 of possible pairs are 
concordant*

Pearson ‐0.28

Spearman ‐0.19

Kendall's Tau ‐0.13

Pearson 0.51

Spearman 0.86

Kendall's Tau 0.73

Pearson 0.89

Spearman 1.00

Kendall's Tau 0.99

Pearson 1.00

Spearman 0.99

Kendall's Tau 0.95

*Refer: “Why Kendall Tau?” by G. E. NOETHER
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Importance of correlations

If we change some of 
Base case

C / C O
Standalone 

C
g

these correlations there 
will be different impacts 
depending on which one 
we change...

Here the change to the 
di ifi d i l i ll

Small change

Correlation m/x Market Insurance Credit Operational Market Vol Hedge Capital
Market 1 0.25 0.5 0.5 ‐0.75 ‐0.25 100
Insurance 0.25 1 0.25 0.25 0.25 0.25 35
Credit 0.5 0.25 1 0.25 ‐0.25 0.375 50
Operational 0.5 0.25 0.25 1 0.25 ‐0.25 20
Market Vol ‐0.75 0.25 ‐0.25 0.25 1 ‐0.75 10
Hedge ‐0.25 0.25 0.375 ‐0.25 ‐0.75 1 5

Standalone capital 220
Diversified capital 152

Correlation m/x Market Insurance Credit Operational Market Vol Hedge
Standalone 

Capital diversified capital is small -
1% as the altered correlation 
affects risk exposures that 
are relatively small

Correlation m/x Market Insurance Credit Operational Market Vol Hedge Capital
Market 1 0.25 0.5 0.5 ‐0.75 ‐0.25 100
Insurance 0.25 1 0.25 0.25 0.25 0.25 35
Credit 0.5 0.25 1 0 ‐0.25 0.375 50
Operational 0.5 0.25 0 1 0.25 ‐0.25 20
Market Vol ‐0.75 0.25 ‐0.25 0.25 1 ‐0.75 10
Hedge ‐0.25 0.25 0.375 ‐0.25 ‐0.75 1 5

Standalone capital 220
Diversified capital 151
% Change 1%
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Importance of correlations

If we change some of 
Base case

C / C O
Standalone 

C
g

these correlations there 
will be different impacts 
depending on which one 
we change...

Here the change in 
l i i h

Small change

Correlation m/x Market Insurance Credit Operational Market Vol Hedge Capital
Market 1 0.25 0.5 0.5 ‐0.75 ‐0.25 100
Insurance 0.25 1 0.25 0.25 0.25 0.25 35
Credit 0.5 0.25 1 0.25 ‐0.25 0.375 50
Operational 0.5 0.25 0.25 1 0.25 ‐0.25 20
Market Vol ‐0.75 0.25 ‐0.25 0.25 1 ‐0.75 10
Hedge ‐0.25 0.25 0.375 ‐0.25 ‐0.75 1 5

Standalone capital 220
Diversified capital 152

Correlation m/x Market Insurance Credit Operational Market Vol Hedge
Standalone 

Capital correlation is the same as 
before (reduction of 25%) 
but the affect the impact on 
the diversified capital is 
greater (7%)

7 times the impact of the 
previous case!

Correlation m/x Market Insurance Credit Operational Market Vol Hedge Capital
Market 1 0.25 0.25 0.5 ‐0.75 ‐0.25 100
Insurance 0.25 1 0.25 0.25 0.25 0.25 35
Credit 0.25 0.25 1 0 ‐0.25 0.375 50
Operational 0.5 0.25 0 1 0.25 ‐0.25 20
Market Vol ‐0.75 0.25 ‐0.25 0.25 1 ‐0.75 10
Hedge ‐0.25 0.25 0.375 ‐0.25 ‐0.75 1 5

Standalone capital 220
Diversified capital 142
% Change 7%
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Positive-semidefinite Matrices

• Positive-semidefinite (PSD) matrices are required in order to derive aggregated capital in a simulation based 
approach

• PSD matrices are required because their Cholesky decomposition or inverses are needed to generate the 
underlying correlated random scenarios

• Mathematically:

– The n × n Hermitian matrix M is said to be positive-semidefinite (or sometimes nonnegative-definite) if

– for all             (or, all             for the real matrix), where x * is the conjugate transpose of x

– An Hermitian matrix M is positive-semidefinite if and only if all of its eigenvalues are non-negative

– Any positive semidefinite matrix M can be written as M = A*A (Cholesky decomposition)

C l i i d b i lik l b PSD d• Correlation matrices generated by companies are unlikely to be PSD due to:

– Elements of the correlation matrix may have been estimated separately and then combined together at a 
later stage

– A mixture of data and expert judgement used to derive the correlation matrix

• A method is required to transform the correlation matrix of a company into a PSD matrix. 

• In transforming the matrix though we need to understand how our correlations are affected!

8

PSD Algorithms

• There are a number of different methods to derive a PSD matrix:

– Trial and errorTrial and error

– Simple decomposition (aka zeriosing eignenvalues, brute force)

– Rebonato – Spectral decomposition (aka weighted eigenvalue approach)

– Rebonato – Hypersphere decomposition

– Higham method

– Bending method (including or excluding weights) 

• In the following slides we compare the attributes of a selection of the methods above

• We also focus on applying the PSD algorithm to the correlation matrix directly, rather than the covariance matrix 
given that typically insurance companies work directly with the correlation matrix.g yp y p y

9
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Simple Decomposition

• Under this approach the 
eigenvalues of the 

t i f d t b

Base case

C / C O
Eigen-

matrix are forced to be 
greater than or equal to 
zero

• The matrix A has 
eigenvalue λ (lambda) 
with eigenvector x if the 
following equation 
holds:

• The correlation matrix is 
then derived using the 
transformed

Simple Decomposition

Correlation m/x Market Insurance Credit Operational Market Vol Hedge values
Market 1 0.25 0.5 0.5 ‐0.75 ‐0.25 ‐0.40
Insurance 0.25 1 0.25 0.25 0.25 0.25 0.46
Credit 0.5 0.25 1 0.25 ‐0.25 0.375 0.61
Operational 0.5 0.25 0.25 1 0.25 ‐0.25 1.22
Market Vol ‐0.75 0.25 ‐0.25 0.25 1 ‐0.75 1.82
Hedge ‐0.25 0.25 0.375 ‐0.25 ‐0.75 1 2.29

Standalone capital 220
Diversified capital 152

Correlation m/x Market Insurance Credit Operational Market Vol Hedge
Eigen-
values transformed 

eigenvalues

• In our example a 
fundamental property of 
a correlation matrix has 
been destroyed using 
this naïve  approach 
(diagonal entries do not 
equal 1) 

Correlation m/x Market Insurance Credit Operational Market Vol Hedge values
Market 1.12 0.20 0.47 0.47 ‐0.62 ‐0.14 0
Insurance 0.20 1.02 0.26 0.26 0.19 0.20 0.46
Credit 0.47 0.26 1.01 0.26 ‐0.29 0.35 0.61
Operational 0.47 0.26 0.26 1.01 0.21 ‐0.28 1.22
Market Vol ‐0.62 0.19 ‐0.29 0.21 1.14 ‐0.64 1.82
Hedge ‐0.14 0.20 0.35 ‐0.28 ‐0.64 1.09 2.29

Standalone capital 220
Diversified capital 155
% Change 2%
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Rebonato Spectral Decomposition

• This approach is similar 
to the simple 
d iti b t

Rebonato Method

C / C O
Eigen-

decomposition but 
weighted to ensure that 
the diagonal entries 
equal 1.

• The correlation matrix is 
then derived using the 
transformed 
eigenvalues

• This method does not 
allow us to control 
which elements of the 
correlation matrix are 

Absolute difference to base correlation matrix

Correlation m/x Market Insurance Credit Operational Market Vol Hedge values
Market 1.00 0.18 0.44 0.44 ‐0.55 ‐0.13 0.00
Insurance 0.18 1.00 0.26 0.26 0.18 0.19 0.45
Credit 0.44 0.26 1.00 0.26 ‐0.27 0.33 0.59
Operational 0.44 0.26 0.26 1.00 0.20 ‐0.27 1.15
Market Vol ‐0.55 0.18 ‐0.27 0.20 1.00 ‐0.57 1.71
Hedge ‐0.13 0.19 0.33 ‐0.27 ‐0.57 1.00 2.11

Standalone capital 220
Diversified capital 149
% Change 2%

Correlation m/x Market Insurance Credit Operational Market Vol Hedge

altered

• Our key corelations
have all be shifted by 
greater than 5% leading 
to capital being 
understated by 2%

p g
Market 0.00 0.07 0.06 0.06 0.20 0.12
Insurance 0.07 0.00 0.01 0.01 0.07 0.06
Credit 0.06 0.01 0.00 0.01 0.02 0.04
Operational 0.06 0.01 0.01 0.00 0.05 0.02
Market Vol 0.20 0.07 0.02 0.05 0.00 0.18
Hedge 0.12 0.06 0.04 0.02 0.18 0.00

Max error 0.2
Standard Deviation 5%

11
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Higham Method

• Highman provides 2 algorithms to derive a PSD matrix based on different weighting methodologies starting from a 
given non semi-definite matrix ..g

Approach 1

R’ = R + E  such that R’ is a correlation matrix and                   is minimum for some given PSD matrix W.

Approach 2

• R’ = R + E  such that R’ is a correlation matrix and               is minimum for some given PSD matrix H.

• The values of  H can be interpreted as weights which are predefined by the user prior to starting the required 
search

In the following slide we provide the results for the first approach

12

Higham Method

• In this example we have 
used one version of the 
hi h th d th t

Highman Method

C / C O
Eigen-

higham method that 
ensures  the diagonal 
entries equal 1.

• The method is 
guarantees to compute 
the nearest correlation 
matrix

• In this example ,though 
the method gives very 
similar results to the 
Rebonato methodAbsolute difference to base correlation matrix

Correlation m/x Market Insurance Credit Operational Market Vol Hedge values
Market 1.00 0.18 0.46 0.45 ‐0.56 ‐0.10 0.00
Insurance 0.18 1.00 0.27 0.27 0.17 0.19 0.41
Credit 0.46 0.27 1.00 0.26 ‐0.30 0.34 0.56
Operational 0.45 0.27 0.26 1.00 0.20 ‐0.29 1.13
Market Vol ‐0.56 0.17 ‐0.30 0.20 1.00 ‐0.59 1.73
Hedge ‐0.10 0.19 0.34 ‐0.29 ‐0.59 1.00 2.17

Standalone capital 220
Diversified capital 150
% Change 1%

Correlation m/x Market Insurance Credit Operational Market Vol Hedgep g
Market 0.00 0.07 0.04 0.05 0.19 0.15
Insurance 0.07 0.00 0.02 0.02 0.08 0.06
Credit 0.04 0.02 0.00 0.01 0.05 0.04
Operational 0.05 0.02 0.01 0.00 0.05 0.04
Market Vol 0.19 0.08 0.05 0.05 0.00 0.16
Hedge 0.15 0.06 0.04 0.04 0.16 0.00

Max error 0.19
Standard Deviation 5%

13
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Bending method - weighted

• This approach is based on a statistical method known as “bending”.  

• Bending is an iterative process of updating the correlation matrix as follows:• Bending is an iterative process of updating the correlation matrix as follows:

1. Determine matrix of eigenvectors, Un, and diagonal matrix of eigenvalues, Dn, of R. Hence, Rn = UnDnUn, where 
n denotes iteration number;

2. Replace Dn with D*n, where d*i,i = 2ε, for di,i < ε and d*i,i = di,i, otherwise. Set the value of ε to a small positive real 
number

3. Replace D*n with Δn, where δi,i = d*i,i (tr(D)/ tr(D*));

4. Replace Dn with Δn, where δi,i = ε, for di,i < ε, and δi,i = di,i, otherwise. 

5. Calculate a new correlation matrix: R*n+1 = Rn – [Rn - UnΔnUn′] � W (where � is the Hadamard product)

6. Replace R*n+1 with Rn+1, where ri,j = r*i,j/sqrt(r*i,i r*j,j).

7. Repeat until Rn+1 is positive definite

14

Refer: “A Simple Method for Weighted Bending of Genetic (Co)variance Matrices”; Journal of Dairy Science Vol. 86, No. 2, 2003; H.. Jorjani,* L. Klei,† and U. Emanuelson,

Bending method - weighted

• Weighted bending 
minimizes the changes 
t l t d

Bending method – Weighted

C / C O
Eigen-

to user selected 
correlations at the 
expense other 
correlations

• The choice of weights 
are key to the 
effectiveness of the 
methodology

• Many different weights 
can be chosen that 
focus on different 
aspects (eg reliability of 

Absolute difference to base correlation matrix

Correlation m/x Market Insurance Credit Operational Market Vol Hedge values
Market 1.00 0.25 0.50 0.50 ‐0.75 1.00 2.18
Insurance 0.25 1.00 0.26 0.26 0.17 0.25 1.72
Credit 0.50 0.26 1.00 0.26 ‐0.27 0.50 0.00
Operational 0.50 0.26 0.26 1.00 0.19 0.50 1.09
Market Vol ‐0.75 0.17 ‐0.27 0.19 1.00 ‐0.75 0.57
Hedge ‐0.12 0.19 0.32 ‐0.27 ‐0.55 ‐0.12 0.44

Standalone capital 220
Diversified capital 152
% Change 0%

Correlation m/x Market Insurance Credit Operational Market Vol Hedge p ( g y
correlation estimate, 
importance of 
correlation on capital 
etc)

• In this example we have 
used a weight based on 
the size of capital 
affected by the 
correlation

p g
Market 0.00 0.00 0.00 0.00 0.00 0.13
Insurance 0.00 0.00 0.01 0.01 0.08 0.06
Credit 0.00 0.01 0.00 0.01 0.02 0.05
Operational 0.00 0.01 0.01 0.00 0.06 0.02
Market Vol 0.00 0.08 0.02 0.06 0.00 0.20
Hedge 0.13 0.06 0.05 0.02 0.20 0.00

Max error 0.2
Standard Deviation 5%

15
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PSD Algorithm Comparison

Algorithm \ Simple
Rebonato –

Spectral 
Rebonato –

Hypersphere Bending Higham
Feature Trial and Error Decomposition Decomposition Decomposition Method method

Accuracy 
(residual errors)

L L H H H H

Preserves unity Y N Y Y Y Y

Convergence N N Y Y N Y

Calibration 
effort

H L M H L M

User defined 
weighting

Y N N Y Y Y*

Computation
efficiency

L H H M L M

Management
understanding

H M M L L L

Legend:
H = High Y = Yes
M = Medium N = No
L = Low

16

* 2 different methods can be applied to weight the correlation matrix. It should be noted that weighting individual correlations is possible but its application is not straightforward

Correlation matrix construction

• Correlation matrices can become as big as large 1500 x 1500

• It is not feasible or practical to estimate the correlations of all possible

BUs construct a 
correlation matrix

Group sets rules 
for populating 

unknown

• It is not feasible or practical to estimate the correlations of all possible 
combinations

• A pragmatic approach is therefore required to populate the remaining 
parts of the correlation matrix 

• In the slides that follow we provide an overview of a possible process to 
construct the wider group correlation matrix.

All BUs matrix 
are PSD

unknown 
correlations

17

Group matrix is 
converted to PSD
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Correlation matrix construction (cont.)

BUs construct a 
correlation matrix

• BUs derive individual correlation matrices 

• BUs convert matrices into PSD matrices using one of the algorithms described

GROUP
BU1

Risk 1
BU1 

Risk 2
BU2 

Risk 1
BU2 

Risk 2
BU3 

Risk 1
BU3 

Risk 2
BU4 

Risk 1
BU4 

Risk 2

BU1 Risk 1 1 0 0 5 ρ(1 1) ρ(1 2) ρ(1 1) ρ(1 2) ρ(1 1) ρ(1 2)

BU1 Risk 1 Risk 2

Risk 1 1.0 0.5

Risk 2 0.5 1.0

BU3 Risk 1 Risk 2

Risk 1 1.0 0.6

Risk 2 0.6 1.0

Group sets rules 
for populating 

unknown 

All BUs matrix 
are PSD

• Supplying PSD matrices at this level generally means it is easier to derive the Group PSD 
and minimises the potential change in correlations

BU1 Risk 1 1.0 0.5 ρ(1,1) ρ(1,2) ρ(1,1) ρ(1,2) ρ(1,1) ρ(1,2)

BU1 Risk 2 0.5 1.0 ρ(2,1) ρ(2,2) ρ(2,1) ρ(2,2) ρ(2,1) ρ(2,2)

BU2 Risk 1 ρ(1,1) ρ(1,2) 1.0 0.5 ρ(1,1) ρ(1,2) ρ(1,1) ρ(1,2)

BU2 Risk 2 ρ(2,1) ρ(2,2) 0.5 1.0 ρ(2,1) ρ(2,2) ρ(2,1) ρ(2,2)

BU3 Risk 1 ρ(1,1) ρ(1,2) ρ(1,1) ρ(1,2) 1.0 0.6 ρ(1,1) ρ(1,2)

BU3 Risk 2 ρ(2,1) ρ(2,2) ρ(2,1) ρ(2,2) 0.6 1.0 ρ(2,1) ρ(2,2)

BU4 Risk 1 ρ(1,1) ρ(1,2) ρ(1,1) ρ(1,2) ρ(1,1) ρ(1,2) 1.0 0.25

BU4 Risk 2 ρ(2,1) ρ(2,2) ρ(2,1) ρ(2,2) ρ(2,1) ρ(2,2) 0.25 1.0

BU2 Risk 1 Risk 2

Risk 1 1.0 0.5

Risk 2 0.5 1.0

BU4 Risk 1 Risk 2

Risk 1 1.0 0.25

Risk 2 0.25 1.0

18

u o
correlations

Group matrix is 
converted to PSD

Correlation matrix construction (cont.)

BUs construct a 
correlation matrix

• Large parts of the correlation matrix still remain undefined

• A rules based approach is typically used to determine correlations between the same risks 

Group sets rules 
for populating 

unknown 

All BUs matrix 
are PSD

across business units (eg same region/ same risk = 100%, different region / same risk = 
50%.

• But there may still be  about the remaining correlations? For example, how do we derive a 
correlation between UK/equity and France/property?

UK Europe

Equity Property Equity Property

UK
Equity 1.0 0.5 0.8 r=?

Property 0.5 1.0 0.5 0.4

19

u o
correlations

Group matrix is 
converted to PSD

Europe
Equity 0.8 0.5 1.0 0.5

Property r=? 0.4 0.5 1.0
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Correlation matrix construction (cont.)

BUs construct a 
correlation matrix

• Remaining correlations can be calculated by any number of different approaches. 

• The most common methods are:

Group sets rules 
for populating 

unknown 

All BUs matrix 
are PSD

• Max Rule

• Average Rule

Example

• The correlation between UK equity and Europe Property can be derived by taking the red 
or the blue route:

• Under the Max Rule, we have:
r = Max(50% * 40%, 80% * 50%) = 40%

U d th A R l h

UK/equity UK/property
50%

r

20

u o
correlations

Group matrix is 
converted to PSD

• Under the Average Rule we have:
r = Ave(50%, 50%) * Ave(80%, 40%) = 30%

• The final step in the process is to convert the group matrix to a PSD matrix

80%

Europe/equity Europe/property
50%

40%
r

Copulas

• A Copula allows us to aggregate individually defined loss functions of the risks that are relevant to a firm into a 
coherent set

Risk A 
N(100,2)

Risk B 
LN(10,1)

Copula function Aggregate 
capital

Risk C 
N(50,5)

p

21
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Copulas

• There are different types of copulas and the choice of copulas reflect the prior beliefs of a firm

• There are copulas that allow for a greater proportion of extreme events at the tail that is fat tailed such as theThere are copulas that allow for a greater proportion of extreme events at the tail, that is fat tailed, such as the 
T- copula compared to Gaussian Copula

• There are copulas that are symmetric, that is the proportion of adverse scenarios are the same as favourable 
scenarios eg Gaussian and the student – T copulas, as opposed to Gumbell or Frank copulas

• Elliptical(Gaussian and the student – T copulas) copulas are commonly used in aggregating capital in insurance 
firms. The main reason for this is that:

– It is not straightforward to implement Archimedean copulas such as Gumbell or Frank for a large number 
risks, use of the vine copulas approach

– Elliptical copulas are an improvement on the correlation matrix approach that most senior management are 
familiar with

22

Correlations

Copulas

Equity Property Lapses Mortality Risk Capital Req (£m) Base Case Case 1

Risks

Equity Property Lapses Mortality

Equity 1 0.5 -0.2 0

Property 0.5 1 0.1 0

Lapses -0.2 0.1 1 0

Mortality 0 0 0 1

Risk Capital Req (£m) Base Case Case 1

Equity 100 N(180,38.82) LN(4.53,0.28)

Property 10 N(6.14,3.88) LN(2.38,0.25)

Lapses 100 N(65,38.82) N(65,38.82)

Mortality 10 N(16.99,3.88) N(16.99,3.88)

Results

Approach Base Case Case 1

Correlation matrix 131.91 131.91

Gaussian Copula 132.24 124.02

Student T (50 dof) Copula 133.03 124.56

Student T (10 dof) Copula 139.12 130.11

Student T (5 dof) Copula 145.79 136.97

Student T (1 dof) Copula 174.06 166.11

23
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Attribution of Capital (to products)

Group
• The diagram on the left, shows the diversified capital at 

different hierarchies of an insurance group
£200m

Legal Entity 
A

£125m

Legal Entity 
B

£150m

g

• By attributing capital, we are trying to answers 
questions like:

– How much of the £200m group diversified capital is 
due to BU1? 

– How much of the £125m legal entity capital is due to 
BU2?

– How much would the group diversified capital 
increase by, if the amount of business in BU3 
increases 15%?

BU 1

£100m

BU 2

£50m

BU 3

£150m

– What would be the impact of buying another legal 
entity (C), should legal entity C be merged with legal 
entity A or if should be a separate legal entity? 

– What products in BU1 contributes most to the 
diversified capital of BU1?

24

Attribution of Capital (to risks)

Group

£200m

• Attribution of capital to risks, we are interested in the 
following questions:

£200m

Legal Entity A

£125m
Legal Entity B

£150m

– how much of the £200m group diversified capital 
is particular risk (a risk family such as insurance 
risk or US equity risk)?

– What are the most material risks for legal entities 
and BUs?

– What would be the impact of undertaking an 
equity hedge on the group diversified capital?

Risk 1

£10m

Risk 2

£85m

Risk 3

£70m

Risk 1

£55m

Risk 4

£115m

25
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Attribution of Capital (to risks)

• Most of the capital used to attribute capital to risks is based on Taylor Series expansion

• Let assume a very simple case in which a firm is exposed to a single risk factor x then the capital• Let assume a very simple case in which a firm is exposed to a single risk factor x, then the capital 
of the firm is a function of x, f(x)

• If we assume that f(x) is differentiable, then Taylor Series tells us that 

• If we assume that higher differentials are not material, then change in capital due to a very small 
change in risk x is

• If we express                   where k is a very small number, then the change in capital can be 
expressed as 

If th fi i d t th i k f t f l th th it l tt ib t d• If the firm is exposed to more than one risk factor, x, y, z for example, then the capital attributed 
to each of these risks can be shown to be:

• This is the so-called risk marginal attribution approach. The risk value that is perturbed in the 
risk marginal approach is the 1 in 200 scenario (could be smoothed or unsmoothed 1 in 200 
scenario)

26

Attribution of Capital

• An alternative approach is to assume that a given proportion of the diversified group is due a particular risk

• The proportions are determined mainly by expert judgement (that is guessing)The proportions are determined mainly by expert judgement (that is guessing)

• The use of assumed proportions can also be used to attribute capital to products. This approach assumes that 
x% of the group diversified capital is due to BU1 or legal entity A

• Other approaches that can be used to attributed capital to products/BU are:

– Use of group 1 in 200 scenario: the group 1 in 200 scenario is used to calculate the capital required for the 
products or BU that make up the group

– Use of weights (if a smoothing approach is used) 

• We set out a simple case study to explain these approaches

27
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Case Study

Scenario Product A Product B Group

Step 1 

• The change in NAV at each scenario is calculated for

Step 1
p

1 -20 -222 -242

2 -9 56 47

3 43 -258 -215

4 45 -141 -96

5 -6 -136 -142

6 -200 41 -159

7 -100 91 -9

8 -9 -17 -26

9 88 -191 -103

10 34 45 79

11 29 87 116

12 -88 -36 -124

The change in NAV at each scenario is calculated for 
each product

• The sum of the change in NAV is the group change 
in NAV

12 88 36 124

13 -45 -78 -123

14 -767 -174 -941

15 34 125 159

16 -234 -1111 -1345

17 234 151 385

18 209 158 367

19 -101 -125 -226

20 -52 41 -11

28

Case Study

Scenario Product A Product B Group Weights

Step 2 Step 2 

• The data in step 1 is sorted by the change in NAV ofp g

16 -234 -1111 -1345 0

14 -767 -174 -941 0.3

1 -20 -222 -242 0.4

19 -101 -125 -226 0.3

3 43 -258 -215 0

6 -200 41 -159 0

5 -6 -136 -142 0

12 -88 -36 -124 0

13 -45 -78 -123 0

9 88 -191 -103 0

4 45 -141 -96 0

8 -9 -17 -26 0

The data in step 1 is sorted by the change in NAV of 
group

• The weights are calculated 

• The attributed capital is the sum product of the 
weights and change in NAV 

29

8 9 17 26 0

20 -52 41 -11 0

7 -100 91 -9 0

2 -9 56 47 0

10 34 45 79 0

11 29 87 116 0

15 34 125 159 0

18 209 158 367 0

17 234 151 385 0

Product A Product B Group

Standalone capital -340.4 -446.9 -446.9

Attributed capital -268.4 -178.5 -446.9
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Attribution: Issues/Decisions 

• Attribution to products first and to risks or vice versa

• Attribution to primary or secondary risk factorsAttribution to primary or secondary risk factors

• Stability of attributed results when different sets of scenarios are used:

– Through more scenarios at it (subject to time and computing resources restrictions)

– Implement variance reduction techniques

– Implement smoothing

• Allowing for fungibility restrictions 

30

Smoothing 

• Smoothing is simply using a weighted average instead of 
a single number.

PGT Note: Graphs are current pasted in as 
pictures. If they require formatting please 
supply data or requests graph retracing.

• Smoothing can be applied to capital or to scenarios.

• Kernel weights are the most common type of weights used 
in smoothing. A kernel is any function that satisfies the 
following conditions 

and 

• The first graph on the right shows some of the different 
shapes that the kernel weights can assume depending on 
how the kernel function is defined. 

• Most academic literature on Kernel smoothing state that 
th E h ik K l i th ti k l f tithe Epanechnikov Kernel is the optimum kernel function

• Harrell Davies weights is another type of weights that can 
be used in smoothing. The second graph comes HD and 
kernel smoothing. The HD is red and it smoothes over a 
relatively smaller window compared to Kernel smoothing

• The key question about smoothing is the number of 
scenarios to smooth over. HD does not allow you to 
choose this, whilst Kernel smoothing does.

31
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Validation of Internal Model numbers

• Run 1 in 200 scenario on actuarial models (Prophet/MoSes) and compare stressed value of assets and 
liabilities to those given by internal model – this tests how good the formula fitting is

• Derive 1 in 200 uni-variate capital from internal model and compare that with that from standard formula 

• Run shredded 1 in 200 scenario – the sum of the capital requirements and the SCR is the so-called non-
linearity

• Sensitivities run and assess if the movement in capital is intuitive:

– Change copula, or degrees of freedom of copula 

– Change marginal distribution

– Change correlations

32

Variance Reduction Techniques

• Quasi Monte Carlo eg SOBOL

– insert graph of psuedo random number and SOBOLinsert graph of psuedo random number and SOBOL 

– difference between convergent and stable results 

• Importance sampling

– What is importance sampling

– Why it is not easy to implement this

• Why other variance reduction techniques are not appropriate 

– Antithetics

– Control variate 

Stratified sampling– Stratified sampling

33
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Questions or comments?

Expressions of individual views by 
members of The Actuarial Profession andmembers of The Actuarial Profession and 
its staff are encouraged

The views expressed in this presentation 
are those of the presenter

© 2010 The Actuarial Profession  www.actuaries.org.uk
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