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Working Party Introduction

• Background to Working Party

• What are we hoping to achieve?

• Working Party:

– Ajay Chhabra (Chair)

– Pietro Parodi

– Tom Day

• Acknowledgements:

– David Menezes

– Isobel Prowen

– Joseph Lo

Important Note:

The ideas discussed in this presentation are those of the presenters, and are not necessarily 

reflective of views or practices of their respective employers.
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I. Sparse data - setting the scene
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Why investigate sparsity?

Sparsity affects us all

All non-life actuaries have to deal with sparsity: data are
systematically pushed to the limit of sparsity

Sparsity represents a commercial opportunity

Data-rich problems seldom lead to massive profits for insurers…

Sparsity makes us actuaries valuable

Actuaries are valued for their judgement and business knowledge,
not for their grasp of statistics – which is probably grasped more
firmly by other professionals
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How does data sparsity arise?

When the risk is new Historical data have just started being collected

When the risk changes 

with time

Historical data become quickly irrelevant

When we are “in the 

tail”

Especially relevant in reinsurance, commercial insurance,

capital modelling

When we have many 

dimensions

When many dimensions are involved, there arises the 

“dimensionality curse”, by which an exponentially larger 

data set is required to achieve the same level of accuracy

When data is just not 

there

There could be many reasons for this…
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What does sparsity entail?

Parameter uncertainty The accuracy of the parameters degrade as

the number of data points decreases, e.g.

the error on the mean is 1/ n

Model uncertainty Our ability to discriminate between models

decreases as the number of data points

decreases

Bias E.g. goodness of fit tests are biased, MLE

is biased, etc

Breakdown of most 

traditional quantitative 

actuarial methods

Many of the traditional quantitative methods

used by actuaries, e.g. reserving methods,

claims inflation estimation methods, etc,

break down when data are too sparse
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Across-the-board examples of sparsity

Pricing –Severity model selection with few data points

–Rating factor selection with many factors and few 

data points

–Reinsurance pricing

Reserving –Lack of historical experience for a class of business

–Sparse claims triangles, e.g. number of claims 

above a high threshold in reinsurance

Capital 

Modelling / 

Risk 

Managemen

t

–Capital requirements at high percentiles (e.g. 99.5%) 

–Dependency modelling (e.g. copula calibration)

–Stress/scenario testing
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II. Techniques to deal with sparsity
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How can we deal with sparsity?

• “Expert Judgement”

• Benchmarks / collateral data

• Extreme Value Theory

• Statistical Learning Theory

• …

There is no Holy Grail!

No Data Abundant DataSparse Data

• GLMs / Multivariate Regression

• Principal Component Analysis

• Maximum likelihood estimation

• Curve-fitting software

• “Expert Judgement”
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Role of Expert Judgement

Modelling = Data + Knowledge

• Where data are sparse, a pure frequentist approach doesn‟t work

• We are all (consciously or otherwise) Empirical Bayesians!

– Prior: “Expert Judgement” and market data

– Posterior: Informed by prior and existing data

• Key challenges:

– How can we trust judgement?

– How can we explain and communicate judgement?

There is no substitute for Expert Judgement
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Large losses – Extreme Value Theory

The tail won’t probably fit

Most distribution fits break down for large losses and there‟s a 
need to model the tail separately. However, the tail is almost by 
definition sparse.

The tail is always a GPD… no model uncertainty then!

The main results of extreme value theory is that all distributions 
behave asymptotically as a Generalised Pareto Distribution. 

But sparsity affects extreme value theory, too

• Parameter uncertainty creates a prediction horizon

• There is a significant bias on the “shape” parameter  tail 
classification becomes a problem, underestimation is likely
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Statistical learning theory

A rigorous framework for model selection

Modelling is the ultimate ill-posed problem: infinitely many models 

can be fitted to the same data, and a solution is only possible by 

imposing constraints (e.g. simplicity)

Model complexity
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Training sample

Independent set
Structural risk = Dist (M, D) +    

Penalty(d,n)

(M = model, D = data)

Examples

AIC = - 2 log L + 2 d

BIC = - 2 log L + log(n) d

MDL = BIC
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An alternative idea for model selection

Instead of minimising just the distance between the model and

the data, minimise a regularised distance, which includes a

penalty term on the parameters , e.g.

Enforcing variable sparsity, and dealing with data sparsity

Some regularisation schemes also perform variable selection

automatically, keeping the complexity at bay; and some are

devised to work with many variables (e.g. rating factors) but very

few data points

Statistical learning theory

Sparsity-based regularisation schemes
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Provides a means of imposing prior constraints on the form of a 

model, whilst maximising „uninformedness‟ (“entropy”) of the rest 

of the model.

Entropy for a continuous distribution with density p(x):

Examples:

Maximum Entropy

Constraints Maximum Entropy Distribution

Upper / Lower Bound: [a, b] U(a,b)

Mean ( ) / SD ( ) N( , 2)

Mean ( ) Exp(1/ )
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• Used extensively in the field of inference

– Bayesian techniques often use „entropic priors‟, which is a 

tightening of the classic „uninformed priors‟

• EMB have made use of the maximisation of „relative entropy‟ 

in their Economic Scenario Generator

– Allows for user-imposed constraints on the statistical 

properties of the modelled economic scenarios

• Worthwhile area for further research – likely to be useful for 

curve-fitting, and could be used to address the parameter 

uncertainty in the tail of the GPD

Maximum Entropy

Past and future applications
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III. Case study

a. Severity model selection
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The problem: Determine the severity model and its 

parameters for a given data set

As the problem becomes sparser, at least three things happen: 

1. parameter uncertainty increases…

2. … the mean is underestimated in the majority of samples…

3. … and model uncertainty becomes critical
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Sparsity causes parameter uncertainty

The standard error on the parameters increases as dataset size 

decreases. It eventually drowns the estimate itself…

• Artificially generated data from 

a Lognormal distribution with 

=9, =2

• Theoretical mean is £59,876

• 1,000 samples for each 

selected sample size
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Sparsity causes parameter bias

Bias = systematic downward (upward) error in parameter 

estimation

The theoretical average for LogN(9,2) is £59,876

Effect of sample size on the empirical mean 
Median statistic over 1,000 samples
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Sparsity causes model uncertainty

AIC Least 

Squares

KS Kuiper AD

Lognormal ranks… #1 #2 #2 #2 #1

… and the winner is: LogN Beta tr. Beta tr. Beta tr. LogN

# of parameters: 2 4 4 4 2

Lognormal ranks… #5 #9 #9 #9 #10

… and the winner is: Pareto Burr Burr Burr Loglog

# of parameters: 2 3 3 3 2

Lognormal ranks… #4 #9 #9 #10 #5

… and the winner is: Plog inv Beta tr Beta tr Beta tr Gam tr

# of parameters: 2 4 4 4 3

N=1,000

N=100

N=20

Results obtained with Risk Explorer, with 22 distributions to pick from, using MLE
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Yes, but… does it really matter?

It does.

LogN(9,2) LogN(8.86,1.78) Beta transf Burr

Mean 60,945         34,722                 16,448           244,294        

95% 218,750      131,815               78,649           138,859        

99.50% 1,439,375   701,616               78,649           1,891,458    

99.90% 3,941,002   1,715,139           78,649           13,883,349  

Curve fits based on N=20
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• Unconstrained distribution fitting to select the best distribution 

just doesn‟t work

– Models with more parameters will be chosen more easily

• One must also be aware of the bias introduced…

• …and of course of the parameter uncertainty

Lessons learned
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Solutions? [1-2] 

1. Restrict the 

number of 

admissible 

models

• Use experience or theoretical reasons, e.g. EVT

• Exclude distributions with undesirable properties

• Only distributions with some rationale?

• Even choosing something because it is traditional is

better than scatter-gunning!

2. Punish 

model 

complexity

• Statistical learning theory: any model more complex 

than necessary makes poorer predictions

• AIC works better because it punishes complexity:

metersno_of_paradata 2)Pr(log2
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Solutions? [3]

3. Use a 

Bayesian 

approach 

to model 

selection

i. Assign a prior probability to each model, Pr(Mj)

ii. Select the model with the largest posterior distribution

given the data:

M*= argmax Pr(Mj |D) = argmax Pr(D | Mj) Pr(Mj)

How to estimate the prior probabilities?

– Possible empirical approach: consider models effective

on larger clients: e.g. 70% of large clients used LogN,

30% used Burr

– Another possible approach: use market analysis, and

use Pr(Mj | Dmkt) as the prior
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Solutions? [4-5]

4. Add the bias 

back

The bias can be estimated by simulating from the fitted 

distribution.

By adding the bias back, the solution now won‟t 

maximise likelihood anymore but will be unbiased… one 

can‟t have it both ways

This is especially important for percentiles

5. Validate 

against an 

independent 

set

• In statistical learning theory, there is always a training 

set (used for parameter estimation), and a test set 

used for selection and validation

• This will call the complex models‟ bluff!
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Severity models revisited

Method 1: Use a restricted set and punish complexity

1. Exclude inverse distributions, threshold distributions, 

distributions with negative values such as Normal 

2. Rank distributions according to AIC

Note: LogN is ranked #2 in this restricted set according to LS,KS,AD, Kuiper

Distr -log Pr(D|M) AIC No of param

LogN 215.12 219.12 2

Burr 213.36 219.36 3

Weibull 216.71 220.71 2

Gamma 218.77 222.77 2

Loglogistic 219.01 225.01 3

Frechet 225.05 229.05 2

Paralogistic 229.7 233.7 2

Gumbel 244.54 248.54 2
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Severity models revisited

Method 2: Use a Bayesian approach to model uncertainty

1. E.g. Pr(Mj) = % of large clients for which Mj is the best 

model

2. Choose the model with the largest posterior Pr(Mj |D)

3. Correct parameters for the bias (if applicable)

Distr - log Pr( D | M ) Pr( M ) Pr( M| D )

LogN 215.12 60% 49.7%

Burr 213.36 10% 48.2%

Weibull 216.71 10% 1.7%

Gamma 218.77 20% 0.4%

Loglogistic 219.01 0% 0.0%

Frechet 225.05 0% 0.0%

Paralogistic 229.7 0% 0.0%

Gumbel 244.54 0% 0.0%
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Pickands-Balhema-deHaan theorem:

The tail of any distribution can be modelled as a Generalised 

Pareto distribution. 

This solves the model uncertainty problem!

What if we are modelling the tail?

Extreme value theory to the rescue
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Sparsity-related problems with EVT

– What is the tail, actually? Some residual model uncertainty…

– You still have parameter uncertainty, which leads to a 

prediction horizon

– There is a strong bias on the parameters, which may lead to 

behaviour-switching (e.g. from power law to exponential to 

finite support)
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III. Case studies 

b. Rating factors selection
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Rating factors selection and regularisation

No. of data points ( N) vs no. of rating factors ( p)

Rating factor selection suffers from the dimensionality curse

As the number of possible rating factors increase, the number of

data points needed to have a stable variable selection process

increases exponentially (N ~ c p).

From multi-way analysis to regularisation

GLM represents great progress to tackle sparsity with respect to

multi-way analysis. However, it still assumes that N p. There

exist techniques, as elastic net regularisation (Zou & Hastie, 2005),

which address the situation where p N.

Want to know more? Talk C6 on Thursday: “Regularisation: An
efficient and simple approach to rating factors selection”
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III. Case studies 

c. Copula calibration
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Copulas in Dependence Modelling

• Copulas are increasingly in use by non-life insurers as a tool to model non-

linear correlations and particularly tail dependence

• Purely statistical approach to dependencies

• Copula family needs to be carefully selected by consideration of desirable 

features:

– Tail-dependency

– Symmetry / asymmetry

– Simplicity

• Given the form of the copula, parameters need to be selected:

– Maximum likelihood and other statistical approaches

– “Judgement”
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• Simulation of 10 observations from

Gumbel Copula, with = 2

• Should exhibit heavy dependence in the upper tail.

• Require estimate of:

P(Y > 90th %ile | X > 80th %ile) – i.e. P(A | A B)

• Model Sample (n = 10):

Kendall = 0.2 = 1.25 

P(Y > 90th %ile | X > 80th %ile) = 25%

• Actual Model

= 2 Kendall = 0.5

P(Y > 90th %ile | X > 80th %ile) = 42%

Copula Example: Sample Data Set

Gumbel Copula (  = 2)
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Why has it gone so wrong?

• Kendall correlation coefficient for Gumbel copula is driven 

by dependence in the tail

• Kendall grossly understated, due to insufficient tail 

observations

• Estimate of the only parameter, , is driven by estimate of 

Without a large sample of observations, relying solely on statistical 

methods fitted to data does not work in the tails of joint distributions!
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Is there a place for copula modelling in

non-life insurance?

• Modelling of dependence using „structural‟ correlations (i.e. causal drivers) 

should be used to the greatest extent possible, within bounds of 

pragmatism and explainability

• Copulas remain useful tools for modelling residual non-linear dependency, 

which may not readily be captured by structural correlations alone

• Key is to calibrate based on judgemental estimates of tail dependence

• Must be able to communicate clearly the implications of the judgements 

employed

– “Our capital model assumes that the probability of a global fall in stock 

markets of more than 35% is x%, and the probability that this is combined 

with our D&O book giving rise to losses exceeding $400m is y%.”
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Expert Judgement applied to Bayesian 

Problems

• We have established that there is no substitute for expert judgement, and 

we are all “Empirical Bayesians”

• Bayesian problems themselves can be assisted by prior judgement, 

particularly those which require probability estimates of extreme events

– e.g. Curve fitting in the tail: “what does „1-in-100‟ look like?”

– e.g. (Reverse) stress / scenario testing: what is the probability of a 

particular combination of adverse events?

• Will illustrate that judgement can be more than just a “finger in the air”, and 

the thought process can be made transparent by explicit Bayesian 

formulation
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III. Expert Judgement 

d. Case Study: (Reverse) Stress Testing
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Stress & Scenario Testing (SST)

• Challenge is to quantify both the probability and severity of extreme 

adverse events

• Key tool for risk management

– Inform capital model design or parameterisation

– Validate outputs of capital model

– Identify unmodelled risks, which can then be managed

• Not just a qualitative exercise!

• Mathematically, the problem reduces to the estimation of joint and 

conditional probabilities of adverse quantifiable events

• For this, Bayes‟ Theorem is the key
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Bayes’ Theorem

• P(A, B) = P(A | B) P(B)

= P(B | A) P(A) (by symmetry)

• Invaluable because estimation of joint probabilities is extremely difficult

• We generally do not have a good intuition for joint probabilities, except in 

the trivial case of independence: P(A, B) = P (A) P(B)

• We are much better at estimating conditional probabilities, though these 

too can give rise to paradoxes of intuition, if not framed correctly

• Bayes‟ Theorem decomposes the problem of estimating a highly unknown 

quantity into a problem of estimating better understood quantities

• It will always be necessary to make subjective probability assessments, but 

we can at least make the problem simpler!
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Reverse Stress Test Example

• Required to think hard about risks to your company, including those that 

are reasonably foreseeable, and may cause your business model to fail, 

and estimate the likelihood of it occurring

(See GIRO Workshop E5: Reverse Stress Testing)

• Example Reverse Stress Test:
– In a particular year, there is an active hurricane season, which produces 2 severe US 

windstorm events of Katrina/Rita/Wilma magnitude. To make things worse, an 

earthquake of Richter 9.0 strikes in California causing widespread losses across 

across both property and liability classes of business. Concerns relating to the impact 

of the natural disasters on US economic output lead to a sharp fall in the dollar 

relative to other major currencies. A number of reinsurers default, causing an 

increase in the level of net losses.

• How do you estimate the probability of this?
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Reverse Stress Test Example

• Events:

– Windstorm 1 (A)

– Windstorm 2 (B)

– California Earthquake (C)

– Fall in dollar (D)

– Reinsurers defaulting (E)

• We are required to estimate:
P(A, B, C, D, E)

= P(E | A, B, C, D) P(A, B, C, D) (Bayes)

= P(E | A, B, C) P(A, B, C, D) (Conditional Independence)

= P(E | A, B, C) P(D | A, B, C) P(A, B, C) (Bayes)

= P(E | A, B, C) P(D | A, B, C) P(A, B) P(C) (Independence)

= P(E | A, B, C) P(D | A, B, C) P(B | A) P(A) P(C) (Bayes)

• Much more intuitive now!
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Reverse Stress Test Example

• Notice how a judgement of „causality‟ has been used:

1. To decide that Californian Earthquakes happen independently of 

windstorms

2. To decide that reinsurers defaulting and the fall of the dollar are 

conditionally independent, given the occurrence of the natural 

catastrophes

• Bayesian networks are directed acyclical graphs to describe prior 

judgements relating to „causality‟ and conditional probability, and are a 

powerful formalisation of the thought processes described above

• By decomposing the joint event into its constituents, we not only gain 

transparency, but may be able to place useful upper and lower bounds on 

the overall probability by considering bounds of the constituent parts
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Reverse Stress Test Example

• Events:

– Windstorm 1 (A)

– Windstorm 2 (B)

– California Earthquake (C)

– Fall in dollar (D)

– Reinsurers defaulting (E)

– P(A) 20%–30%

– P(B | A) 50%–80%

– P(C) 2%–5%

– P(D | A, B, C) 60%–80%

– P(E | A, B, C) 60%–80%

• Return Period: 1-in-130 to 1-in-1300(!)

• Bounds are not tight, but may not be completely useless

– Capital model with 50,000 modelled scenarios should give between 60 and 480 

scenarios of this sort. How does that stack up?
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Reverse Stress Test Example

• P(A) 20%–30%

• P(B | A) 50%–80%

• P(C) 2%–5%

• P(D | A, B, C) 60%–80%

• P(E | A, B, C) 60%–80% 

• Return Period: 1-in-130 to 1-in-1300

• Which assumption is most sensitive?

– …turns out to be one of the “marginal” rather than “conditional” probabilities

– Counterintuitive result?

– Helps focus attention on risk and probability assessment

• This exercise highlights the extent of subjectivity in assessing extreme probabilities, 

but the Bayesian approach helps in formulating and exposing the thought processes 

behind the judgemental assumptions
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IV. Assessment of Probabilities
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Judgemental Assessments of Probability

• Humans are notoriously bad at assessing the probability of events, 

particularly joint events.

• Interpreting probability is a non-trivial challenge:

– “The probability of a fair coin, when tossed, coming up heads 3 times in 

a row is 12.5%”

– “The probability of England winning the World Cup at some point in the 

next 40 years is 12.5%”

• There is a difference between the purely frequentist view of probability 

and the purely subjective view of probability, which describes the level of 

confidence in an uncertain occurrence
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Subjective Probability

• As subjective probabilities express degrees of belief, they are highly 

judgemental, and will give range to a wide range of estimates

• Where multiple experts exist, all of whom have at least some degree of 

credibility, polling may be able to produce a better estimate (“Wisdom of 

Crowds”)

• It is at least as important for the judgement to be understood and 

communicated in a transparent manner, so that it can be challenged

– In the end, a model is just a formalisation of a set of assumptions and 

beliefs…though it does give us useful information about the logical 

consequences of our beliefs
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Eliciting Probability Judgements (1)

Determining Probabilities Directly

• While probability assessments are inherently subjective, there are plenty of 

ways we can avoid common pitfalls to elicit judgement by asking questions 

in the right way:

• Return Period pitfalls

– Avoid asking for return periods directly (“What is your „1-in-100‟ loss?”)

– Common interpretation as „1-in-100 years‟ is severely flawed

– If we have to use a time-oriented concept, consider: “How many events 

per year?” before asking the “how many years?” question

• Comparison with ‘everyday’ probabilities

– “Is it more or less likely than rolling a 7 from a pair of dice 3 goes 

running?” (i.e. ~“1-in-200”)
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Eliciting Probability Judgements (2)

Assessing conditional relationships

• Assessing independence

– Poorly phrased questions

“Is A likely to happen independently of B?” “Is A independent of B?”

“Is B caused by A?”

– Better question:

“If you knew about whether A would happen or not, would it change your view 

of the likelihood/riskiness of B?”

• Assessing conditional probabilities

– Bayes‟ Theorem lets us elicit conditional probabilities in either direction

– Which is easier to estimate:

P(D&O Loss Ratio exceeds plan | Stock Market Crash)

or 

P(Market crash | D&O Loss Ratio exceeds plan)?

– Where causal relationship is known, “causal” direction is much more intuitive!
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Eliciting Probability Judgements

Assessing conditional relationships

• Erroneous interpretation of ‘temporal dependence’:

– Lack of understanding of “given”

– Poorly phrased question:

“What is the chance of A happening given that B has happened?”

– Better question:

“If, at some point in the future, you were to know that B were the case, 

what do you think would be the chance that A would at the same time 

also be the case?”
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Eliciting Probability Judgements (4)

Cognitive Bias

• Biases due to human / behavioural influences and factors

• ~70 different types identified on Wikipedia!

• Overconfidence

– Can assess by requiring „confidence interval‟ estimates of uncertain 

quantities for which real values known

– Possibility for bias correction(?)

• Underconfidence

– “Have no idea.” / “Your guess is as good as mine!”

– Test intuition of probabilities as before against everyday events

– Decompose event into „causal‟ sub-events where possible
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Eliciting Probability Judgements (5)

Validation Step

• Validation

– Should check results of model / risk assessment exercise by presenting 

consequences of subjective assumptions back to assumption-setters

– Check for consistency and general „feeling‟ of reasonableness

– May find inconsistencies such as:

P(A) > P(B) and P(B) > P(C),  but P(A) < P(C)

– May lead to re-iteration of probability assessment exercise
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V. Conclusions
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Conclusions (1)

• Sparsity must be addressed in a Bayesian framework, whether formalised or not – a

frequentist approach just won‟t do

• One must be aware of all that sparsity entails: parameter uncertainty, model

uncertainty, bias (possibly), and the breakdown of many of the quantitative methods

that actuaries use

• There is a surprising number of quantitative techniques that can assist us when

dealing with sparsity, ranging from extreme value theory to statistical learning theory

• Some level of expert judgement or prior constraints is essential for quantitative

techniques perform well
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Conclusions (2)

• Qualitative approaches tend to be centred on the subjective assessment of risky

events, given sparse or no data…but Bayesian techniques can help the process of

eliciting expert judgement

• We should be aware of cognitive bias and minimise the error in expert judgement

caused by asking the wrong questions!

• Ultimately, for all approaches, transparency and interpretability of results are key

• Expert judgements should not go unchecked, and the importance of validation should

not be underestimated
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Questions or comments?

Expressions of individual views by 

members of The Actuarial Profession 

and its staff are encouraged.
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