

Constructing Lapse Stress Scenarios

Andy Dickson, Aegon Andrew D Smith, Deloitte Section B4, Monday 11 November 2013

Stress Tests derived from FSA Persistency Study

FSA Persistency Survey 2012

nnive	0	1	2	2		Anniver sary	0	1	2	3	4	Annive rsary	0	1	2	3	4
bdi y tart	0	1	2	5	4	Start						Start					
ear						year						year					
1998	1000	987	966	933	906	1998	1000	899	811	720	630	1998	1000	918	829	744	663
1999	1000	989	966	938	906	1999	1000	894	790	685	583	1999	1000	915	811	715	638
2000	1000	987	965	932	894	2000	1000	879	762	648	561	2000	1000	879	758	666	567
2000	1000	987	964	929	870	2001	1000	869	742	635	550	2001	1000	866	765	638	548
2002	1000	983	953	892	836	2002	1000	877	777	645	569	2002	1000	881	742	640	554
2002	1000	975	950	909	865	2003	1000	885	737	648	465	2003	1000	860	748	640	551
2003	1000	981	946	908	856	2004	1000	883	771	646	517	2004	1000	849	720	605	530
2004	1000	976	940	901	8/3	2005	1000	885	784	710	622	2005	1000	856	733	620	518
2005	1000	971	937	895	8/1	2006	1000	893	799	688	582	2006	1000	863	737	607	523
2007	1000	976	940	806	955	2007	1000	897	781	669	574	2007	1000	865	711	612	518
2007	1000	970	020	001	833	2008	1000	889	798	695		2008	1000	830	715	590	
2008	1000	972	040	501		2009	1000	903	829			2009	1000	854	713		
2003	1000	980	545			2010	1000	876				2010	1000	856			
The cond	study cerns	/ cor ove	ntain r aco	s nu curao	mero cv (fo	us other r examp	data le, ne	sets gativ	s, bu ve la	t the	ere are rates	e).				Institu and F of Act	ite aculty :uarie

6

Assumption	Response
Log[lapse rate / (1-lapse rate)] performs a random walk	???
Increments have a logistic distribution	???
Sample standard deviation is a good way to measure dispersion of a logistic distribution.	???
We know the standard deviation of the increments	???
The same model applies to the future as to the past	???

Unrealistic Assumptions Revisited

	Response
_og[lapse rate / (1-lapse rate)] performs a random walk	Prediction interval is cautious if the lapse rates are independent.
ncrements have a logistic distribution	Prediction interval is cautious if we assume normal distributions instead,
Sample standard deviation is a good way to measure dispersion of a logistic distribution.	The prediction test is evidence that the method works; how we derived the estimates is irrelevant.
We know the standard deviation of the increments	Use a larger multiple of estimated standard deviation
The same model applies to the iuture as to the past	You cannot get rid of all limitations and exclusions with clever statistics.

Risk of a Level Shift in the Basis The level risk driver represents the basis change over a one year time horizon. A natural starting point is to estimating future basis changes based on past basis changes. · Best estimate changes may not be an appropriate starting point for modelling basis changes when historic basis changes do not reflect changes in best estimates, e.g. there may be some prudence built into assumptions especially in a new market where there is little experience for analysis. **Possible Approach** · Estimate future basis changes based on theoretical constructed future bases. These reconstructed basis should be designed to behave more closely to the logical behaviour of best estimates. This approach aims at replicating how an actuary may set the basis given one year's worth of new experience. • Model: Use fitted model of volatility risk and take a proportion through as basis change, e.g. Basis(t+1) = 1/3 of actual(t) + 2/3 of basis(t) • The basis(t) is known and does not add variability. The only new information is the actual(t) which could alter the view on the best estimate in a year's time. Institute and Faculty of Actuaries 31

- Solvency II raises the bar in terms of data quality for lapse risk analysis.
- Many firms derive stress tests based on statistical analysis of their own lapse experience.
- Model and parameter error are material and can be as large as the modelled stochastic error, especially when few data points are available.
- Is mass lapse capturing the same risk as a model / parameter error shock?
- Take care when translating one-year experience outcomes into basis changes to ensure all risks are captured.

