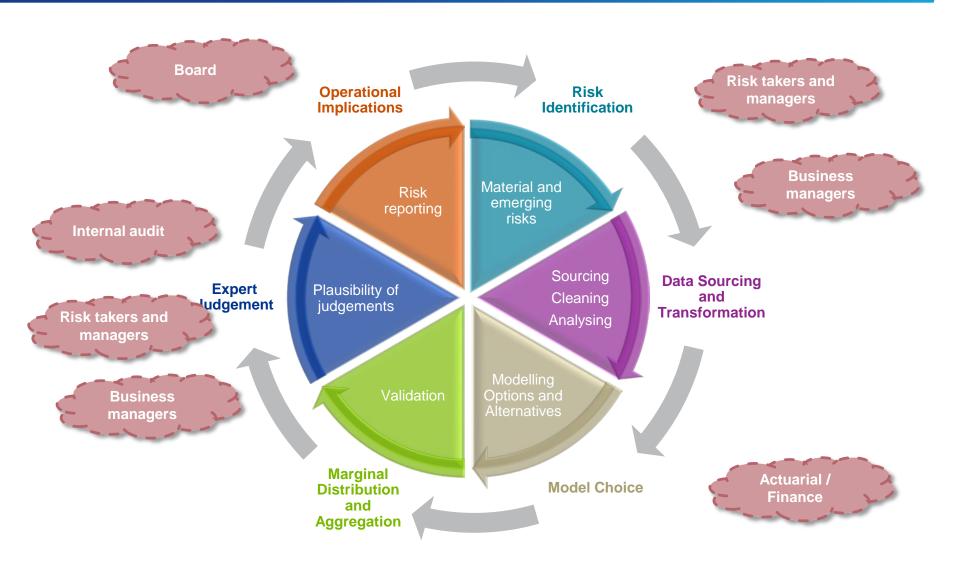


Contents

1	RISK DRIVER CALIBRATION
2	RISK IDENTIFICATION
3	MULTIPLE SOURCES
4	TRANSFORMATIONS
5	MODEL SELECTION
6	MARGINAL DISTRIBUTION
7	DEPENDENCIES
8	EXPERT JUDGEMENT
9	OPERATIONAL IMPLICATIONS
10	WRAP UP

Risk Driver Calibration: why bother?

How can you optimise shareholders return per unit of risk and protect policyholders if you don't understand the nature of the risks driving your business?


Improved risk management.

Avoid crises and
stop fighting fires.

Better incentives for investment managers and pricing teams.
Aligned with shareholders.

Risk Driver Calibration: Life cycle

Risk Identification

Key sources for Risk Identification				
ORSA	Stress and Scenario TestingReverse Stress Testing			
Audit	Internal AuditExternal Audit			
Regulator	Supervisory StatementCapital Add On			
Consultancy	Industry BenchmarkingMarket Surveys			
Models	Asset Model InputsLiability Model Inputs			
Attribution	Capital AttributionProfit and Loss Attribution			
ID Exercise	Top Down Risk AssessmentBottom Up Risk Assessment			
Risk Register	Risk BreachesNear Misses			

- What is out of scope?
- Is the risk quantifiable?
- What is the time horizon?
- What is our exposure?
- What are the sub-categories of a risk?

Industry developments:

PRUDENTIAL have publically stated that they are building their own Economic Capital model with a longer time horizon e.g. the ninty percentile to run-off

Back up the calibration with...



MULTIPLE SOURCES

Multiple Sources

To fit the model use...

Transformations

Transformations

Classical Transformations

- Deciding approach to data outliers
- Removing biases such as autocorrelation
- Choosing how to express risk e.g. excess equity returns
- Filling in gaps missing data
- Extending the data series
- Using overlapping data

Transforming To Facilitate Modelling

- PCA reduces the number of dimensions without losing the information.
- Lambda transform squeezes and stretches the data, so that a simple model can be used.
- Explaining the impact to management.

top model

MODEL SELECTION

Model Selection

Increasing Complexity

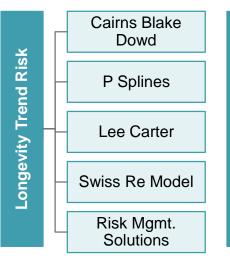
Probability Distribution

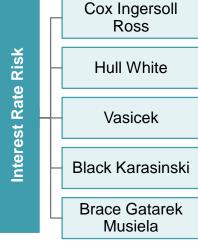
Time Series Approach

- For one year VaR
- For through the cycle
- Stationarity tests of IID

- For long term projections
- For point in time

Statistical Parametric Distributions


e.g. Normal


Empirical Distribution

For high data volumes

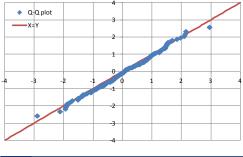
Mixture Distribution

For extreme value theory

Isolate the risk to set...

MARGINAL DISTRIBUTION

Marginal Distribution


Calibration Distribution Validation Normal **Graphical Tests Method of Moments** Maximum Likelihood Student's t **Academic Statistical Tests Estimation** Monte Carlo Statistical Laplace **Quantile Fitting Tests Best Linear Unbiased** Gumbel **Estimator** Reverse Gumbel EGB2

Visual analytics - Marginal distributions

Analysis

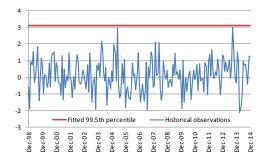
Histogram of Data vs Fit Observations Fitted distribution Observations Fit reasonable relative to the distribution of historical data

Q-Q plot

Q-Q plot shows close alignment of percentiles, with some deviation in tails

Analysis of moments

Test	Data	Fitted
Mean	0.03	0.00
Standard Deviation	1.04	1.1
Skewness	0.05	0.10
Kurtosis	0.21	0.20


Fitted moments are sufficiently close to those in the data

Goodness of Fit

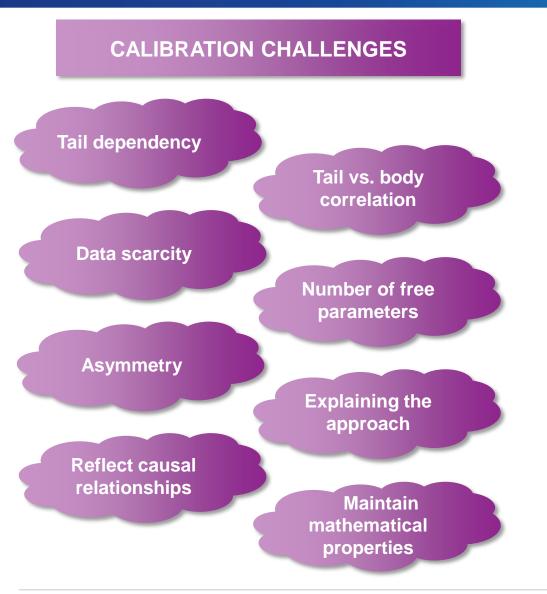
Test	Test Stat	Critical Value	Decision
Chi-Squared	1.56	1.23	Accepted
Kolmogorov-Smirnov	2.41	2.32	Accepted
Anderson-Darling	1.01	1.51	Rejected

Passes and fails on goodness of fit tests will need to be rationalised

Back-testing key percentiles

Fitted 1-in-200 appears sufficiently onerous compared with historical data

Stationarity tests


Tests show moments to be reasonably static through time in the data

Make sure to reflect your own...

DEPENDENCIES

Dependencies

MODELS

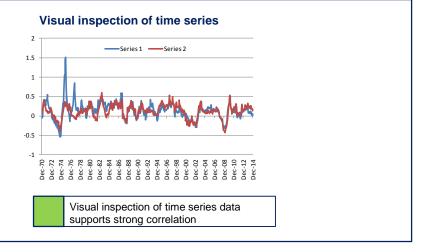
Correlation Matrix

e.g. Standard Formula SCR

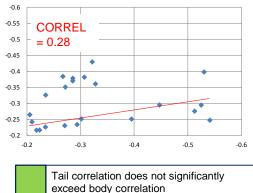
Gaussian Copula

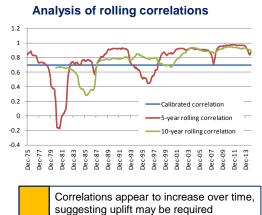
Allows for wider range of marginal distributions

Causal Models

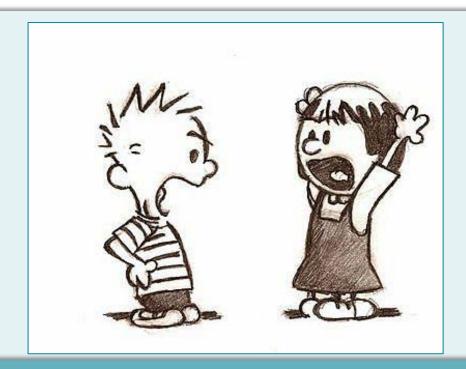

e.g. Bayesian Networks for operational risk

Advanced Copula


e.g. Archimedean, Student's t or Vine copulas


Visual inspection of correlation **CORREL** = 0.690.6 Visual inspection of data supports

calibrated correlation coefficient



Analysis of tail correlation

Use workshops to set...

EXPERT JUDGEMENT

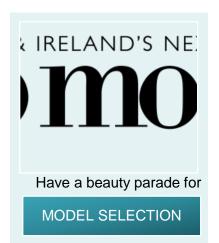
Expert Judgement

Finding the Experts	Dealing with uncertainty	Managing the Expert Judgement	
Relevant credentials	Facilitating the expression of a range of opinions	Determine update time and event based update triggers	
Training to identify and avoid any inherent biases	Identifying all the plausible choices	Assess the materiality of the judgement	
Representation from all the affected business functions	Considering the data analysis, acknowledging the data limitations	Record the judgement in the Expert Judgement log	
	Documenting the rationale for the final judgement	Evidence the review and challenge of the Expert Judgement	
	Assessing the confidence in the judgement	Record the disagreements and challenges transparently	

Go full circle to manage...

OPERATIONAL IMPLICATIONS

Operational Implications



Summary and questions...please!

MULTIPLE SOURCES

Presenters

David Honour FIA

- Director at KPMG
- David leads KPMG's Actuarial
 European Economic Capital
 (EC) Field of Expertise Team

Joshua Waters FIA CERA CQF

 Joshua Waters is an Executive Life Advisor in KPMG's Life Actuarial Practice

© 2015 KPMG LLP, a UK limited liability partnership and a member firm of the KPMG network of independent member firms affiliated with KPMG International Cooperative ("KPMG International"), a Swiss entity. All rights reserved.

KPMG LLP is multi-disciplinary practice authorised and regulated by the Solicitors Regulation Authority. For full details of our professional regulation please refer to 'Regulatory Information' at www.kpmg.com/uk

The KPMG name, logo and "cutting through complexity" are registered trademarks or trademarks of KPMG International.

Produced by Create Graphics/Document number: CRT041430A

The information contained herein is of a general nature and is not intended to address the circumstances of any particular individual or entity. Although we endeavour to provide accurate and timely information, there can be no guarantee that such information is accurate as of the date it is received or that it will continue to be accurate in the future. No one should act on such information without appropriate professional advice after a thorough examination of the particular situation.